
TSM: Temporal Shift Module for Efficient Video Understanding

Ji Lin

MIT

jilin@mit.edu

Chuang Gan

MIT-IBM Watson AI Lab

ganchuang@csail.mit.edu

Song Han

MIT

songhan@mit.edu

Abstract

The explosive growth in video streaming gives rise to

challenges on performing video understanding at high accu-

racy and low computation cost. Conventional 2D CNNs

are computationally cheap but cannot capture temporal

relationships; 3D CNN based methods can achieve good

performance but are computationally intensive, making it

expensive to deploy. In this paper, we propose a generic

and effective Temporal Shift Module (TSM) that enjoys both

high efficiency and high performance. Specifically, it can

achieve the performance of 3D CNN but maintain 2D CNN’s

complexity. TSM shifts part of the channels along the tempo-

ral dimension; thus facilitate information exchanged among

neighboring frames. It can be inserted into 2D CNNs to

achieve temporal modeling at zero computation and zero

parameters. We also extended TSM to online setting, which

enables real-time low-latency online video recognition and

video object detection. TSM is accurate and efficient: it

ranks the first place on the Something-Something leader-

board upon publication; on Jetson Nano and Galaxy Note8,

it achieves a low latency of 13ms and 35ms for online video

recognition. The code is available at: https://github.

com/mit-han-lab/temporal-shift-module.

1. Introduction

Hardware-efficient video understanding is an important

step towards real-world deployment, both on the cloud and

on the edge. For example, there are over 105 hours of videos

uploaded to YouTube every day to be processed for recom-

mendation and ads ranking; tera-bytes of sensitive videos

in hospitals need to be processed locally on edge devices to

protect privacy. All these industry applications require both

accurate and efficient video understanding.

Deep learning has become the standard for video under-

standing over the years [45, 48, 4, 49, 61, 53, 58]. One key

difference between video recognition and image recognition

is the need for temporal modeling. For example, to distin-

guish between opening and closing a box, reversing the order

will give opposite results, so temporal modeling is critical.

Channel C

T
em

p
o

ra
l
T

(a) The original ten-

sor without shift.

pad zerote
m

p
o

ra
l

sh
if

t

truncate
T

C

H,W

(b) Offline temporal

shift (bi-direction).

t=0

t=3

…

t=1

t=2

Channel C

(c) Online temporal

shift (uni-direction).

Figure 1. Temporal Shift Module (TSM) performs efficient tem-

poral modeling by moving the feature map along the temporal

dimension. It is computationally free on top of a 2D convolution,

but achieves strong temporal modeling ability. TSM efficiently

supports both offline and online video recognition. Bi-directional

TSM mingles both past and future frames with the current frame,

which is suitable for high-throughput offline video recognition.

Uni-directional TSM mingles only the past frame with the current

frame, which is suitable for low-latency online video recognition.

Existing efficient video understanding approaches directly

use 2D CNN [24, 39, 48, 58]. However, 2D CNN on individ-

ual frames cannot well model the temporal information. 3D

CNNs [45, 4] can jointly learn spatial and temporal features

but the computation cost is large, making the deployment on

edge devices difficult; it cannot be applied to real-time on-

line video recognition. There are works to trade off between

temporal modeling and computation, such as post-hoc fu-

sion [13, 9, 58, 7] and mid-level temporal fusion [61, 53, 46].

Such methods sacrifice the low-level temporal modeling for

efficiency, but much of the useful information is lost during

the feature extraction before the temporal fusion happens.

In this paper, we propose a new perspective for effi-

cient temporal modeling in video understanding by propos-

ing a novel Temporal Shift Module (TSM). Concretely, an

activation in a video model can be represented as A ∈
R

N×C×T×H×W , where N is the batch size, C is the num-

ber of channels, T is the temporal dimension, H and W are

the spatial resolutions. Traditional 2D CNNs operate inde-

pendently over the dimension T ; thus no temporal modeling

takes effects (Figure 1a). In contrast, our Temporal Shift

Module (TSM) shifts the channels along the temporal dimen-

sion, both forward and backward. As shown in Figure 1b,

the information from neighboring frames is mingled with

the current frame after shifting. Our intuition is: the convo-

17083

lution operation consists of shift and multiply-accumulate.

We shift in the time dimension by ±1 and fold the multiply-

accumulate from time dimension to channel dimension. For

real-time online video understanding, future frames can’t

get shifted to the present, so we use a uni-directional TSM

(Figure 1c) to perform online video understanding.

Despite the zero-computation nature of the shift opera-

tion, we empirically find that simply adopting the spatial

shift strategy [51] used in image classifications introduces

two major issues for video understanding: (1) it is not effi-

cient: shift operation is conceptually zero FLOP but incurs

data movement. The additional cost of data movement is

non-negligible and will result in latency increase. This phe-

nomenon has been exacerbated in the video networks since

they usually have a large memory consumption (5D activa-

tion). (2) It is not accurate: shifting too many channels in a

network will significantly hurt the spatial modeling ability

and result in performance degradation. To tackle the prob-

lems, we make two technical contributions. (1) We use a

temporal partial shift strategy: instead of shifting all the

channels, we shift only a small portion of the channels for

efficient temporal fusion. Such strategy significantly cuts

down the data movement cost (Figure 2a). (2) We insert

TSM inside residual branch rather than outside so that the

activation of the current frame is preserved, which does not

harm the spatial feature learning capability of the 2D CNN

backbone.

The contributions of our paper are summarized as follows:

• We provide a new perspective for efficient video model

design by temporal shift, which is computationally free

but has strong spatio-temporal modeling ability.

• We observed that naive shift cannot achieve high ef-

ficiency or high performance. We then proposed two

technical modifications partial shift and residual shift

to realize a high efficiency model design.

• We propose bi-directional TSM for offline video under-

standing that achieves state-of-the-art performance. It

ranks the first on Something-Something leaderboard

upon publication.

• We propose uni-directional TSM for online real-time

video recognition with strong temporal modeling ca-

pacity at low latency on edge devices.

2. Related Work

2.1. Deep Video Recognition

2D CNN. Using the 2D CNN is a straightforward way

to conduct video recognition [24, 39, 48, 11, 8, 9, 2]. For

example, Simonyan et al. [39] designed a two-stream CNN

for RGB input (spatial stream) and optical flow [55] input

(temporal stream) respectively. Temporal Segment Networks

(TSN) [48] extracted averaged features from strided sampled

frames. Such methods are more efficient compared to 3D

counterparts but cannot infer the temporal order or more

complicated temporal relationships.

3D CNN. 3D convolutional neural networks can jointly

learn spatio-temporal features. Tran et al. [45] proposed

a 3D CNN based on VGG models, named C3D, to learn

spatio-temporal features from a frame sequence. Carreira

and Zisserman [4] proposed to inflate all the 2D convolution

filters in an Inception V1 model [43] into 3D convolutions.

However, 3D CNNs are computationally heavy, making the

deployment difficult. They also have more parameters than

2D counterparts, thus are more prone to over-fitting. On the

other hand, our TSM has the same spatial-temporal modeling

ability as 3D CNN while enjoying the same computation and

parameters as the 2D CNNs.

Trade-offs. There have been attempts to trade off expres-

siveness and computation costs. Lee et al. [27] proposed

a motion filter to generate spatio-temporal features from

2D CNN. Tran et al. [46] and Xie et al. [53] proposed to

study mixed 2D and 3D networks, either first using 3D and

later 2D (bottom-heavy) or first 2D and later 3D (top-heavy)

architecture. ECO [61] also uses a similar top-heavy archi-

tecture to achieve a very efficient framework. Another way

to save computation is to decompose the 3D convolution

into a 2D spatial convolution and a 1D temporal convolu-

tion [46, 33, 42]. For mixed 2D-3D CNNs, they still need

to remove low-level temporal modeling or high-level tem-

poral modeling. Compared to decomposed convolutions,

our method completely removes the computation cost of

temporal modeling has enjoys better hardware efficiency.

2.2. Temporal Modeling

A direct way for temporal modeling is to use 3D CNN

based methods as discussed above. Wang et al. [49] pro-

posed a spatial-temporal non-local module to capture long-

range dependencies. Wang et al. [50] proposed to represent

videos as space-time region graphs. An alternative way to

model the temporal relationships is to use 2D CNN + post-

hoc fusion [13, 9, 58, 7]. Some works use LSTM [19] to

aggregate the 2D CNN features [54, 7, 41, 10, 12]. Atten-

tion mechanism also proves to be effective for temporal

modeling [37, 28, 32]. Zhou et al. [58] proposed Temporal

Relation Network to learn and reason about temporal depen-

dencies. The former category is computational heavy, while

the latter cannot capture the useful low-level information

that is lost during feature extraction. Our method offers an

efficient solution at the cost of 2D CNNs, while enabling

both low-level and high-level temporal modeling, just like

3D-CNN based methods.

7084

2.3. Efficient Neural Networks

The efficiency of 2D CNN has been extensively studied.

Some works focused on designing an efficient model [21, 20,

36, 56]. Recently neural architecture search [62, 63, 31]

has been introduced to find an efficient architecture au-

tomatically [44, 3]. Another way is to prune, quan-

tize and compress an existing model for efficient deploy-

ment [16, 15, 29, 59, 18, 47]. Address shift, which is a

hardware-friendly primitive, has also been exploited for com-

pact 2D CNN design on image recognition tasks [51, 57].

Nevertheless, we observe that directly adopting the shift op-

eration on video recognition task neither maintains efficiency

nor accuracy, due to the complexity of the video data.

3. Temporal Shift Module (TSM)

We first explain the intuition behind TSM: data move-

ment and computation can be separated in a convolution.

However, we observe that such naive shift operation neither

achieves high efficiency nor high performance. To tackle the

problem, we propose two techniques minimizing the data

movement and increasing the model capacity, which leads

to the efficient TSM module.

3.1. Intuition

Let us first consider a normal convolution operation. For

brevity, we used a 1-D convolution with the kernel size of

3 as an example. Suppose the weight of the convolution is

W = (w1, w2, w3), and the input X is a 1-D vector with

infinite length. The convolution operator Y = Conv(W,X)
can be written as: Yi = w1Xi−1+w2Xi+w3Xi+1. We can

decouple the operation of convolution into two steps: shift

and multiply-accumulate: we shift the input X by −1, 0,+1
and multiply by w1, w2, w3 respectively, which sum up to

be Y . Formally, the shift operation is:

X−1

i
= Xi−1, X0

i = Xi, X+1

i
= xi+1 (1)

and the multiply-accumulate operation is:

Y = w1X
−1 + w2X

0 + w3X
+1 (2)

The first step shift can be conducted without any multipli-

cation. While the second step is more computationally ex-

pensive, our Temporal Shift module merges the multiply-

accumulate into the following 2D convolution, so it intro-

duces no extra cost compared to 2D CNN based models.

The proposed Temporal Shift module is described in Fig-

ure 1. In Figure 1a, we describe a tensor with C channels

and T frames. The features at different time stamps are de-

noted as different colors in each row. Along the temporal

dimension, we shift part of the channels by −1, another part

by +1, leaving the rest un-shifted (Figure 1b). For online

video recognition setting, we also provide an online version

of TSM (Figure 1c). In the online setting, we cannot access

0 1/8 1/4 1/2 1

P100

TX2

CPU

Naive shift:

large overhead

L
a
te

n
cy

 O
v
er

h
ea

d

Shift Proportion

0%

3%

6%

9%

12%

15%

Our Choice

(a) Overhead vs. proportion.

0 1/8 1/4 1/2 1 0 1/8 1/4 1/2 1

In-place TSM
Residual TSM

Naive shift:

low acc.

A
cc

u
ra

cy

15%

Shift Proportion

69%

71%

73%

75%

67%

Our Choice

2D baseline

(b) Residual vs. in-place.

Figure 2. (a) Latency overhead of TSM due to data movement.

(b) Residual TSM achieve better performance than in-place shift.

We choose 1/4 proportion residual shift as our default setting. It

achieves higher accuracy with a negligible overhead.

future frames, therefore, we only shift from past frames to

future frames in a uni-directional fashion.

3.2. Naive Shift Does Not Work

Despite the simple philosophy behind the proposed mod-

ule, we find that directly applying the spatial shift strat-

egy [51] to the temporal dimension cannot provide high

performance nor efficiency. To be specific, if we shift all or

most of the channels, it brings two disasters: (1) Worse ef-

ficiency due to large data movement. The shift operation

enjoys no computation, but it involves data movement. Data

movement increases the memory footprint and inference la-

tency on hardware. Worse still, such effect is exacerbated

in the video understanding networks due to large activation

size (5D tensor). When using the naive shift strategy shifting

every map, we observe a 13.7% increase in CPU latency and

12.4% increase in GPU latency, making the overall inference

slow. (2) Performance degradation due to worse spatial

modeling ability. By shifting part of the channels to neigh-

boring frames, the information contained in the channels is

no longer accessible for the current frame, which may harm

the spatial modeling ability of the 2D CNN backbone. We

observe a 2.6% accuracy drop when using the naive shift

implementation compared to the 2D CNN baseline (TSN).

3.3. Module Design

To tackle the two problem from naive shift implementa-

tion, we discuss two technical contributions.

Reducing Data Movement. To study the effect of data

movement, we first measured the inference latency of TSM

models and 2D baseline on different hardware devices. We

shifted different proportion of the channels and measured

the latency. We measured models with ResNet-50 backbone

and 8-frame input using no shift (2D baseline), partial shift

(1/8, 1/4, 1/2) and all shift (shift all the channels). The

timing was measure on server GPU (NVIDIA Tesla P100),

mobile GPU (NVIDIA Jetson TX2) and CPU (Intel Xeon E5-

2690). We report the average latency from 1000 runs after

7085

X Y+shift conv

(a) In-place TSM.

X Y+

shift conv

(b) Residual TSM.

Figure 3. Residual shift is better than in-place shift. In-place shift

happens before a convolution layer (or a residual block). Residual

shift fuses temporal information inside a residual branch.

200 warm-up runs. We show the overhead of the shift opera-

tion as the percentage of the original 2D CNN inference time

in 2a. We observe the same overhead trend for different de-

vices. If we shift all the channels, the latency overhead takes

up to 13.7% of the inference time on CPU, which is defi-

nitely non-negligible during inference. On the other hand,

if we only shift a small proportion of the channels, e.g., 1/8,

we can limit the latency overhead to only 3%. Therefore,

we use partial shift strategy in our TSM implementation to

significantly bring down the memory movement cost.

Keeping Spatial Feature Learning Capacity. We need

to balance the model capacity for spatial feature learning

and temporal feature learning. A straight-forward way to

apply TSM is to insert it before each convolutional layer

or residual block, as illustrated in Figure 3a. We call such

implementation in-place shift. It harms the spatial feature

learning capability of the backbone model, especially when

we shift a large amount of channels, since the information

stored in the shifted channels is lost for the current frame.

To address such issue, we propose a variant of the shift

module. Instead of inserting it in-place, we put the TSM

inside the residual branch in a residual block. We denote

such version of shift as residual shift as shown in 3b. Resid-

ual shift can address the degraded spatial feature learning

problem, as all the information in the original activation is

still accessible after temporal shift through identity mapping.

To verify our assumption, we compared the performance

of in-place shift and residual shift on Kinetics [25] dataset.

We studied the experiments under different shift proportion

setting. The results are shown in 2b. We can see that residual

shift achieves better performance than in-place shift for all

shift proportion. Even we shift all the channels to neighbor-

ing frames, due to the shortcut connection, residual shift still

achieves better performance than the 2D baseline. Another

finding is that the performance is related to the proportion

of shifted channels: if the proportion is too small, the ability

of temporal reasoning may not be enough to handle compli-

cated temporal relationships; if too large, the spatial feature

learning ability may be hurt. For residual shift, we found

that the performance reaches the peak when 1/4 (1/8 for

each direction) of the channels are shifted. Therefore, we

use this setting for the rest of the paper.

Ft

Conv

Feature

Feature

… Cached in
Memory

Shift out Replace

Feature

Feature

Ft+1

Shift out Replace

Feature

Feature

FN

…

…

…

yt yt+1 yN

Conv

Conv

Conv

Conv

Conv

… …

Figure 4. Uni-directional TSM for online video recognition.

4. TSM Video Network

4.1. Offline Models with Bi­directional TSM

We insert bi-directional TSM to build offline video recog-

nition models. Given a video V , we first sample T frames

Fi, F1, ..., FT from the video. After frame sampling, 2D

CNN baselines process each of the frames individually, and

the output logits are averaged to give the final prediction.

Our proposed TSM model has exactly the same parameters

and computation cost as 2D model. During the inference of

convolution layers, the frames are still running independently

just like the 2D CNNs. The difference is that TSM is inserted

for each residual block, which enables temporal information

fusion at no computation. For each inserted temporal shift

module, the temporal receptive field will be enlarged by 2, as

if running a convolution with the kernel size of 3 along the

temporal dimension. Therefore, our TSM model has a very

large temporal receptive field to conduct highly complicated

temporal modeling. In this paper, we used ResNet-50 [17]

as the backbone unless otherwise specified.

A unique advantage of TSM is that it can easily convert

any off-the-shelf 2D CNN model into a pseudo-3D model

that can handle both spatial and temporal information, with-

out adding additional computation. Thus the deployment

of our framework is hardware friendly: we only need to

support the operations in 2D CNNs, which are already well-

optimized at both framework level (CuDNN [6], MKL-DNN,

TVM [5]) and hardware level (CPU/GPU/TPU/FPGA).

4.2. Online Models with Uni­directional TSM

Video understanding from online video streams is im-

portant in real-life scenarios. Many real-time applications

requires online video recognition with low latency, such as

AR/VR and self-driving. In this section, we show that we

can adapt TSM to achieve online video recognition while

with multi-level temporal fusion.

As shown in Figure 1, offline TSM shifts part of the

channels bi-directionally, which requires features from future

frames to replace the features in the current frame. If we

only shift the feature from previous frames to current frames,

we can achieve online recognition with uni-directional TSM.

7086

The inference graph of uni-directional TSM for online

video recognition is shown in Figure 4. During inference,

for each frame, we save the first 1/8 feature maps of each

residual block and cache it in the memory. For the next

frame, we replace the first 1/8 of the current feature maps

with the cached feature maps. We use the combination of 7/8

current feature maps and 1/8 old feature maps to generate

the next layer, and repeat. Using the uni-directional TSM for

online video recognition shares several unique advantages:

1. Low latency inference. For each frame, we only need

to replace and cache 1/8 of the features, without incurring

any extra computations. Therefore, the latency of giving per-

frame prediction is almost the same as the 2D CNN baseline.

Existing methods like [61] use multiple frames to give one

prediction, which may leads to large latency.

2. Low memory consumption. Since we only cache a

small portion of the features in the memory, the memory

consumption is low. For ResNet-50, we only need 0.9MB

memory cache to store the intermediate feature.

3. Multi-level temporal fusion. Most of the online

method only enables late temporal fusion after feature ex-

traction like [58] or mid level temporal fusion [61], while

our TSM enables all levels of temporal fusion. Through ex-

periments (Table 2) we find that multi-level temporal fusion

is very important for complex temporal modeling.

5. Experiments

We first show that TSM can significantly improve the per-

formance of 2D CNN on video recognition while being com-

putationally free and hardware efficient. It further demon-

strated state-of-the-art performance on temporal-related

datasets, arriving at a much better accuracy-computation

pareto curve. TSM models achieve an order of magnitude

speed up in measured GPU throughput compared to con-

ventional I3D model from [50]. Finally, we leverage uni-

directional TSM to conduct low-latency and real-time online

prediction on both video recognition and object detection.

5.1. Setups

Training & Testing. We conducted experiments on video

action recognition tasks. The training parameters for the

Kinetics dataset are: 100 training epochs, initial learning

rate 0.01 (decays by 0.1 at epoch 40&80), weight decay

1e-4, batch size 64, and dropout 0.5. For other datasets, we

scale the training epochs by half. For most of the datasets,

the model is fine-tuned from ImageNet pre-trained weights;

while HMDB-51 [26] and UCF-101 [40] are too small and

prone to over-fitting [48], we followed the common prac-

tice [48, 49] to fine-tune from Kinetics [25] pre-trained

weights and freeze the Batch Normalization [22] layers. For

testing, when pursue high accuracy, we followed the com-

mon setting in [49, 50] to sample multiple clips per video (10

for Kinetics, 2 for others) and use the full resolution image

Table 1. Our method consistently outperforms 2D counterparts on

multiple datasets at zero extra computation (protocol: ResNet-50

8f input, 10 clips for Kinetics, 2 for others, full-resolution).

Dataset Model Acc1 Acc5 ∆ Acc1

L
es

s
T

em
p

o
ra

l Kinetics
TSN 70.6 89.2

+3.5
Ours 74.1 91.2

UCF101
TSN 91.7 99.2

+4.2
Ours 95.9 99.7

HMDB51
TSN 64.7 89.9

+8.8
Ours 73.5 94.3

M
o

re
T

em
p

o
ra

l

Something

V1

TSN 20.5 47.5
+28.0

Ours 47.3 76.2

Something

V2

TSN 30.4 61.0
+31.3

Ours 61.7 87.4

Jester
TSN 83.9 99.6

+11.7
Ours 97.0 99.9

with shorter side 256 for evaluation, so that we can give a

direct comparison; when we consider the efficiency (e.g.,

as in Table 2), we used just 1 clip per video and the center

224×224 crop for evaluation. We keep the same protocol

for the methods compared in the same table.

Model. To have an apple-to-apple comparison with the

state-of-the-art method [50], we used the same back-

bone (ResNet-50) on the dataset (Something-Something-

V1 [14]).This dataset focuses on temporal modeling. The

difference is that [50] used 3D ResNet-50, while we used

2D ResNet-50 as the backbone to demonstrate efficiency.

Datasets. Kinetics dataset [25] is a large-scale action

recognition dataset with 400 classes. As pointed in [58, 53],

datasets like Something-Something (V1&V2) [14], Cha-

rades [38], and Jester [1] are more focused on modeling the

temporal relationships , while UCF101 [40], HMDB51 [26],

and Kinetics [25] are less sensitive to temporal relationships.

Since TSM focuses on temporal modeling, we mainly fo-

cus on datasets with stronger temporal relationships like

Something-Something. Nevertheless, we also observed

strong results on the other datasets and reported it.

5.2. Improving 2D CNN Baselines

We can seamlessly inject TSM into a normal 2D CNN

and improve its performance on video recognition. In this

section, we demonstrate a 2D CNN baseline can significantly

benefit from TSM with double-digits accuracy improvement.

We chose TSN [48] as the 2D CNN baseline. We used the

same training and testing protocol for TSN and our TSM.

The only difference is with or without TSM.

Comparing Different Datasets. We compare the results

on several action recognition datasets in Table 1. The chart

is split into two parts. The upper part contains datasets

Kinetics [25], UCF101 [40], HMDB51 [26], where tem-

poral relationships are less important, while our TSM still

7087

Table 2. Comparing TSM against other methods on Something-Something dataset (center crop, 1 clip/video unless otherwise specified).

Model Backbone #Frame FLOPs/Video #Param. Val Top-1 Val Top-5 Test Top-1

TSN [58] BNInception 8 16G 10.7M 19.5 - -

TSN (our impl.) ResNet-50 8 33G 24.3M 19.7 46.6 -

TRN-Multiscale [58] BNInception 8 16G 18.3M 34.4 - 33.6

TRN-Multiscale (our impl.) ResNet-50 8 33G 31.8M 38.9 68.1 -

Two-stream TRNRGB+Flow [58] BNInception 8+8 - 36.6M 42.0 - 40.7

ECO [61] BNIncep+3D Res18 8 32G 47.5M 39.6 - -

ECO [61] BNIncep+3D Res18 16 64G 47.5M 41.4 - -

ECOEnLite [61] BNIncep+3D Res18 92 267G 150M 46.4 - 42.3

ECOEnLiteRGB+Flow [61] BNIncep+3D Res18 92+92 - 300M 49.5 - 43.9

I3D from [50] 3D ResNet-50 32×2clip 153G1×2 28.0M 41.6 72.2 -

Non-local I3D from [50] 3D ResNet-50 32×2clip 168G1×2 35.3M 44.4 76.0 -

Non-local I3D + GCN [50] 3D ResNet-50+GCN 32×2clip 303G2×2 62.2M2 46.1 76.8 45.0

TSM ResNet-50 8 33G 24.3M 45.6 74.2 -

TSM ResNet-50 16 65G 24.3M 47.2 77.1 46.0

TSMEn ResNet-50 24 98G 48.6M 49.7 78.5 -

TSMRGB+Flow ResNet-50 16+16 - 48.6M 52.6 81.9 50.7

Table 3. TSM can consistently improve the performance over dif-

ferent backbones on Kinetics dataset.

Mb-V2 R-50 RX-101 NL R-50

TSN 66.5 70.7 72.4 74.6
TSM 69.5 74.1 76.3 75.7

∆Acc. +3.0 +3.4 +3.9 +1.1

consistently outperforms the 2D TSN baseline at no extra

computation. For the lower part, we present the results on

Something-Something V1 and V2 [14] and Jester [1], which

depend heavily on temporal relationships. 2D CNN baseline

cannot achieve a good accuracy, but once equipped with

TSM, the performance improved by double digits.

Scaling over Backbones. TSM scales well to backbones

of different sizes. We show the Kinetics top-1 accuracy

with MobileNet-V2 [36], ResNet-50 [17], ResNext-101 [52]

and ResNet-50 + Non-local module [49] backbones in Ta-

ble 3. TSM consistently improves the accuracy over different

backbones, even for NL R-50, which already has temporal

modeling ability.

5.3. Comparison with State­of­the­Arts

TSM not only significantly improves the 2D baseline but

also outperforms state-of-the-art methods, which heavily

rely on 3D convolutions. We compared the performance

of our TSM model with state-of-the-art methods on both

Something-Something V1&V2 because these two datasets

focus on temporal modeling.

1 We reported the performance of NL I3D described in [50], which is

a variant of the original NL I3D [49]. It uses fewer temporal dimension

pooling to achieve good performance, but also incur larger computation.
2Includes parameters and FLOPs of the Region Proposal Network.

Something-Something-V1. Something-Something-V1 is

a challenging dataset, as activity cannot be inferred merely

from individual frames (e.g., pushing something from right

to left). We compared TSM with current state-of-the-art

methods in Table 2. We only applied center crop during test-

ing to ensure the efficiency unless otherwise specified. TSM

achieves the first place on the leaderboard upon publication.

We first show the results of the 2D based methods

TSN [48] and TRN [58]. TSN with different backbones fails

to achieve decent performance (<20% Top-1) due to the lack

of temporal modeling. For TRN, although late temporal fu-

sion is added after feature extraction, the performance is still

significantly lower than state-of-the-art methods, showing

the importance of temporal fusion across all levels.

The second section shows the state-of-the-art efficient

video understanding framework ECO [61]. ECO uses an

early 2D + late 3D architecture which enables medium-level

temporal fusion. Compared to ECO, our method achieves

better performance at a smaller FLOPs. For example, when

using 8 frames as input, our TSM achieves 45.6% top-1

accuracy with 33G FLOPs, which is 4.2% higher accuracy

than ECO with 1.9× less computation. The ensemble ver-

sions of ECO (ECOEnLite and ECOEnLiteRGB+Flow, using an

ensemble of {16, 20, 24, 32} frames as input) did achieve

competitive results, but the computation and parameters are

too large for deployment. While our model is much more

efficient: we only used {8, 16} frames model for ensemble

(TSMEn), and the model achieves better performance using

2.7× less computation and 3.1× fewer parameters.

The third section contains previous state-of-the-art meth-

ods: Non-local I3D + GCN [50], that enables all-level

temporal fusion. The GCN needs a Region Proposal Net-

work [34] trained on MSCOCO object detection dataset [30]

7088

Table 4. Results on Something-Something-V2. Our TSM achieves

state-of-the-art performance.

Method
Val Test

Top-1 Top-5 Top-1 Top-5

TSN (our impl.) 30.0 60.5 - -

MultiScale TRN [58] 48.8 77.6 50.9 79.3

2-Stream TRN [58] 55.5 83.1 56.2 83.2

TSM8F 59.1 85.6 - -

TSM16F 63.4 88.5 64.3 89.6

TSMRGB+Flow 66.0 90.5 66.6 91.3

38

41

43

46

48

51

0 100 200 300 400 500 600 700

Ours ECO [] I3D from []

FLOPs/Video (G)

A
cc

u
ra

cy
 (

%
)

ECOEnLite

TSMEn

NL I3D+GCN

NL I3D

I3D
ECO16F

ECO8F

TSM16F

30M 100M 150M

Parameters

TSM8F

61 50

Figure 5. TSM enjoys better accuracy-cost trade-off than I3D family

and ECO family on Something-Something-V1 [14] dataset. (GCN

includes the cost of ResNet-50 RPN to generate region proposals.)

to generate the bounding boxes, which is unfair to compare

since external data (MSCOCO) and extra training cost is

introduced. Thus we compared TSM to its CNN part: Non-

local I3D. Our TSM (8f) achieves 1.2% better accuracy with

10× fewer FLOPs on the validation set compared to the

Non-local I3D network. Note that techniques like Non-local

module [49] are orthogonal to our work, which could also

be added to our framework to boost the performance further.

Generalize to Other Modalities. We also show that our

proposed method can generalize to other modalities like

optical flow. To extract the optical flow information be-

tween frames, we followed [48] to use the TVL1 optical

flow algorithm [55] implemented in OpenCV with CUDA.

We conducted two-stream experiments on both Something-

Something V1 and V2 datasets, and it consistently improves

over the RGB performance: introducing optical flow branch

brings 5.4% and 2.6% top-1 improvement on V1 and V2.

Something-Something-V2. We also show the result on

Something-Something-V2 dataset, which is a newer release

to its previous version. The results compared to other state-

of-the-art methods are shown in Table 4. On Something-

Something-V2 dataset, we achieved state-of-the-art perfor-

mance while only using RGB input.

Cost vs. Accuracy. Our TSM model achieves very com-

petitive performance while enjoying high efficiency and low

computation cost for fast inference. We show the FLOPs

for each model in Table 2. Although GCN itself is light,

the method used a ResNet-50 based Region Proposal Net-

Table 5. TSM enjoys low GPU inference latency and high through-

put. V/s means videos per second, higher the better (Measured on

NVIDIA Tesla P100 GPU).

Model
Efficiency Statistics Accuracy

FLOPs Param. Latency Thrput. Sth. Kinetics

I3D from [50] 306G 35.3M 165.3ms 6.1V/s 41.6% -

ECO16F [61] 64G 47.5M 30.6ms 45.6V/s 41.4% -

I3D from [49] 33G 29.3M 25.8ms 42.4V/s - 73.3%

I3Dreplace 48G 33.0M 28.0ms 37.9V/s 44.9% -

TSM8F 33G 24.3M 17.4ms 77.4V/s 45.6% 74.1%

TSM16F 65G 24.3M 29.0ms 39.5V/s 47.2% 74.7%

work [34] to extract bounding boxes, whose cost is also

considered in the chart. Note that the computation cost of

optical flow extraction is usually larger than the video recog-

nition model itself. Therefore, we do not report the FLOPs

of two-stream based methods.

We show the accuracy, FLOPs, and number of parameters

trade-off in Figure 5. The accuracy is tested on the validation

set of Something-Something-V1 dataset, and the number of

parameters is indicated by the area of the circles. We can

see that our TSM based methods have a better Pareto curve

than both previous state-of-the-art efficient models (ECO

based models) and high-performance models (non-local I3D

based models). TSM models are both efficient and accurate.

It can achieve state-of-the-art accuracy at high efficiency:

it achieves better performance while consuming 3× less

computation than the ECO family . Considering that ECO

is already an efficiency-oriented design, our method enjoys

highly competitive hardware efficiency.

5.4. Latency and Throughput Speedup

The measured inference latency and throughput are impor-

tant for the large-scale video understanding. TSM has low

latency and high throughput. We performed measurement

on a single NVIDIA Tesla P100 GPU. We used batch size of

1 for latency measurement; batch size of16 for throughput

measurement. We made two comparisons:

(1) Compared with the I3D model from [50], our method

is faster by an order of magnitude at 1.8% higher accuracy

(Table 5). We also compared our method to the state-of-the-

art efficient model ECO [61]: Our TSM model has 1.75×
lower latency (17.4ms vs. 30.6ms), 1.7× higher through-

put, and achieves 2% better accuracy. ECO has a two-

branch (2D+3D) architecture, while TSM only needs the

in-expensive 2D backbone.

(2) We then compared TSM to efficient 3D model designs.

One way is to only inflate the first 1× 1 convolution in each

of the block as in [49], denoted as ”I3D from [49]” in the

table. Although the FLOPs are similiar due to pooling, it suf-

fers from 1.5× higher latency and only 55% the throughput

compared with TSM, with worse accuracy. We speculate the

reason is that TSM model only uses 2D convolution which

is highly optimized for hardware. To excliude the factors

7089

Table 6. Comparing the accuracy of offline TSM and online TSM on

different datasets. Online TSM brings negligible latency overhead.

Model Latency Kinetics UCF101 HMDB51 Something

TSN 4.7ms 70.6% 91.7% 64.7% 20.5%

+Offline - 74.1% 95.9% 73.5% 47.3%

+Online 4.8ms 74.3% 95.5% 73.6% 46.3%

A
cc

u
ra

cy
 %

80

84

88

92

96

Video Observation %

10 20 40 60 80 100

ECO (s=8)

ECO (s=12)

ECO (s=20)

TSM

Figure 6. Early recognition on UCF101. TSM gives high prediction

accuracy after only observing a small portion of the video.

of backbone design, we replace every TSM primitive with

3× 1× 1 convolution and denote this model as I3Dreplace. It

is still much slower than TSM and performs worse.

5.5. Online Recognition with TSM

Online vs. Offline Online TSM models shift the feature

maps uni-directionally so that it can give predictions in real

time. We compare the performance of offline and online

TSM models to show that online TSM can still achieve com-

parable performance. Follow [61], we use the prediction

averaged from all the frames to compare with offline mod-

els, i.e., we compare the performance after observing the

whole videos. The performance is provided in Table 6. We

can see that for less temporal related datasets like Kinetics,

UCF101 and HMDB51, the online models achieve compa-

rable and sometimes even better performance compared to

the offline models. While for more temporal related datasets

Something-Something, online model performs worse than

offline model by 1.0%. Nevertheless, the performance of

online model is still significantly better than the 2D baseline.

We also compare the per-frame prediction latency of pure

2D backbone (TSN) and our online TSM model. We compile

both models with TVM [5] on GPU. Our online TSM model

only adds to less than 0.1ms latency overhead per frame

while bringing up to 25% accuracy improvement. It demon-

strates online TSM is hardware-efficient for latency-critical

real-time applications.

Early Recognition Early recognition aims to classify the

video while only observing a small portion of the frames. It

gives fast response to the input video stream. Here we com-

pare the early video recognition performance on UCF101

dataset (Figure 6). Compared to ECO, TSM gives much

higher accuracy, especially when only observing a small

portion of the frames. For example, when only observing

the first 10% of video frames, TSM model can achieve 90%

accuracy, which is 6.6% higher than the best ECO model.

Table 7. Video detection results on ImageNet-VID.

Model Online
Need
Flow

Latency
mAP

Overall Slow Medium Fast

R-FCN [23] X 1× 74.7 83.6 72.5 51.4
FGFA [60] X 2.5× 75.9 84.0 74.4 55.6

Online TSM X 1× 76.3 83.4 74.8 56.0

Table 8. TSM efficiently runs on edge devices with low latency.

Devices
Jetson Nano Jetson TX2

Rasp. Note8 Pixel1

CPU GPU CPU GPU

Latency (ms) 47.8 13.4 36.4 8.5 69.6 34.5 47.4

Power (watt) 4.8 4.5 5.6 5.8 3.8 - -

Online Object Detection Real-time online video object

detection is an important application in self-driving vehicles,

robotics, etc. By injecting our online TSM into the backbone,

we can easily take the temporal cues into consideration at

negligible overhead, so that the model can handle poor object

appearance like motion blur, occlusion, defocus, etc. We

conducted experiments on R-FCN [23] detector with ResNet-

101 backbone on ImageNet-VID [35] dataset. We inserted

the uni-directional TSM to the backbone, while keeping

other settings the same. The results are shown in Table 7.

Compared to 2D baseline R-FCN [23], our online TSM

model significantly improves the performance, especially on

the fast moving objects, where TSM increases mAP by 4.6%.

We also compare to a strong baseline FGFA [60] that uses

optical flow to aggregate the temporal information from 21

frames (past 10 frames and future 10 frames) for offline video

detection. Compared to FGFA, TSM can achieve similar

or higher performance while enabling online recognition

at much smaller latency. We visualize some video clips in

the supplementary material to show that online TSM can

leverage the temporal consistency to correct mis-predictions.

Edge Deployment TSM is mobile device friendly. We

build an online TSM model with MobileNet-V2 backbone,

which achieves 69.5% accuracy on Kinetics. The latency

and energy on NVIDIA Jetson Nano & TX2, Raspberry Pi

4B, Samsung Galaxy Note8, Google Pixel-1 is shown in

Table 8. The models are compiled using TVM [5]. Power is

measured with a power meter, subtracting the static power.

TSM achieves low latency and low power on edge devices.

6. Conclusion
We propose Temporal Shift Module for hardware-efficient

video recognition. It can be inserted into 2D CNN backbone

to enable joint spatial-temporal modeling at no additional

cost. The module shifts part of the channels along temporal

dimension to exchange information with neighboring frames.

Our framework is both efficient and accurate, enabling low-

latency video recognition on edge devices.

Acknowledgments We thank MIT Quest for Intelligence,

MIT-IBM Watson AI Lab, MIT-SenseTime Alliance, Sam-

sung, SONY, AWS, Google for supporting this research. We

thank Oak Ridge National Lab for Summit supercomputer.

7090

References

[1] The 20bn-jester dataset v1. https://20bn.com/

datasets/jester. 5, 6

[2] Hakan Bilen, Basura Fernando, Efstratios Gavves, Andrea

Vedaldi, and Stephen Gould. Dynamic image networks for

action recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 3034–3042,

2016. 2

[3] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct

neural architecture search on target task and hardware. In

International Conference on Learning Representations, 2019.

3

[4] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In Com-

puter Vision and Pattern Recognition (CVPR), 2017 IEEE

Conference on, pages 4724–4733. IEEE, 2017. 1, 2

[5] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng,

Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang,

Yuwei Hu, Luis Ceze, et al. {TVM}: An automated end-to-

end optimizing compiler for deep learning. In 13th {USENIX}
Symposium on Operating Systems Design and Implementation

({OSDI} 18), pages 578–594, 2018. 4, 8

[6] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch,

Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan Shel-

hamer. cudnn: Efficient primitives for deep learning. arXiv

preprint arXiv:1410.0759, 2014. 4

[7] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama,

Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko,

and Trevor Darrell. Long-term recurrent convolutional net-

works for visual recognition and description. In Proceedings

of the IEEE conference on computer vision and pattern recog-

nition, pages 2625–2634, 2015. 1, 2

[8] Christoph Feichtenhofer, Axel Pinz, and Richard Wildes. Spa-

tiotemporal residual networks for video action recognition.

In Advances in neural information processing systems, pages

3468–3476, 2016. 2

[9] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman.

Convolutional two-stream network fusion for video action

recognition. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 1933–1941, 2016.

1, 2

[10] Chuang Gan, Chen Sun, Lixin Duan, and Boqing Gong.

Webly-supervised video recognition by mutually voting for

relevant web images and web video frames. In European

Conference on Computer Vision, pages 849–866. Springer,

2016. 2

[11] Chuang Gan, Naiyan Wang, Yi Yang, Dit-Yan Yeung, and

Alex G Hauptmann. Devnet: A deep event network for multi-

media event detection and evidence recounting. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2568–2577, 2015. 2

[12] Chuang Gan, Ting Yao, Kuiyuan Yang, Yi Yang, and Tao Mei.

You lead, we exceed: Labor-free video concept learning by

jointly exploiting web videos and images. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 923–932, 2016. 2

[13] Rohit Girdhar, Deva Ramanan, Abhinav Gupta, Josef Sivic,

and Bryan Russell. Actionvlad: Learning spatio-temporal

aggregation for action classification. In CVPR, volume 2,

page 3, 2017. 1, 2

[14] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michal-

ski, Joanna Materzynska, Susanne Westphal, Heuna Kim,

Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-

Freitag, et al. The something something video database for

learning and evaluating visual common sense. In The IEEE

International Conference on Computer Vision (ICCV), vol-

ume 1, page 3, 2017. 5, 6, 7

[15] Song Han, Huizi Mao, and William J Dally. Deep com-

pression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. International Con-

ference on Learning Representations, 2016. 3

[16] Song Han, Jeff Pool, John Tran, and William Dally. Learning

both weights and connections for efficient neural network. In

Advances in neural information processing systems, pages

1135–1143, 2015. 3

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 4, 6

[18] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and

Song Han. Amc: Automl for model compression and accel-

eration on mobile devices. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 784–800,

2018. 3

[19] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term

memory. Neural computation, 9(8):1735–1780, 1997. 2

[20] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017. 3

[21] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid

Ashraf, William J Dally, and Kurt Keutzer. Squeezenet:

Alexnet-level accuracy with 50x fewer parameters and¡ 0.5

mb model size. arXiv preprint arXiv:1602.07360, 2016. 3

[22] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. arXiv preprint arXiv:1502.03167, 2015. 5

[23] Kaiming He Jian Sun Jifeng Dai, Yi Li. R-FCN: Object

detection via region-based fully convolutional networks. 2016.

8

[24] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas

Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video

classification with convolutional neural networks. In Proceed-

ings of the IEEE conference on Computer Vision and Pattern

Recognition, pages 1725–1732, 2014. 1, 2

[25] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,

Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,

Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-

man action video dataset. arXiv preprint arXiv:1705.06950,

2017. 4, 5

[26] Hildegard Kuehne, Hueihan Jhuang, Estı́baliz Garrote,

Tomaso Poggio, and Thomas Serre. Hmdb: a large video

7091

database for human motion recognition. In Computer Vi-

sion (ICCV), 2011 IEEE International Conference on, pages

2556–2563. IEEE, 2011. 5

[27] Myunggi Lee, Seungeui Lee, Sungjoon Son, Gyutae Park,

and Nojun Kwak. Motion feature network: Fixed motion

filter for action recognition. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 387–403,

2018. 2

[28] Zhenyang Li, Kirill Gavrilyuk, Efstratios Gavves, Mihir Jain,

and Cees GM Snoek. Videolstm convolves, attends and flows

for action recognition. Computer Vision and Image Under-

standing, 166:41–50, 2018. 2

[29] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neu-

ral pruning. In Advances in Neural Information Processing

Systems, pages 2181–2191, 2017. 3

[30] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European conference on computer vision, pages 740–755.

Springer, 2014. 6

[31] Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua, Li-Jia

Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Mur-

phy. Progressive neural architecture search. arXiv preprint

arXiv:1712.00559, 2017. 3

[32] Xiang Long, Chuang Gan, Gerard de Melo, Jiajun Wu, Xiao

Liu, and Shilei Wen. Attention clusters: Purely attention

based local feature integration for video classification. In

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 7834–7843, 2018. 2

[33] Zhaofan Qiu, Ting Yao, and Tao Mei. Learning spatio-

temporal representation with pseudo-3d residual networks.

In 2017 IEEE International Conference on Computer Vision

(ICCV), pages 5534–5542. IEEE, 2017. 2

[34] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in neural information pro-

cessing systems, pages 91–99, 2015. 6, 7

[35] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. International Journal of

Computer Vision, 115(3):211–252, 2015. 8

[36] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 4510–4520, 2018. 3, 6

[37] Shikhar Sharma, Ryan Kiros, and Ruslan Salakhutdinov.

Action recognition using visual attention. arXiv preprint

arXiv:1511.04119, 2015. 2

[38] Gunnar A Sigurdsson, Gül Varol, Xiaolong Wang, Ali

Farhadi, Ivan Laptev, and Abhinav Gupta. Hollywood in

homes: Crowdsourcing data collection for activity under-

standing. In European Conference on Computer Vision, pages

510–526. Springer, 2016. 5

[39] Karen Simonyan and Andrew Zisserman. Two-stream con-

volutional networks for action recognition in videos. In Ad-

vances in neural information processing systems, pages 568–

576, 2014. 1, 2

[40] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.

Ucf101: A dataset of 101 human actions classes from videos

in the wild. arXiv preprint arXiv:1212.0402, 2012. 5

[41] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudi-

nov. Unsupervised learning of video representations using

lstms. In International conference on machine learning, pages

843–852, 2015. 2

[42] Lin Sun, Kui Jia, Dit-Yan Yeung, and Bertram E Shi. Human

action recognition using factorized spatio-temporal convolu-

tional networks. In Proceedings of the IEEE International

Conference on Computer Vision, pages 4597–4605, 2015. 2

[43] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1–9, 2015. 2

[44] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

and Quoc V Le. Mnasnet: Platform-aware neural architecture

search for mobile. arXiv preprint arXiv:1807.11626, 2018. 3

[45] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,

and Manohar Paluri. Learning spatiotemporal features with

3d convolutional networks. In Proceedings of the IEEE inter-

national conference on computer vision, pages 4489–4497,

2015. 1, 2

[46] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann

LeCun, and Manohar Paluri. A closer look at spatiotemporal

convolutions for action recognition. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 6450–6459, 2018. 1, 2

[47] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han.

Haq: Hardware-aware automated quantization. arXiv preprint

arXiv:1811.08886, 2018. 3

[48] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua

Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment

networks: Towards good practices for deep action recognition.

In European Conference on Computer Vision, pages 20–36.

Springer, 2016. 1, 2, 5, 6, 7

[49] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. arXiv preprint

arXiv:1711.07971, 10, 2017. 1, 2, 5, 6, 7

[50] Xiaolong Wang and Abhinav Gupta. Videos as space-time

region graphs. arXiv preprint arXiv:1806.01810, 2018. 2, 5,

6, 7

[51] Bichen Wu, Alvin Wan, Xiangyu Yue, Peter Jin, Sicheng

Zhao, Noah Golmant, Amir Gholaminejad, Joseph Gonzalez,

and Kurt Keutzer. Shift: A zero flop, zero parameter alterna-

tive to spatial convolutions. arXiv preprint arXiv:1711.08141,

2017. 2, 3

[52] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1492–1500,

2017. 6

[53] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and

Kevin Murphy. Rethinking spatiotemporal feature learning:

7092

Speed-accuracy trade-offs in video classification. In Proceed-

ings of the European Conference on Computer Vision (ECCV),

pages 305–321, 2018. 1, 2, 5

[54] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijaya-

narasimhan, Oriol Vinyals, Rajat Monga, and George Toderici.

Beyond short snippets: Deep networks for video classifica-

tion. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4694–4702, 2015. 2

[55] Christopher Zach, Thomas Pock, and Horst Bischof. A duality

based approach for realtime tv-l 1 optical flow. In Joint

Pattern Recognition Symposium, pages 214–223. Springer,

2007. 2, 7

[56] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

Shufflenet: An extremely efficient convolutional neural net-

work for mobile devices. CoRR, abs/1707.01083, 2017. 3

[57] Huasong Zhong, Xianggen Liu, Yihui He, Yuchun Ma, and

Kris Kitani. Shift-based primitives for efficient convolutional

neural networks. arXiv preprint arXiv:1809.08458, 2018. 3

[58] Bolei Zhou, Alex Andonian, and Antonio Torralba. Tem-

poral relational reasoning in videos. arXiv preprint

arXiv:1711.08496, 2017. 1, 2, 5, 6, 7

[59] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally.

Trained ternary quantization. International Conference on

Learning Representations, 2016. 3

[60] Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen

Wei. Flow-guided feature aggregation for video object detec-

tion. In Proceedings of the IEEE International Conference

on Computer Vision, pages 408–417, 2017. 8

[61] Mohammadreza Zolfaghari, Kamaljeet Singh, and Thomas

Brox. Eco: Efficient convolutional network for online video

understanding. arXiv preprint arXiv:1804.09066, 2018. 1, 2,

5, 6, 7, 8

[62] Barret Zoph and Quoc V Le. Neural architecture search with

reinforcement learning. arXiv preprint arXiv:1611.01578,

2016. 3

[63] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. arXiv preprint arXiv:1707.07012, 2(6), 2017. 3

7093

