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Abstract

We propose a new approach, called self-motivated pyra-

mid curriculum domain adaptation (PyCDA), to facilitate

the adaptation of semantic segmentation neural networks

from synthetic source domains to real target domains. Our

approach draws on an insight connecting two existing

works: curriculum domain adaptation and self-training. In-

spired by the former, PyCDA constructs a pyramid curricu-

lum which contains various properties about the target do-

main. Those properties are mainly about the desired label

distributions over the target domain images, image regions,

and pixels. By enforcing the segmentation neural network

to observe those properties, we can improve the network’s

generalization capability to the target domain. Motivated

by the self-training, we infer this pyramid of properties by

resorting to the semantic segmentation network itself. Un-

like prior work, we do not need to maintain any additional

models (e.g., logistic regression or discriminator networks)

or to solve minmax problems which are often difficult to

optimize. We report state-of-the-art results for the adap-

tation from both GTAV and SYNTHIA to Cityscapes, two

popular settings in unsupervised domain adaptation for se-

mantic segmentation1.

1. Introduction

The objective of semantic segmentation is to assign a se-

mantic label to every pixel of an image. Over the past few

years, a great amount of effort has been made by the com-

munity to tackle this problem [23, 1, 41, 3, 21], leading to

sophisticated and high-performing deep convolutional neu-

ral networks as the main solution. However, to collect and

label images for training such networks is a very daunt-

ing work [6]. To alleviate the heavy annotation burden, a

promising alternative is to employ photo-realistic simula-

tors to efficiently collect and label training data. Richter et

al. [28] use the GTAV game engine to aid user annotations,

1Code available at https://github.com/lianqing11/pycda

(a) Synthetic images with labeling-free pixel-wise groundtruth annotations.

(b) Segmentation results of a real image with and without adaptation.

Figure 1: Unsupervised domain adaptation for semantic

segmentation. The segmentation results for real images

can be significantly improved by explicit domain adaptation

techniques when we adapt a segmentation model trained us-

ing synthetic imagery.

resulting a dataset of 25 thousand synthetic urban scene im-

ages labeled in only 49 hours (about 7 seconds per image).

The clear visual mismatch between the synthetic

(source) domains and real (target) domains (cf. Figs. 3

and 4), however, inevitably causes significant performance

degradation when one applies the model trained on the

source domain to the real images of the target domain.

In order to better take advantage of the synthetic im-
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agery for the semantic segmentation of real scenes, we pro-

pose a novel domain adaptation approach by drawing an in-

triguing connection between two previous works: curricu-

lum domain adaptation [39, 38] and self-training [43]. This

connection naturally leads to self-motivated pyramid cur-

riculums and a new training algorithm for the cross-domain

adaptation of semantic segmentation networks. Compared

with the prevalent adversarial training methods in domain

adaptation [4, 18, 40, 35, 27, 5, 17, 19, 33], our approach

gives rise to results on par with or better than theirs and

yet is lighter-weight, without the need of learning extra dis-

criminator nets, and easier to optimize, without the need of

solving any minmax problems. More importantly, it out-

performs both the original curriculum adaptation [38] and

the original self-training method [43].

In particular, we view self-training from the perspective

of curriculum domain adaptation. They share the same al-

gorithmic format. On the one hand, the self-training alter-

nates between two sub-tasks: 1) estimating pseudo labels

for the target domain’s pixels and 2) updating the weights

of the segmentation network by using both the source la-

bels and the pseudo target labels. On the other hand, the

curriculum adaptation first 1) constructs a curriculum, i.e.,

infers properties of the target domain in the form of fre-

quency distributions of the class labels over an image (or

image region) and then 2) updates the network’s weights

using the source labels and the target domain’s properties.

Due to this analogy, we may view the pseudo labels in self-

training as one of the properties about the target domain.

More interestingly, the second steps of the two works share

exactly the same form in math — a cross-entropy loss be-

tween a frequency distribution / pseudo label and a differ-

entiable function of the network’s predictions.

Immediately, our approach follows the above analogy.

We add the pseudo labels in self-training to the curriculum

as the finest layer of properties about the target domain im-

ages. On top of that, we build a pyramid of which a layer

comprises image regions of a certain size. This pyramid

design resembles the original curriculum domain adapta-

tion work, in which the frequency distributions are counted

over a global image and some superpixels, respectively —

in other words, a simple two-layer pyramid.

In addition to enriching the original curriculum by the

pseudo labels, we also improve it in two ways. One is to

replace the superpixels by small squared regions to signifi-

cantly save computation cost. The other is to infer the target

domain properties — label distributions over the squared re-

gions and full target domain images — by the semantic seg-

mentation network itself. In each iteration of the training

phase, we infer those properties from the network’s pxiel-

wise predictions over the target domain images and then use

a loss defined over those properties to update the network by

backpropagation.

Our main contribution is two-fold. One is that we pro-

vide a new insight connecting the self-training for adapting

segmentation networks [43] and the curriculum adaptation

method [39, 38]. The other is that, inspired by the connec-

tion, we propose a novel self-motivated pyramid curricu-

lum for the domain adaptation of semantic segmentation

networks. Extensive experiments show that it outperforms

either [43] or [38] individually. Moreover, it is on par with

or better than state-of-the-art adversarial adaptation meth-

ods without the need of maintaining an extra discrminator

network or carefully tuning the optimization procedure for

minmax problems.

2. Related Work

Semantic segmentation. Semantic segmentation is the task

that assigns labels in pixel level for an image which plays a

vital role in lots of tasks including autonomous driving, dis-

ease detection, etc. In the following, we briefly review some

of the works with a focus on CNN-based methods. Driven

by the powerful deep neural networks [16], pixel-level pre-

diction tasks achieve great progress mostly following the

design of replacing the softmax layer in classification with

the pixel-wise softmax [23]. To enlarge the receptive fields

and feature resolutions, methods of [1, 2, 3, 41] employ di-

lated convolution. To utilize different context information

and multiple features, some extend the dilated convolution

to a pyramid [1, 2, 3] or resize it with multiple sizes [41].

Domain adaptation. A basic assumption in conventional

machine learning is that the training and test data are drawn

i.i.d. from the same underlying distribution. However, this

does not always hold in real world scenarios, resulting in

significant performance drops when the training and test

data exist distribution mismatches. Domain adaptation aims

to rectify this mismatch and make the model generalize well

onto the test domain. Domain adaptation has been mostly

addressed for image classification problems in computer vi-

sion [8, 9, 15, 14, 13, 24, 25]. Recent works start to study

deep neural networks including learning domain-invariant

models [13, 32, 12] and target specific models [30, 11].

Domain adaptation for semantic segmentation. Recent

work on domain adaptation mainly proceeds in two di-

rections. One is based on a curriculum learning strategy.

Zhang et al. first learns to solve easy tasks in the target do-

main and then use them to regularize semantic segmenta-

tion [39, 38]. Dai et al. construct a curriculum by simulat-

ing foggy images of different fog densities [7]. In this work,

we also view the self-training [43] as a curriculum-style do-

main adaptation method. The other line of work is to reduce

the domain shift in feature space or output space and tries to

seek a better way to align both domains in an intermediate

layer [4, 18, 40, 35, 27, 42, 5, 17, 19, 33, 26]. In [18], Hoff-

man et al. combine global and local alignment methods with
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Figure 2: Overview of our self-motivated pyramid curriculum domain adaptation (PyCDA) approach to segmentation.

a domain adversarial training loss. In [5], Chen et al. fur-

ther propose a global and class-specific feature alignment

approach guided by the soft pseudo labels in the target do-

main. In [35], Tsai et al. proposed to align both domains at

the structured output space level. In [4, 40], they focus on

utilizing spatial information to help the discriminator dis-

tinguish the domains better. In [26, 42], they focus on solv-

ing the problem of class boundary or outliers in the domain

adaptation. In [17, 27, 33], they propose to learn domain

adaptive segmentation networks through directly translating

the source images to the target ones at the pixel level. We

refer readers to [38, Section 5] for a more thorough review.

3. Approach

In this section, we first reveal the connection between

the curriculum domain adaptation (CDA) [38] and the self-

training (ST) for adaptation [43]. This connection natu-

rally leads to the training algorithm of this paper, dubbed

self-motivated pyramid curriculum domain adaptation (Py-

CDA), for the semantic segmentation task.

3.1. CDA vs. ST

Denote by It ∈ R
H×W a target domain image and

Ŷt ∈ R
H×W×C the corresponding output of a semantic

segmentation network, where H , W , and C are respec-

tively the height, width, and number of possible classes

of the input image. Most neural segmentation networks

employ a pixel-wise softmax function at the output layer

so that Ŷt(i, j) ∈ R
C is a probability vector satisfying

∑

c Ŷt(i, j, c) = 1, ∀i, j and Ŷt(i, j, c) ≥ 0, ∀i, j, c. Sim-

ilarly, denote by Is and Ŷs a source domain image and the

corresponding prediction by a network. In unsupervised do-

main adaptation, the groundtruth labels {Ys} of the source

domain (S) are given but the learner has no access to the

labels of the target domain (T ).

CDA [38] learns a semantic segmentation network by min-

imizing the following objective function:

min
∑

s∈S

L(Ys, Ŷs) + λ
∑

t∈T

∑

k∈P1

t

C(pkt , p̂
k
t ) (1)

where the first term sums up pixel-wise cross-entropy losses

over the source domain images (s ∈ S), each summand of

the second term is a cross-entropy loss over a target domain

image (t ∈ T ) between two label distributions which indi-

cate the proportion of each class in the image t or in a region

of it, and the setP1
t collects all the label distributions for the

target image t. As a concrete example, a desired label dis-

tribution p0t over a target domain image It is calculated by

p0t (c) =
1

WH

W
∑

i=1

H
∑

j=1

Yt(i, j, c), ∀c, (2)

and the property p̂0t predicted by the segmentation network,

which can be obtained in a similar way as above from the

network prediction Ŷt, is supposed to match the desired la-

bel distribution p0t . In this example, the label distribution

over a full image captures a global property. The others

calculated within an image region capture the local proper-

ties of a target domain image. Accurate readers may won-

der how to estimate the desired properties pkt , k ∈ P
1
t , in

practice because the target labels are actually unknown in

unsupervised domain adaptation; we explain it below.

The name of CDA attributes to the following easy-to-

difficult curriculum. Compared with the pixel-wise predic-

tions, it is relatively easy to obtain these label distributions,
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especially when the images are about urban scenes which

share common objects and spatial layouts. Zhang et al. [38]

train separate logistic regression models and support vector

machines to estimate these distributions pkt , k ∈ P
1
t . In this

paper, however, we estimate them in a self-training fashion

by the segmentation network itself.

Self-training (ST) [43] considers the unknown labels of the

target domain images as latent variables. It alternates be-

tween 1) inferring the values of the latent target labels and

2) updating the network’s weights. The second step essen-

tially solves the following problem:

min
∑

s∈S

L(Ys, Ŷs) + λ
∑

t∈T

∑

(i,j)∈P2

t

C(Yt(i, j), Ŷt(i, j)),

where P2
t is the set of pixels of the target image It whose

pseudo labels {Yt(i, j)} are inferred — the other pixels are

with null labels because the network predictions at those

positions are probably below a certain threshold.

Connection between the two. The objective functions of

CDA and ST are remarkably alike. The only difference be-

tween them is on the sets P1
t and P2

t , where the former col-

lects label distributions over the global target domain image

It and some of its local regions, and the latter is the pixels

of It that are pseudo-labeled by the first step in ST. What if

we union the two sets, i.e., P1
t ∪P

2
t ? They indeed seem like

mutually complementary. Thanks to CDA, we conjecture

that the finest-grained pixel-level pseudo labels P 2
t may be

enhanced by the label distributions of the fine-grained im-

age regions and the coarsest-grained full image. Due to ST,

we reasonably expect the label distributions may be derived

from the segmentation network itself, without the need of

resorting to any additional models (e.g., logistic regression

or SVM used in [38]). Following this line of reasoning, we

devise our approach as the following.

3.2. Self­motivated pyramid CDA (PyCDA)

We propose a self-motivated pyramid curriculum for

the domain adaptation (PyCDA) of semantic segmentation

tasks. The idea faithfully follows the insight above, i.e., we

union the two sets P1
t ∪ P

2
t used in CDA and ST, respec-

tively. This union results in a pyramid with at least three

layers: pixels on the bottom layer, small image regions in

the middle, and a full image on the top. Note that this pyra-

mid is built for a target domain image, not source domain

images. Similarly to CDA, we will infer the label distribu-

tion over the top-layer full image and label distributions, or

more concretely one-hot vectors, for the middle-layer small

image regions. Similarly to ST, we want to assign pseudo

labels to some of the bottom-layer pixels. Please refer to

Fig. 2 for an overview of the proposed PyCDA approach.

Superpixels vs. pixel squares. Before describing the main

approach, we first discuss how to partition an image into

small regions. Zhang et al. employ in their original CDA

work [38] non-overlapping superpixels, which incur addi-

tional computation overhead. We replace the superpixels

by overlapped squares instead. While the pixel squares do

not track object boundaries, their squared shape enables fast

GPU computation as demonstrated beblow when we infer

the label distributions for them. Moreover, as the squares

are sufficiently small, most of them each cover pixels of the

same class. In the experiments, we use the squares of 4× 4
and 8× 8 for the middle layers of the pyramid in PyCDA.

Self-motivated inference of target domain properties. In

order to estimate the pseudo label Yt(i, j) of a target domain

pixel (i, j), we use as simple as a thresholding method. De-

noting by c⋆ ← argmaxc Ŷt(i, j, c), we have

Yt(i, j) =

{

c⋆ if Ŷt(i, j, c
⋆) > 0.5

null otherwise
(3)

where Ŷt is the output of a segmentation network at a train-

ing iteration. We say a pixel survives this step and will add it

to the bottom layer of the pyramid curriculum, if its pseudo

label is not null. Alternatively, one may use the self-paced

policy design [43] to estimate the pseudo labels.

We employ a similar strategy to decide to which class

each pixel square belongs to. Denote by (i0, j0) a square

(e.g., the coordinates of the top-left corner of this square).

We take an average pooling of the network’s predictions

Ŷsquare(i0, j0, c)← mean(i,j)∈square(Ŷt(i, j, c)) (4)

and then threshold the pooled value Ŷsquare(i0, j0, c) to de-

termine the label of the square, i.e., by replacing Ŷt with

Ŷsquare in eq. (3). In implementation, we leverage efficient

GPU operations by adding an average pooling layer after

the network’s output layer. This label for a pixel square can

be converted to a one-hot vector and regarded as a label dis-

tribution over this square.

Finally, we want to estimate the label distribution over

a full target domain image. Zhang et al. [38] gives a few

candidate methods for this sub-task, and we use the most

computation-efficient one in this work. Particularly, no mat-

ter for which target domain image, we transfer to it the mean

of the label distributions of all source domain images. As

shown in the the experiments of [38], this actually gives rise

to results on par with learning a logistic regression model

from the source domain probably because the images of ur-

ban scenes share common objects and layouts. For the tar-

get domains beyond urban scenes, alternative sophisticated

algorithms are desired to reliably estimate the label distri-

butions for the target domain images.

PyCDA. We are now ready to present the overall objective

function of the proposed PyCDA approach:
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(a) GTAV

(b) SYNTHIA

Figure 3: Sample images from the GTAV [28] and SYNTHIA [29] datasets.

min
1

|S|

∑

s∈S

L(Ys, Ŷs) +
λ1

|T |

∑

t∈T

C
(

p0t , p̂
0
t

)

+
λ2

|P|

∑

(t,k)∈P

C
(

Y k
t , Ŷ k

t

)

, (5)

where λ1 and λ2 are pre-defined trade-off parameters, and

P = {(t, k)|∀t ∈ T, k ∈ P1
t ∪ P

2
t } denotes the label dis-

tributions (resp., pseudo labels) over the squared regions

(resp., pixels) of the target images. Note that in Eq. (5),

the second term is a cross-entropy loss defined on the label

distributions over target images, and the last term takes care

of the pixels and squared regions of the target domain. In

the experiments, we set λ1 = 1, λ2 = 0.5 and tune other

free parameters (e.g., learning rate) via a validation set.

Effect of the pyramid curriculum. We have described

a pyramid curriculum which consists of the global target

domain images on the top, pixels at the bottom, and pixel

squares in between. From the CDA point of view [38], the

label distributions over the top-layer images macroscopi-

cally hint the network how to update its predictions while

the label distributions over the middle-layer pixel squares

microscopically indicate the network where to update. The

pseudo labels of bottom-layer pixels give even more precise

supervision to the network. From the ST perspective [43],

the middle-layer pixel squares may be viewed as a way of

consensus voting so that the pseudo labels (of the squares)

can be estimated more reliably than thresholding the pre-

diction at an isolated pixel. The label distributions over the

target domain images act like a prior over the classes, play-

ing a similar role to the class-balanced formulation in [43].

4. Experiments

In this section, we conduct extensive experiments on

simulation-to-real unsupervised domain adaptation for the

semantic segmentation task. We compare the proposed Py-

CDA with several state-of-the-art methods. A majority of

them uses adversarial training to bring closer the source

and target domains on the feature level (ROAD [4]), on

both features and pixels (FCAN [40], CyCADA [17]), on

the output maps (OutputAdapt [35], CLAN [26]), and com-

bining adversarial learning with entropy minimization (AD-

VENT [36]). In contrast, our PyCDA approach, along with

CDA [38], and ST [43], adapts the neural networks by pos-

terior regularization instead. The difference between the ad-

versarial training methods and ours is significant for practi-

cal applications because the minmax adversarial problems

are often hard to optimize and have to maintain an addi-

tional discrimination network. Please note that we only

compare results obtained from single models without using

any ensemble strategy.

4.1. Experimental setup

We follow the experimental setup of previous works [38,

4, 40, 43] and use the standard benchmark settings (i.e.,

“GTAV to Cityscapes” and “SYNTHIA to Cityscapes”) in

the experiments.

• Cityscapes [6] is a popular dataset to benchmark se-

mantic segmentation models. The images are collected

in the real world by vehicle-carried cameras. This

dataset focuses on urban scenes, covering 50 cities in

Germany and nearby countries. Its official data parti-

tion has 2,975 images in the training set, 500 in the val-

idation set and 1,175 in the test set. In total, 19 classes

of the semantic labels are compatible with GTAV and

16 with SYNTHIA.

• GTAV [28] is a large-scale dataset with 24,966 syn-

thetic urban scene images collected from a near-

realistically rendered computer game called Grand

Theft Auto V (GTA or GTAV). We consider all the

19 semantic classes of GTAV for the adaptation to

Cityscapes.

• SYNTHIA [29] is another synthetic image dataset

and provides a particular subset, called SYNTHIA-
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Table 1: Comparison results (in %) adapting from GTAV to Cityscapes. All the prior methods but CDA use the whole training

set of Cityscapes in training — thus their models see more target images than ours — and do not leave out a separate validation

set for model selection. Unlike the others, FCAN directly works with the original image size. OutputAdapt (ResNet-101)

pre-trains the model using both ImageNet [31] and MS COCO [22].

Network Method road sdwk bldng wall fence pole light sign veg trrn sky psn rider car truck bus train moto bike mIoU

VGG

-16

Source only [32] 25.9 10.9 50.5 3.3 12.2 25.4 28.6 13.0 78.3 7.3 63.9 52.1 7.9 66.3 5.2 7.8 0.9 13.7 0.7 24.9

Source only (ours) 56.0 12.2 71.6 8.5 17.8 19.5 14.5 3.1 73.2 3.8 46.0 38.8 4.4 70.7 15.1 2.5 2.2 1.4 0.1 24.3

CDA [38] 72.9 30.0 74.9 12.1 13.2 15.3 16.8 14.1 79.3 14.5 75.5 35.7 10.0 62.1 20.6 19.0 0.0 19.3 12.0 31.4

ST [43] 83.8 17.4 72.1 14.3 2.9 16.5 16.0 6.8 81.4 24.2 47.2 40.7 7.6 71.7 10.2 7.6 0.5 11.1 0.9 28.1

CBST [43] 66.7 26.8 73.7 14.8 9.5 28.3 25.9 10.1 75.5 15.7 51.6 47.2 6.2 71.9 3.7 2.2 5.4 18.9 32.4 30.9

ROAD [4] 85.4 31.2 78.6 27.9 22.2 21.9 23.7 11.4 80.7 29.3 68.9 48.5 14.1 78.0 19.1 23.8 9.4 8.3 0.0 35.9

CyCADA [17] 85.2 37.2 76.5 21.8 15.0 23.8 22.9 21.5 80.5 31.3 60.7 50.5 9.0 76.9 17.1 28.2 4.5 9.8 0.0 35.4

CLAN [26] 88.0 30.6 79.2 23.4 20.5 26.1 23.0 14.8 81.6 34.5 72.0 45.8 7.9 80.5 26.6 29.9 0.0 10.7 0.0 36.6

ADVENT [36] 86.8 28.5 78.1 27.6 24.2 20.7 19.3 8.9 78.8 29.3 69.0 47.9 5.9 79.8 25.9 34.1 0.0 11.3 0.3 35.6

PyCDA (ours) 86.7 24.8 80.9 21.4 27.3 30.2 26.6 21.1 86.6 28.9 58.8 53.2 17.9 80.4 18.8 22.4 4.1 9.7 6.2 37.2

ResNet

-38

Source only [43] 70.0 23.7 67.8 15.4 18.1 40.2 41.9 25.3 78.8 11.7 31.4 62.9 29.8 60.1 21.5 26.8 7.7 28.1 12.0 35.4

ST [43] 90.1 56.8 77.9 28.5 23.0 41.5 45.2 39.6 84.8 26.4 49.2 59.0 27.4 82.3 39.7 45.6 20.9 34.8 46.2 41.5

CBST [43] 86.8 46.7 76.9 26.3 24.8 42.0 46.0 38.6 80.7 15.7 48.0 57.3 27.9 78.2 24.5 49.6 17.7 25.5 45.1 45.2

PyCDA (ours) 92.3 49.2 84.4 33.4 30.2 33.3 37.1 35.2 86.5 36.9 77.3 63.3 30.5 86.6 34.5 40.7 7.9 17.6 35.5 48.0

ResNet

-101

Source only [35] 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6

Source only (ours) 73.8 16.0 66.3 12.8 22.3 29.0 30.3 10.2 77.7 19.0 50.8 55.2 20.4 73.6 28.3 25.6 0.1 27.5 12.1 34.2

ROAD [4] 76.3 36.1 69.6 28.6 22.4 28.6 29.3 14.8 82.3 35.3 72.9 54.4 17.8 78.9 27.7 30.3 4.0 24.9 12.6 39.4

OutputAdapt [35] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

FCAN [40] - - - - - - - - - - - - - - - - - - - 46.6

CLAN [26] 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2

ADVENT [36] 87.6 21.4 82.0 34.8 26.2 28.5 35.6 23.0 84.5 35.1 76.2 58.6 30.7 84.8 34.2 43.4 0.4 28.4 35.3 44.8

PyCDA (ours) 90.5 36.3 84.4 32.4 28.7 34.6 36.4 31.5 86.8 37.9 78.5 62.3 21.5 85.6 27.9 34.8 18.0 22.9 49.3 47.4

RANDCITYSCAPES, to pair with Cityscapes. This

subset contains 9,400 images which are automatically

labeled with 12 object categories, one void class, and

some unnamed classes. Following [38], we manu-

ally align four unnamed classes with their counterparts

in Cityscapes, forming 16 common classes between

SYNTHIA and Cityscapes.

In this work, we consider Cityscapes containing real im-

ages as the target domain, while GTAV and SYNTHIA

are respectively used as the source domain (sample im-

ages from the two domains are shown in Fig. 3). Since the

groundtruth labels from the official test set of Cityscapes are

not publicly available, by strictly following [38], we take

the official validation set as our test set for final evaluation.

2475 500 500

In Cityscapes:    Training Validation

In this work: Training (no labels) Validation  Test   

Also, 500 images

are randomly

selected from the

official training

set for validation, and the remaining 2,475 images are

served as unlabeled training data from the target domain.

Evaluation. We directly use the evaluation code re-

leased alongside with Cityscapes, where PASCAL VOC

intersection-over-union (IoU) [10] is used as the evalua-

tion metric. Specifically, for each class, we have IoU =
TP

TP+FP+FN
, where TP, FP and FN are the numbers of true

positive, false positive and false negative pixels, respec-

tively, over the whole test set. In addtional to the per-class

IoUs, we also report the mean of those IoUs (i.e., mIoU)

over all classes. Note that in the experiments, we resize the

images before feeding them to the segmentation network, so

we resize the output segmentation mask back to the original

size when running the evaluation code.

Implementation details. Since existing state-of-the-art

methods use different base segmentation networks as their

backbones, we employ the following ones for a wider range

of comparison: 1) FCN8s [23] with VGG-16 [34]; 2)

ResNet-38 [37]; and 3) PSP-Net [41] with ResNet-101 [16].

All the base networks are pre-trained on ImageNet [31]. Re-

garding the data pre-processing, we firstly resize images to

the same width (1024) while preserving the original aspect

ratios. During training, we randomly crop regions and feed

them to the network. During testing, we feed the whole im-

ages (whose width are 1024) to the network. During eval-

uation, we resize the output segmentation mask back to the

original image size (2048 × 1024) in order to calculate the

mIoUs. Regarding the training pipeline, we firstly train the

model in the source images with 30000 iterations. And then

we fine-tune the model using our PyCDA framework with

another 30000 iterations. The training is optimized SGD

with momentum of 0.9. Using the validation data, we set

our initial learning rate = 0.016 and decrease it ten times in

the fine-tuning stage. In the test stage, we apply adabn [20]

that change the mean and variance of batch-normalization

layers, which were computed over the images of both do-
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Table 2: Comparison results (in %) adapting from SYNTHIA to Cityscapes. mIoU* denotes the mean IoU over 13 classes

excluding those marked with *. All the prior methods but CDA use the whole training set of Cityscapes in training — thus

their models see more target images than ours — and do not leave out a separate validation set for model selection.

Network Method road sdwk bldng wall* fence* pole* light sign veg sky psn rider car bus mcycl bcycl mIoU mIoU*

VGG

-16

Source only [4] 4.7 11.6 62.3 10.7 0.0 22.8 4.3 15.3 68.0 70.8 49.7 6.4 60.5 11.8 2.6 4.3 25.4 28.7

Source only (ours) 50.1 20.0 49.4 0.0 0.0 16.3 0.0 0.0 69.9 54.2 43.9 4.7 43.1 6.1 0.1 0.1 22.4 26.3

CDA [38] 57.4 23.1 74.7 0.5 0.6 14.0 5.3 4.3 77.8 73.7 45.0 11.0 44.8 21.2 1.9 20.3 29.7 35.4

ST [43] 0.2 14.5 53.8 1.6 0.0 18.9 0.9 7.8 72.2 80.3 48.1 6.3 67.7 4.7 0.2 4.5 23.9 27.8

CBST [43] 69.6 28.7 69.5 12.1 0.1 25.4 11.9 13.6 82.0 81.9 49.1 14.5 66.0 6.6 3.7 32.4 35.4 40.4

ROAD [4] 77.7 30.0 77.5 9.6 0.3 25.8 10.3 15.6 77.6 79.8 44.5 16.6 67.8 14.5 7.0 23.8 36.2 41.8

CLAN [26] 80.4 30.7 74.7 - - - 1.4 8.0 77.1 79.0 46.5 8.9 73.8 18.2 2.2 9.9 - 39.3

ADVENT [36] 67.9 29.4 71.9 6.3 0.3 19.9 0.6 2.6 74.9 74.9 35.4 9.6 67.8 21.4 4.1 15.5 31.4 36.6

PyCDA (ours) 80.6 26.6 74.5 2.0 0.1 18.1 13.7 14.2 80.8 71.0 48.0 19.0 72.3 22.5 12.1 18.1 35.9 42.6

ResNet

-101

Source only [35] 55.6 23.8 74.6 - - - 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 - 38.6

Source only (ours) 55.6 22.7 68.6 4.3 0.1 23.0 5.6 9.1 77.2 75.9 54.7 8.7 81.5 23.9 8.4 8.8 33.0 38.5

OutputAdapt [35] 84.3 42.7 77.5 - - - 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 - 46.7

CLAN [26] 81.3 37.0 80.1 - - - 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 - 47.8

ADVENT [36] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 41.2 48.0

PyCDA (ours) 75.5 30.9 83.3 20.8 0.7 32.7 27.3 33.5 84.7 85.0 64.1 25.4 85.0 45.2 21.2 32.0 46.7 53.3

mains during training, to the mean and variance over the

target domain only.

4.2. Results on “GTAV to Cityscapes”

We report the results of unsupervised domain adaptation

from GTAV to Cityscapes compared with existing state-of-

the-arts in Table 1. Note that all the prior methods but CDA

use the whole training set of Cityscapes in training — im-

plying their models see more target images than ours —

and do not leave out a separate validation set for model

selection. Unlike the others, FCAN directly works with

the original high-resolution images. OutputAdapt (ResNet-

101) pre-train the model using both ImageNet [31] and MS

COCO [22]).

We draw the following observations. First, all domain

adaptation methods significantly outperform the respective

“source only” baselines which train segmentation networks

by using only synthetic source images. Such results clearly

demonstrate the benefit of explicitly using domain adapta-

tion techniques to improve the transfer from synthetic im-

ages to real ones. Moreover, comparing our full approach

(PyCDA) with the existing ones in terms of mIoU, PyCDA

gives rise to the best results thus far for the adaptation from

GTAV to Cityscapes. Note that the second best FCAN is

a two-stage method with style transfer on the image pixel

level and then an adversarial training of the features. The

style transfer stage runs extremely slow, consuming about

one to two hours per image. PyCDA is orthogonal to both

the image style transfer and adversarial training, so our re-

sults could be further improved if we apply the style transfer

to the images of the two domains.

When compared with the distribution matching meth-

ods (FCN-wild [18], ROAD [4], OutputAdapt [35] and

FCAN [40]), PyCDA is particularly good at the dominant

classes, such as “road”, “building”, “vegetation”, and “car”.

Meanwhile, PyCDA is better than CBST [43] at classifying

small objects, such as “rider”, “wall”, and “fence”, etc.

Table 3: Ablation study of PyCDA (in mIoU%).

Experiment Setting
GTAV SYNTHIA

VGG-16 Res-101 VGG-16 Res-101

Source only 24.3 34.2 22.4 33.0

Top 28.0 42.0 28.7 40.7

CDA [38] 29.7 - 31.4 -

Bottom 32.6 40.6 31.3 41.0

ST [43] 28.1 - 23.9 -

top + bottom 34.9 46.2 35.1 44.8

top + pixel squares 35.4 46.3 35.4 45.6

top + superpixels 35.2 46.3 35.2 45.9

PyCDA 37.2 47.4 35.9 46.7

4.3. Results on “SYNTHIA to Cityscapes”

To further validate the effectiveness of PyCDA, we also

conduct experiments by using SYNTHIA as the source do-

main. FCN8s with VGG-16 and PSP-Net with ResNet-101

as employed as backbones to evaluate different methods.

The IoU results on this setting are summarized in Table 2.

From the results, We can clearly see that our PyCDA again

outperforms the existing state-of-the-arts by a large margin

when using different backbones, and also similar observa-

tions can be drawn as in the “GTAV to Cityscapes” setting.

4.4. Ablation study

To analyze the effectiveness of our PyCDA, we conduct

ablation study by using the above two settings, i.e., taking

GTAV and SYNTHIA as the source domains, respectively.

Note that PyCDA connects curriculum domain adapation

(CDA) with self-training (ST), and it can be viewed as a
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(a) Input image (b) Groundtruth (c) Adapted from GTAV (d) Adapted from SYNTHIA

Figure 4: Some qualitative segmentation results on the target domain. (a) displays the target images, and their corresponding

groundtruth segmentation masks are shown in (b). (c) and (d) display the segmentation results obtained from our PyCDA

models adapted from GTAV and SYNTHIA, respectively.

pyramid constructed by multiple levels from pixels (bottom)

to label distributions of full images (top). In this case, we

evaluate PyCDA by comparing its counterparts which elim-

inate different levels. Specifically, we denote “top + bot-

tom” and “top + pixel squares” as connecting CDA with ST

at the levels of pixels and pixel squares, respectively. From

Table 3, we can see that connect CDA with ST in either

pixel level or pixel squares level outperform both CDA and

ST in a large margin, which demonstrates the effectiveness

of connecting both methods. And PyCDA, which consid-

ers both pixels and pixel squares, gets further boosted by a

fairly big margin.

Superpixels vs. pixel squares. As discussed in Section 3,

it is time-consuming to generate superpixels (about 3.6s per

image). In order to avoid the computation overhead, we

switch to pixel squares in our PyCDA. As turned out in Ta-

ble 3, the mIoU performance of using pixel squares achieves

comparable results to that of using superpixels.

4.5. Qualitatively comparing GTAV and SYNTHIA

One may wonder how the two source domains of syn-

thetic imagery differ from each other and what effects the

difference could cause on the target domain of real images.

Fig. 3 shows some example images of the two domains.

While GTAV images are vehicle-centric, there are more di-

verse views in SYNTHIA. In Fig. 4, we give some qualita-

tive results obtained by our PyCDA models adapted from

GTAV and SYNTHIA, respectively. In general, the seg-

mentation results of PyCDA adapted from GTAV is better

than that adapted from SYNTHIA, especially for the dom-

inant “road” class. This observation can also be verified

by the superior IoU for “road” (90.5%, Table 1) of the Py-

CDA model trained based on GTAV. Given all those results,

we believe GTAV is visually more similar to the real self-

driving scenes than SYNTHIA in terms of both visual ap-

pearances and spatial layouts.

5. Conclusion

We propose a novel method called self-motivated pyra-

mid curriculum domain adaptation (PyCDA) for pixel-level

semantic segmentation. PyCDA provides a new perspec-

tive of insight, which connects self-training for adapting

segmentation networks and curriculum domain adaptation.

More specifically, PyCDA constructs a curriculum based on

a pyramid of pixel squares at different sizes in each real im-

age, including the image itself as the top layer and pixels

as the bottom layer. This curriculum is self-motivated, be-

cause the label distributions over the pyramid are derived

from the same network of the previous iteration. By form-

ing such a pyramid of pixel squares, we are able to better

preserve and capture local information for objects appear-

ing at different scales. Extensive experiments on two bench-

mark settings (i.e., “GTAV to Cityscapes” and “SYNTHIA

to Cityscapes”) clearly demonstrate the effectiveness of Py-

CDA when compared with other state of the arts.
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