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Abstract

We propose a scalable neural network framework to re-

construct the 3D mesh of a human body from multi-view

images, in the subspace of the SMPL model [23]. Use of

multi-view images can significantly reduce the projection

ambiguity of the problem, increasing the reconstruction ac-

curacy of the 3D human body under clothing. Our exper-

iments show that this method benefits from the synthetic

dataset generated from our pipeline since it has good flex-

ibility of variable control and can provide ground-truth for

validation. Our method outperforms existing methods on

real-world images, especially on shape estimations.

1. Introduction

Human body reconstruction, consisting of pose and

shape estimation, has been widely studied in a variety of

areas, including digital surveillance, computer animation,

special effects, and virtual/augmented environments. Yet, it

remains a challenging and popular topic of interest. While

direct 3D body scanning can provide excellent and suffi-

ciently accurate results, its adoption is somewhat limited

by the required specialized hardware. We propose a practi-

cal method that can estimate body pose and shape directly

from a small set of images (typically 3 to 4) taken at sev-

eral different view angles, which can be adopted in many

applications, such as Virtual Try-On. Compared to exist-

ing scanning-based reconstruction, ours is much easier to

use. Compared to previous image-based estimation meth-

ods, ours has a higher shape estimation accuracy when the

input human body is not within a normal range of body-

mass index (BMI) and/or when the body is wearing loose

clothing. Furthermore, our framework is flexible in the

number of images used, which considerably extends its ap-

plicability.

In contrast to many existing methods, we use multi-view

images as input. We use the word “multi-view” to refer pho-

tos taken of the same person with similar poses from differ-

ent view angles. They can be taken using specialized multi-

view cameras, but it is not necessary (Sec. 6.4). Single-view

images often lack the necessary and complete information

to infer the pose and shape of a human body, due to the

nature of projection transformation. Although applying a

predefined prior can alleviate this ambiguity, it is still insuf-

ficient in several cases, especially when a part of the body

is occluded by clothing, or when the pose direction is per-

pendicular to the camera viewing plane. For example, when

the human is walking towards the camera, it can be difficult

to distinguish the difference between a standing vs. walk-

ing pose using a direct front-view image, while a side-view

image could be more informative of the posture. By obtain-

ing information from multiple view angles, the ambiguity

from projection can be considerably reduced, and the body

shape under loose garments can also be more accurately re-

covered.

Previous work on pose and shape estimation of a human

body (see Sec. 2) mostly rely on optimization. One of the

most important metrics used in these methods is the dif-

ference between the original and the estimated silhouette.

As a result, these methods cannot be directly applied to im-

ages where the human wears loose garments, e.g. long coat,

evening gown. The key insight of our method is: when esti-

mating a person’s shape, how the human body is interacting

with the cloth, e.g. how a t-shirt is stretched out as pushed

by the stomach or the chest, provides more information than

the silhouette of the person. So image features, especially

those on clothes, play an important role in the shape estima-

tion. With recent advances in deep learning, it is widely be-

lieved that the deep Convolutional Neural Network (CNN)

structure can effectively capture these subtle visual details

as activation values. We propose a multi-view multi-stage

network structure to effectively capture visual features on

garments from different view angles to more accurately in-

fer pose and shape information.

Given a limited number of images, we incorporate prior

knowledge about the human body shape to be reconstructed.

Specifically, we propose to use the Skinned Multi-Person

Linear (SMPL) model [23], which uses Principal Compo-

nent Analysis (PCA) coefficients to represent human body

shapes and poses. In order to train the model to accu-

rately output the coefficients for the SMPL model, a suf-

ficient amount of data containing ground-truth information
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is required. However, to the best of our knowledge, no

such dataset exists to provide multiple views of a loosely

clothed body with its ground-truth shape parameters (i.e.

raw mesh). Previous learning-based methods do not ad-

dress the shape (geometry) recovery problem [26] or only

output one approximation close to the standard mean shape

of the human body [19], which is insufficient when recover-

ing human bodies with largely varying shapes. Taking ad-

vantage of physically-based simulation, we design a system

pipeline to generate a large number of multi-view human

motion sequences with different poses, shapes, and clothes.

By training on the synthetic dataset with ground-truth shape

data, our model is “shape-aware”, as it captures the statisti-

cal correlation between visual features of garments and hu-

man body shapes. We demonstrate in the experiments that

the neural network trained using additional simulation data

can considerably enhance the accuracy of shape recovery.

To sum up, the key contributions of our work include:

• A learning-based shape-aware human body mesh re-

construction using SMPL parameters for both pose and

shape estimation that is supervised directly on shape

parameters.

• A scalable, end-to-end, multi-view multi-stage learn-

ing framework to account for the ambiguity of the 3D

human body (geometry) reconstruction problem from

2D images, achieving improved estimation results.

• A large simulated dataset, including clothed human

bodies and the corresponding ground-truth parameters,

to enhance the reconstruction accuracy, especially in

shape estimation, where no ground-truth or supervi-

sion is provided in the real-world dataset.

• Accurate shape recovery under occlusion of garments

by (a) providing the corresponding supervision and (b)

deepening the model using the multi-view framework.

2. Related Work

In this section, we survey recent works on human body

pose and shape estimation, neural network techniques, and

other related work that make use of synthetic data.

2.1. Human Body Pose and Shape Recovering

Human body recovery has gained substantial interest due

to its importance in a large variety of applications, such

as virtual environments, computer animation, and garment

modeling. However, the problem itself is naturally ambigu-

ous, given limited input and occlusion. Previous works

reduce this ambiguity using different assumptions and in-

put data. They consist of four main categories: pose from

images, pose and shape from images under tight clothing,

scanned meshes, and images with loose clothing.

Pose From Images. Inferring 2D or 3D poses in images of

one or more people is a popular topic in Computer Vision

and has been extensively studied [31, 42, 43, 54, 55]. We

refer to a recent work, VNect by Mehta et al. [26] that is

able to identify human 3D poses from RGB images in real

time using a CNN. By comparison, our method estimates

the pose and shape parameters at the same time, recovering

the entire human body mesh rather than only the skeleton.

Pose and Shape From Images under Tight Clothing. Pre-

vious work [3, 6, 10, 11, 12, 18] use the silhouette as the

main feature or optimization function to recover the shape

parameters. As a result, these methods can only be used

when the person is wearing tight clothes, as shown in ex-

amples [41, 47]. By training on images with humans under

various garments both in real and synthetic data, our method

can learn to capture the underlying human pose and shape

based on image features.

Pose and Shape From Scanned Meshes. One major chal-

lenge of recovering human body from scanned meshes is

to remove the cloth mesh from the scanned human body

wearing clothes [34]. Hasler et al. [13] used an iterative ap-

proach. They first apply a Laplacian deformation to the ini-

tial guess, before regularizing it based on a statistical human

model. Wuhrer et al. [50] used landmarks of the scanned

input throughout the key-frames of the sequences to opti-

mize the body pose, while recovering the shape based on

the ‘interior distance’ that helps constrain the mesh to stay

under the clothes, with temporal consistency from neigh-

boring frames. Yang et al. [51] applies a landmark track-

ing algorithm to prevent excessive human labor. Zhang et

al. [53] took more advantages of the temporal information

to detect the skin and cloth region. As mentioned before,

methods based on scanned meshes are limited: the scan-

ning equipment is expensive and not commonly used. Our

method uses RGB images that are more common and thus

much more widely applicable.

Pose and Shape from Images under Clothing. Bălan et

al. [2] are the first to explicitly estimate pose and shape from

images of clothed humans. They relaxed the loss on clothed

regions and used a simple color-based skin detector as an

optimization constraint. The performance of this method

can be easily degraded when the skin detector is not help-

ful, e.g. when people have different skin colors or wear long

sleeves. However, our method is trained on a large num-

ber of images, which does not require this constraint. Bogo

et al. [4] used 2D pose machines to obtain joint positions

and optimizes the pose and shape parameters based on joint

differences and inter-penetration error. Lassner et al. [21]

created a semi-automatic annotated dataset by incorporat-

ing a silhouette energy term on SMPLify [4]. They trained

a Decision Forest to regress the parameter based on a much

more dense landmark set provided by the SMPL model [23]

during the optimization. Constraining the silhouette en-

ergy effect to a human body parameter subspace can reduce

the negative impact from loose clothing, but their annotated

data are from the optimization of SMPLify [4], which has
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introduced errors inherently. In contrast, we generate a large

number of human body meshes wearing clothes, with the

pose and shape ground-truth, which can then train the neu-

ral network to be “shape-aware”.

2.2. Learning-Based Pose/Shape Estimations

Recently a number of methods have been proposed to

improve the 3D pose estimation with calibrated multi-view

input, either using LSTM [46, 29], auto-encoder [36, 45]

or heat map refinement [32, 44]. They mainly focus on 3D

joint positions without parameterization, thus not able to ar-

ticulate and animate. Choy et al. [7] proposed an LSTM-

based shape recovery network for general objects. Varol et

al. [48] proposed a 2-step estimation on human pose and

shape. However, both methods are largely limited by the

resolution due to the voxel representation. In contrast, our

method outputs the entire body mesh with parameteriza-

tion, thus is articulated with a high-resolution mesh qual-

ity. Also, our method does not need the calibration of the

camera, which is more applicable to in-the-wild images.

Kanazawa et al. [19] used an iterative correction frame-

work and regularized the model using a learned discrimi-

nator. Since they do not employ any supervision other than

joint positions, the shape estimation can be inaccurate, espe-

cially, when the person is relatively over-weighted. In con-

trast, our model is more shape-aware due to the extra super-

vision from our synthetic dataset. Recent works [30, 33, 20]

tackle the human body estimation problem using various

approaches; our method offers better performance in ei-

ther single- or multi-view inputs by comparison (see Ap-

pendix C).

2.3. Use of Synthetic Dataset

Since it is often time- and labor-intensive to gather a

dataset large enough for training a deep neural network, an

increasing amount of attention is drawn to synthetic dataset

generation. Recent studies [5, 52] have shown that using a

synthetic dataset, if sufficiently close to the real-world data,

is helpful in training neural networks for real tasks. Varol et

al. [49] built up a dataset (SURREAL) which contains hu-

man motion sequences with clothing using the SMPL model

and CMU MoCap data [8]. While the SURREAL dataset is

large enough and is very close to our needs, it is still insuf-

ficient in that (a) the clothing of the human is only a set of

texture points on the body mesh, meaning that it is a tight

clothing, (b) the body shape is drawn from the CAESAR

dataset [37], where the uneven distribution of the shape pa-

rameters can serve as a “prior bias” to the neural network,

and (c) the data only consists of single view images, which

is not sufficient for our training. Different from [5, 49],

our data generation pipeline is based on physical simulation

rather than pasting textures on the human body, enabling

the model to learn from more realistic images where the hu-

man is wearing looser garments. Recent works [39, 1] also

generate synthetic data to assist training, but their datasets

have only very limited variance on pose, shape, and textures

to prevent from overfitting. In contrast, our dataset consists

of a large variety of different poses, shapes, and clothing

textures.

3. Overview

In this section, we give an overview of our approach.

First, we define the problem formally. Then, we introduce

the basic idea of our approach.

Problem Statement: Given a set of multi-view images, I1
. . . In, taken for the same person with the same pose, re-

cover the underlying human body pose and shape.

In the training phase, we set n = 4, i.e. by default we

take four views of the person: front, back, left and right,

although the precise viewing angles and their orders are

not required, as shown in Sec. 4.3. To extend our frame-

work to be compatible with single view images, we copy

the input image four times as the input. For more detail

about image ordering and extensions to other multi-view

input, please refer to Sec. 4.3. We employ the widely-used

SMPL model [23] as our mesh representation, for its abil-

ity to express various human bodies using low dimensional

parametric structures.

As mentioned before, this problem suffers from ambi-

guity issues because of the occlusions and the camera pro-

jection. Directly training on one CNN as the regressor can

easily lead to the model getting stuck in local minima, and

it cannot be adapted to an arbitrary number of input images.

Inspired by the residual network structure [15], we pro-

pose a multi-view multi-stage framework (Sec. 4) to address

this problem. Since real-world datasets suffer from limited

foreground/background textures and ground-truth pose and

shape parameters, we make use of synthetic data as addi-

tional training samples (Sec. 5) so that the model can be

trained to be more shape-aware.

4. Model Architecture

In this section, we describe the configuration of our net-

work model. As shown in Fig. 1, we iteratively run our

model for several stages of error correction. Inside each

stage, the multi-view image input is passed on one at a

time. At each step, the shared-parameter prediction block

computes the correction based on the image feature and the

input guesses. We estimate the camera and the human body

parameters at the same time, projecting the predicted 3D

joints back to 2D for loss computation. The estimated pose

and shape parameters are shared among all views, while

each view maintains its camera calibration and the global

rotation. The loss at each step is the sum of the joint loss

and the human body parameter loss:

Li = �0L2Djoint + �1L3Djoint + LSMPL (1)
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Figure 1: The network structure. Multi-view images are first passed through an image encoder to get feature vectors f1, ..., fn. With initial

guesses of the camera parameters Θ1,i
c and the human body parameters Θ

1,1

b , the network starts to estimate the parameters stage by stage

and view by view. Each regression block at the ith stage and the jth view regresses the corrective values from image feature fj (red) and

previous guesses Θi,j
c (blue) and Θ

i,j

b (green). The results will be added up to the input values and passed to future blocks. While the new

human body parameters (green) can be passed to the next regression block, the view-specific camera parameters (blue) can only be passed

to the next stage of the same view. Finally, the predictions of the n views in the last stage are outputted to generate the prediction.

where �0 and �1 scale the units and control the importance

of each term. We use L1 loss on 2D joints and L2 loss on

others. LSMPL is omitted if there is no ground-truth.

4.1. 3D Body Representation

We use the Skinned Multi-Person Linear (SMPL)

model [23] as our human body representation. It is a genera-

tive model trained from human mesh data. The pose param-

eters are the rotations of 23 joints inside the body, and the

shape parameters are extracted from PCA. Given the pose

and shape parameter, the SMPL model can then generate a

human body mesh consisting of 6980 vertices:

X(✓,�) = WG(✓)(X0 + S� +PR(✓)) (2)

where X 2 R
6980 ⇥ R

3 is the computed vertices, ✓ 2 R
72

are the rotations of each joint plus the global rotation, � 2
R

10 are the PCA coefficients, W,S and P are trained ma-

trices, G(✓) is the global transformation, X0 are the mean

body vertices, and R(✓) is the relative rotation matrix.

For the camera model, we use orthogonal projection

since it has very few parameters and is a close approxima-

tion to real-world cameras when the subject is sufficiently

far away, which is mostly the case. We project the computed

3D body back to 2D for loss computation:

x = sX(✓,�)RT + t (3)

where R 2 R
2 ⇥ R

3 is the orthogonal projection matrix, s

and t are the scale and the translation, respectively.

4.2. Scalable Multi-View Framework

Our proposed framework uses a recurrent structure, mak-

ing it a universal model applicable to the input of any

number of views. At the same time, it couples the share-

able information across different views so that the human

body pose and shape can be optimized using image fea-

tures from all views. As shown in Fig. 1, we use a multi-

view multi-stage framework to couple multiple image in-

puts, with shared parameters across all regression blocks.

Since the information from multiple views can interact with

each other multiple times, the regression needs to run for

several iterative stages. We choose to explicitly express this

shared information as the predicted human body parameter

since it is meaningful and also contains all of the informa-

tion of the human body. Therefore the input of a regression

block is the corresponding image feature vector and the pre-

dicted camera and human body parameters from the previ-

ous block. Inspired by the residual networks [15], we pre-

dict the corrective values instead of the updated parameters

at each regression block to prevent gradient vanishing.

We have n blocks at each stage, where n is the num-

ber of views. Since all the input images contain the same

human body with the same pose, these n blocks should out-

put the same human-specific parameters but possibly differ-

ent camera matrices. Thus we share the human parameter

output across different views and the camera transforma-

tion across different stages of the same view. More specifi-

cally, the regression block at the ith stage and the jth view

takes an input of (fj ,Θ
i,j
c ,Θ

i,j
b ), and outputs the correc-

tion ∆Θi,j
c ,∆Θ

i,j
b , where fj denotes the jth image feature

vector, Θi,j
c is the camera matrices and Θ

i,j
b is the human

parameters. After that, we pass Θi+1,j
c = Θi,j

c + ∆Θi,j
c

to the next stage of the block at the same view, while we

pass Θ
i,j+1

b = Θ
i,j
b +∆Θ

i,j
b to the next block of the chain
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Figure 2: Detailed network structure of the regression block at the

ith stage and the jth view. fj denotes the image feature of the jth

view, Θi,j
c denotes the camera parameters, and Θ

i,j

b denotes the

human body parameters.

(Fig. 1). At last, we compute the total loss as the average

of the prediction of all n views in the final stage. Different

from static multi-view CNNs which have to fix the number

of inputs, we make use of the RNN-like structure in a cyclic

form to accept any number of views, and avoid the gradient

vanishing by using the error correction framework.

4.3. Training and Inferring

Intuitively we use n = 4 in our training process, since

providing front, back, left, and right views can often give

sufficient information about the human body. We choose

a random starting view from the input images to account

for the potential correlation between the first view and the

initial guess. A specific order of the input views is not re-

quired since (a) the network parameters of each regression

block are identical, and (b) none of the camera rotation in-

formation are shared among different views. To make use

of large public single-view datasets, we copy each instance

to 4 identical images as our input.

During inference, our framework can adapt to images

with any number of views n as shown below. If n  4, we

use the same structure as used for training. We can pad any

of the input images to fill up the remaining views. As each

view is independent in terms of global rotation, the choice

of which view to pad does not matter. If n > 4, we extend

our network to n views. Since this is an error-correction

structure, the exceeded values introduced by extra steps can

be corrected back. Note that the number of camera parame-

ter corrections of each view always remains the same, which

is the number of stages.

4.4. Implementation Details

During training, besides our synthetic dataset for en-

hancing the shape estimation (detailed discussion in Sec. 5),

we train on MS-COCO [22], MPI INF 3DHP [24] and Hu-

man3.6M [17] datasets. Each mini-batch consists of half

single view and half multi-view samples. Different from

HMR [19], we do not use the discriminator. This is be-

cause (a) we initialized our parameters as the trained model

of HMR [19], (b) the ground-truth given by our dataset

serves as the regularization to prevent unnatural pose not

captured by joint positions (e.g. foot orientations), and most

importantly, (c) the ground-truth SMPL parameters from

their training dataset does not have sufficient shape variety.

Enforcing the discriminator to mean-shape biased dataset

will prevent the model to predict extreme shapes. We use

50-layer ResNet-v2 [16] for image feature extraction. The

detailed structure inside the regression block is shown in

Fig. 2. We fix the number of stages as 3 throughout the en-

tire training and all testing experiments. The learning rate

is set to 10−5, and the training lasts for 20 epochs. Training

on a GeForce GTX 1080 Ti GPU takes about one day. Our

synthetic dataset will be released with the paper.

5. Data Preparation

To the best of our knowledge, there is no public real-

world dataset that captures motion sequences of human

bodies, annotated with pose and shape (either using a para-

metric model or raw meshes), with considerable shape vari-

ation and loose garments. This lack of data, in turn, forces

most of the previous human body estimations to focus only

on joints. The most recent work [19] that recovers both

pose and shape of human body does not impose an explicit

shape-related loss function, so their model is not aware of

varying human body shapes. In order to make our model

shape-aware under clothing, we need data with ground-truth

human body shapes where the garments should be dressed

rather than pasted on the skin. A large amount of data is

needed for training; sampling real-world data that captures

the ground-truth shape parameters is both challenging and

time-consuming. We choose an alternate method — using

synthesized data. In this section, we propose an automatic

pipeline to generate shape-aware training data, to enhance

the shape estimation performance.

5.1. Parameter Space Sampling

We employ the SMPL model [23], which contains pose

and shape parameters for human body. Pose parameters

are rotation angles of joints. To sample meaningful human

motion sequences in daily life, we use the CMU MoCap

dataset [8] as our pose subspace. The shape parameters

are principle component weights. It is not ideal to sam-

ple the shape parameters using Gaussian distribution; oth-

erwise there will be many more mean-shape values than ex-

treme ones, resulting in an unbalanced training data. To

force the model to be more shape-aware, we choose to uni-

formly sample values at [µ � 3�, µ + 3�] instead, where µ

and � represent the mean value and standard deviation of

the shape parameters.

5.2. Human Body Motion Synthesis

After combining CMU MoCap pose data with the sam-

pled shape parameters, it is likely that the human mesh

generated by the SMPL model has inter-penetration due to

the shape difference. Since inter-penetration is problematic
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Figure 3: Examples of rendered synthetic images. We use a large

number of real-world backgrounds and cloth textures so that the

rendered images are realistic and diverse.

for cloth simulation, we design an optimization scheme to

avoid it in a geometric sense:

min kx� x0k s.t. g(x) + ✏  0 (4)

where x and x0 stand for the vertex positions, g(x) is the

penetration depth, and ✏ is designed to reserve space for the

garment. The main idea here is to avoid inter-penetrations

by popping vertices out of the body, but at the same time

keeping the adjusted distance as small as possible, so that

the body shape does not change much. This practical

method works sufficiently well in most of the cases.

5.3. Cloth Registration and Simulation

Before we can start to simulate the cloth on each body

generated, we first need to register them to the initial pose

of the body. To account for the shape variance of different

bodies, we first manually register the cloth to one of the

body meshes. We mark the relative rigid transformation T

of the cloth. For other body meshes, we compute and apply

the global transformation, including both the transformation

T and the scaling between two meshes.At last, we use the

similar optimization scheme described in Sec. 5.2 to avoid

any remaining collisions since it can be assumed that the

amount of penetration after the transformation is small.

We use ArcSim [28] as the cloth simulator. We do not

change the material parameters during the data generation.

However, we do randomly sample the tightness of the cloth.

We generally want both tight and loose garments in our

training data.

5.4. Multi-View Rendering

We randomly apply different background and cloth tex-

tures in different sets of images. We keep the same cloth

textures but apply different background across different

views. We use the four most common views (front, back,

left, and right), which are defined w.r.t. the initial human

body orientation and fixed during the rendering. We sample

100 random shapes and randomly apply them to 5 pose se-

quences in the CMU MoCap dataset (slow and fast walking,

running, dancing, and jumping). After resolving collisions

described in 5.3, we register two sets of clothes on it, one

with a dress and the other with a t-shirt, pants, and jacket

(Fig. 3). The pose and garment variety is arguably suffi-

cient because (a) they provide most commonly seen poses

and occlusions, and (b) it is an auxiliary dataset providing

shape ground-truth which is jointly trained with real-world

datasets that have richer pose ground-truth. We render two

instances of each of the simulated frames, with randomly

picked background and cloth textures. Given an average

of 80 frames per sequence, we have generated 32,000 in-

stances, with a total number of 128,000 images. We set the

first 90 shapes as the training set and the last 10 as the test

set. We ensure the generalizability across pose and cloth-

ing by coupling our dataset with other datasets with joint

annotations (Sec. 4.4).

6. Results

We use the standard test set in Human3.6M and the vali-

dation set of MPI INF 3DHP to show the performance gain

by introducing multi-view input. Since no publicly avail-

able dataset has ground-truth shape parameters or mesh

data, or data contains significantly different shapes from

those within the normal range of BMI (e.g. overweight or

underweight bodies), we test our model against prior work

(as the baseline) using the synthetic test set. Also, we test

on real-world images to show that our model is more shape-

aware than the baseline method – qualitatively using on-

line images and quantitatively using photographs taken with

hand-held cameras.

Our method does not assume prior knowledge of the

camera calibration so the prediction may have a scale dif-

ference compared to the ground-truth. There is also extra

translation and rotation due to image cropping. To make a

fair comparison against other methods, we report the met-

rics after a rigid alignment, following [19]. We also report

the metrics before rigid alignment in the appendix.

6.1. Ablation Study

We conduct an ablation study to show the effectiveness

of our model and the synthetic dataset. In the experiments,

HMR [19] is fine-tuned with the same learning setting.

6.1.1 Pose Estimation

We tested our model on datasets using multi-view images to

demonstrate the strength of our framework. We use Mean

Per Joint Position Error (MPJPE) of the 14 joints of the

body, as well as Percentage of Correct Keypoints (PCK) at

the threshold of 150mm along with Area Under the Curve

(AUC) with threshold range 0-150mm [25] as our metrics.

PCK gives the fraction of keypoints within an error thresh-

old, while AUC computes the area under the PCK curve,

presenting a more detailed accuracy within the threshold.
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We use the validation set of MPI INF 3DHP [19] as an

additional test dataset since it provides multi-view input.

It is not used for validation during our training. We also

evaluated the original test set, which consists of single-view

images. Please refer to our appendix in the supplementary

document for this comparison result.

Comparison: As shown in Table 1 and 2, under the same

training condition, our model in single-view has similar, if

not better, results in all experiments. Meanwhile, our model

in multi-view achieves much higher accuracy.

Method
MPJPE

w/ syn. training

MPJPE

w/o syn. training

HMR 60.14 58.1

Ours (single) 58.55 59.09

Ours (multi) 45.13 44.4

Table 1: Comparison results on Human3.6M using MPJPE.

Smaller errors implies higher accuracy.

Method
PCK/AUC/MPJPE

w/ syn. training

PCK/AUC/MPJPE

w/o syn. training

HMR 86/49/89 88/52/83

Ours (single) 88/52/84 87/52/85

Ours (multi) 95/63/62 95/65/59

Table 2: Comparison results on MPI INF 3DHP in PCK/AUC/

MPJPE. Better results have higher PCK/AUC and lower MPJPE.

6.1.2 Shape Estimation

To the best of our knowledge, there is no publicly avail-

able dataset that provides images with the captured human

body mesh or other representation among a sufficiently di-

verse set of human shapes. Since most of the images-based

datasets are designed for joint estimation, we decide to use

our synthetic test dataset for large-scale statistical evalua-

tion, and later compare with [19] using real-world images.

Other than MPJPE for joint accuracy, we use the Haus-

dorff distance between two meshes to capture the shape dif-

ference to the ground-truth. The Hausdorff distance is the

maximum shortest distance of any point in a set to the other

set, defined as follows:

d(V1, V2) = max(d̂(V1, V2), d̂(V2, V1)) (5)

d̂(V1, V2) = max
u∈V1

min
v∈V2

ku� vk2 (6)

where V1 and V2 are the vertex set of two meshes in the

same ground-truth pose, in order to negate the impact of

different poses. Intuitively a Hausdorff distance of d means

that by moving each vertex of one mesh by no more than d

away, two meshes will be exactly the same.

As shown in Table 3, our model with multi-view input

achieves the smallest error values, when compared to two

other baselines. After joint-training with synthetic data, all

Method
MPJPE/HD

w/ syn. training

MPJPE/HD

w/o syn. training

HMR 42/83 89/208

Ours (single) 44/65 102/283

Ours (multi) 27/53 84/273

Table 3: Comparison results on our synthetic dataset in

MPJPE/Hausdorff Distance(HD). Better results have lower values.

models perform better in shape estimation, while maintain-

ing similar results using other metrics (Table 1 and 2), i.e.

they do not overfit. The joint errors of the HMR [19] are

fairly good, so they can still recognize the synthesized hu-

man in the image. However, a larger Hausdorff distance

indicates that they lose precision on the shape recovery.

Adding our synthetic datasets for training can effectively

address this issue and thereby provide better shape estima-

tion. We achieved a much smaller Hausdorff distance (with

syn. training) even only using single view. This is because

our refinement framework is effectively deeper, aiming at

not only the pose but also the shape estimation, which is

much more challenging than the pose-only estimation. With

the same method, multi-view inputs can further improve the

accuracy of shape recovery compared to results using only

one single-view image.

6.2. Comparisons with Multi-View Methods

Since other multi-view methods only estimate human

poses but not the entire body mesh, we compare the pose

estimation results to them in Human3.6M. As shown in Ta-

ble 4, we achieved state-of-the-art performance even when

camera calibration is unknown and no temporal informa-

tion is provided. As stated in Sec. 6, unknown camera pa-

rameters result in a scaling difference to the ground-truth,

so the joint error would be worse than what it actually

is. After the Procrustes alignment that accounts for this

effect, our method achieves the best MPJPE compared to

other methods. Another potential source of the error is that

our solution is constrained in a parametric subspace, while

other methods output joint positions directly. In contrast,

our method computes the entire human mesh in addition

to joints and the result can be articulated and animated di-

rectly.

6.3. Real-World Evaluations

We first conduct a study on how our method performs

differently with either single- or multi-view inputs under

various conditions. Our test subjects have two poses: stand-

ing and sitting, and the model is additionally tested on two

sets of variants from the images. One is slightly dimmed,

and the other has a large black occlusion at the center of the

first image. We use the percentage of errors from common

body measurements used by tailors (i.e. lengths of neck,

arm, leg, chest, waist, and hip), which is obtained using

direct tape measurements on the subjects. We report the av-
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Method MPJPE Known Camera? Run Time Temporal Opt? Articulated? Shape?

Rhodin et al. [35] - Yes 0.025fps Yes No Mix-Gaussian

Rhodin et al. [36] 98.2 Yes - Yes No No

Pavlakos et al. [32] 56.89 Yes - No No No

Trumble et al. [46] 87.3 Yes 25fps Yes No No

Trumble et al. [45] 62.5 Yes 3.19fps Yes No Volumetric

Núñez et al. [29] 54.21 Yes 8.33fps Yes No No

Tome et al. [44] 52.8 Yes - No No No

Ours 79.85
No 33fps No Yes Parametric

Ours (PA) 45.13

Table 4: Comparison on Human3.6M with other multi-view methods. Our method has comparable performance with previous work even

without the assistance of camera calibration or temporal information. PA stands for Procrustes Aligned results for ours.

Method Standing Sitting

HMR [19] 7.72% 7.29%

BodyNet [48] 13.72% 29.30%

Ours (single) 6.58% 10.18%

Ours (multi) 6.23% 5.26%

Table 5: Comparison results on tape-measured data using average

relative errors (lower the better).

(a) The input image. (b) Our result. (c) HMR.

Figure 4: Prediction results compared to HMR. Our model can

better capture the shape of the human body. The recovered legs

and chest are closer to the person in the image.

erage relative error in Table 5. The detailed errors of each

measurement are also provided in the appendix. It is ob-

served that single-view results are affected by the “occluded

sitting” case, while the multi-view input can largely reduce

the error. The reason why HMR is not impacted is that

they uniformly output average human shapes for all input

images. We also report results from BodyNet [48]. Bo-

dyNet outputs voxelized mesh and needs a time-consuming

optimization to output the SMPL parameters. Its accuracy

largely depends on the initial guess. Therefore, it resulted

in a large amount of errors on the “sitting” case.

We also tested our model on other online images, where

no such measurement can be done. As shown in Fig. 4,

HMR [19] can predict the body pose but fails on inferring

the person’s shape. On the contrary, our model not only

refines the relative leg orientations but also largely respects

and recovers the original shape of the body. More examples

are shown in our supplemental document and video.

6.4. Multi-View Input in Daily Life

It is often difficult to have multiple cameras from dif-

ferent view angles capturing a subject simultaneously. Our

model has the added benefit of not requiring the multi-view

input be taken with the exact same pose. As the model has

an error correction structure, it can be applied as long as the

poses of the four views are not significantly different. We

do not impose any assumptions on the background, so the

images can be even taken with a fixed camera and a “rotat-

ing” human subject, which is the typically case when the

method is used in applications like virtual try-on.

7. Conclusion and Future Work

We proposed a novel multi-view multi-stage framework

for pose and shape estimation. The framework is trained on

datasets with at most 4 views but can be naturally extended

to an arbitrary number of views. Moreover, we introduced

a physically-based synthetic data generation pipeline to en-

rich the training data, which is very helpful for shape es-

timation and regularization of end effectors that traditional

datasets do not capture. Experiments have shown that our

trained model can provide equally good pose estimation as

state-of-the-art using single-view images, while providing

considerable improvement on pose estimation using multi-

view inputs and a better shape estimation across all datasets.

While synthetic data improves the diversity of human

bodies with ground-truth parameters, a more convenient

cloth design and registration are needed to minimize the

performance gap between real-world images and synthetic

data. In addition, other variables such as hair, skin color,

and 3D backgrounds are subtle elements that can influence

the perceived realism of the synthetic data at the higher ex-

pense of a more complex data generation pipeline. With

the recent progress in image style transfer using GAN [27],

a promising direction is to transfer the synthetic result to

more realistic images to further improve the learning result.
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Montemayor, and Juan José Pantrigo. Multiview 3d human

pose estimation using improved least-squares and lstm net-

works. Neurocomputing, 323:335–343, 2019. 3, 8

[30] Mohamed Omran, Christoph Lassner, Gerard Pons-Moll, Pe-

ter Gehler, and Bernt Schiele. Neural body fitting: Unifying

deep learning and model based human pose and shape es-

timation. In 2018 International Conference on 3D Vision

(3DV), pages 484–494. IEEE, 2018. 3, 13

[31] Georgios Pavlakos, Xiaowei Zhou, Konstantinos G Derpa-

nis, and Kostas Daniilidis. Coarse-to-fine volumetric pre-

diction for single-image 3d human pose. In Computer Vision

and Pattern Recognition (CVPR), 2017 IEEE Conference on,

pages 1263–1272. IEEE, 2017. 2, 13

[32] Georgios Pavlakos, Xiaowei Zhou, Konstantinos G Derpa-

nis, and Kostas Daniilidis. Harvesting multiple views for

marker-less 3d human pose annotations. In Proceedings of

the IEEE conference on computer vision and pattern recog-

nition, pages 6988–6997, 2017. 3, 8

[33] Georgios Pavlakos, Luyang Zhu, Xiaowei Zhou, and Kostas

Daniilidis. Learning to estimate 3d human pose and shape

from a single color image. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

459–468, 2018. 3, 13

[34] Gerard Pons-Moll, Sergi Pujades, Sonny Hu, and Michael J

Black. Clothcap: Seamless 4d clothing capture and retarget-

ing. ACM Transactions on Graphics (TOG), 36(4):73, 2017.

2

[35] Helge Rhodin, Nadia Robertini, Dan Casas, Christian

Richardt, Hans-Peter Seidel, and Christian Theobalt. Gen-

eral automatic human shape and motion capture using volu-

metric contour cues. In European conference on computer

vision, pages 509–526. Springer, 2016. 8

[36] Helge Rhodin, Mathieu Salzmann, and Pascal Fua. Unsu-

pervised geometry-aware representation for 3d human pose

estimation. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 750–767, 2018. 3, 8

[37] Kathleen M Robinette, Sherri Blackwell, Hein Daanen,

Mark Boehmer, and Scott Fleming. Civilian american and

european surface anthropometry resource (caesar), final re-

port. volume 1. summary. Technical report, SYTRONICS

INC DAYTON OH, 2002. 3

[38] Gregory Rogez, Philippe Weinzaepfel, and Cordelia Schmid.

Lcr-net: Localization-classification-regression for human

pose. In CVPR 2017-IEEE Conference on Computer Vision

& Pattern Recognition, 2017. 13

[39] Hosnieh Sattar, Gerard Pons-Moll, and Mario Fritz. Fashion

is taking shape: Understanding clothing preference based on

body shape from online sources. In 2019 IEEE Winter Con-

ference on Applications of Computer Vision (WACV), pages

968–977. IEEE, 2019. 3

[40] Xiao Sun, Jiaxiang Shang, Shuang Liang, and Yichen Wei.

Compositional human pose regression. In The IEEE Inter-

national Conference on Computer Vision (ICCV), volume 2,

page 7, 2017. 13

[41] J Tan, Ignas Budvytis, and Roberto Cipolla. Indirect deep

structured learning for 3d human body shape and pose pre-

diction. In BMVC, volume 3, page 6, 2017. 2

[42] Bugra Tekin, Pablo Marquez Neila, Mathieu Salzmann, and

Pascal Fua. Learning to fuse 2d and 3d image cues for

monocular body pose estimation. In International Con-

ference on Computer Vision (ICCV), number EPFL-CONF-

230311, 2017. 2

[43] Denis Tome, Christopher Russell, and Lourdes Agapito.

Lifting from the deep: Convolutional 3d pose estimation

from a single image. CVPR 2017 Proceedings, pages 2500–

2509, 2017. 2, 13

[44] Denis Tome, Matteo Toso, Lourdes Agapito, and Chris Rus-

sell. Rethinking pose in 3d: Multi-stage refinement and

recovery for markerless motion capture. In 2018 Inter-

national Conference on 3D Vision (3DV), pages 474–483.

IEEE, 2018. 3, 8

[45] Matthew Trumble, Andrew Gilbert, Adrian Hilton, and John

Collomosse. Deep autoencoder for combined human pose

estimation and body model upscaling. In Proceedings of the

European Conference on Computer Vision (ECCV), pages

784–800, 2018. 3, 8

[46] Matthew Trumble, Andrew Gilbert, Charles Malleson,

Adrian Hilton, and John Collomosse. Total capture: 3d

human pose estimation fusing video and inertial sensors.

In Proceedings of 28th British Machine Vision Conference,

pages 1–13, 2017. 3, 8

[47] Hsiao-Yu Tung, Hsiao-Wei Tung, Ersin Yumer, and Katerina

Fragkiadaki. Self-supervised learning of motion capture. In

Advances in Neural Information Processing Systems, pages

5236–5246, 2017. 2

[48] Gul Varol, Duygu Ceylan, Bryan Russell, Jimei Yang, Ersin

Yumer, Ivan Laptev, and Cordelia Schmid. Bodynet: Volu-

metric inference of 3d human body shapes. In Proceedings

of the European Conference on Computer Vision (ECCV),

pages 20–36, 2018. 3, 8

[49] Gül Varol, Javier Romero, Xavier Martin, Naureen Mah-

mood, Michael J Black, Ivan Laptev, and Cordelia Schmid.

Learning from synthetic humans. In 2017 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR 2017),

2017. 3

[50] Stefanie Wuhrer, Leonid Pishchulin, Alan Brunton, Chang

Shu, and Jochen Lang. Estimation of human body shape and

posture under clothing. Computer Vision and Image Under-

standing, 127:31–42, 2014. 2
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