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Abstract

We present a new method for 3D shape reconstruction

from a single image, in which a deep neural network directly

maps an image to a vector of network weights. The net-

work parametrized by these weights represents a 3D shape

by classifying every point in the volume as either within

or outside the shape. The new representation has virtually

unlimited capacity and resolution, and can have an arbi-

trary topology. Our experiments show that it leads to more

accurate shape inference from a 2D projection than the

existing methods, including voxel-, silhouette-, and mesh-

based methods. The code will be available at: https:

//github.com/gidilittwin/Deep-Meta.

1. Introduction

We propose a novel deep learning method for represent-

ing shape and for recovering that representation from a sin-

gle input image. Every shape is represented as a deep neu-

ral network classifier g, which takes as input points in 3D

space. In addition, the parameters (weights) of the network

g are inferred from the input image, by another network f .

The method is elegant and enables an end-to-end train-

ing with a single and straightforward loss. As a level set

surface representation, one is guaranteed to obtain a con-

tinuous manifold. Since every point in 3D is assigned a

value by g, efficient (and even differentiable) rendering is

obtained. For the same reason, unlike voxel or point-cloud

based methods, the gradient information is given in every

point in 3D, making training efficient. This gradient in-

formation, however, is more informative near the shape’s

boundary. Therefore, we propose a simple scheme of selec-

tively sampling 3D points during training, such that points

near the objects boundary are over-represented.

In contrast to most other methods, which suffer from a

capacity limitation, the capacity of the 3D surface is expo-

nential in the number of parameters of network g. Even for

relatively small networks, it exceeds what is required by all

graphical applications.

In contrast to mesh based methods, the topology of the

resulting shape is not limited to a template shape and it can

have an arbitrary topological complexity.

Our experiments show that in addition to these modeling

and structural advantages, the method also results in better

benchmark performance than the existing ones.

2. Previous work

Propelled by the availability of large scale CAD collec-

tions such as ShapeNet [6] and the increase in GPU parallel

computing capabilities, learning based solutions have be-

come the method of choice for reconstructing 3D shapes

from single images. Generally speaking, the 3D representa-

tions currently in use fall into three main categories: (i) grid

based methods, such as voxel, which are 3D extensions of

Pixels, (ii) topology preserving geometric methods, such as

polygon meshes, and (iii) un-ordered geometric structures

such as point clouds.

Grid based methods form the largest body of work in the

current literature. Voxels, however, do not scale well, due

to their cubic memory to resolution ratio. To address this

issue, researchers have come up with more efficient mem-

ory structures. Riegler et al. [34] , Tatarchenko et al. [35]

and Häne et al. [13] use nested tree structures (Octrees) to

leverage the inherent sparsity of the voxel representation.

Richter et al. [32] introduce an encoder decoder architec-

ture, which decodes into 2D nested shape layers that enable

reconstruction of the 3D shape.

A different approach for handling the inherent sparsity

of the data is using a point cloud representation. Point

clouds form an efficient and scaleable representation. Fan

et al. [10] designed a point set generation network, which

Jiang et al. [17] improved, by adding a geometric consis-

tency loss via re-projected silhouettes and a point-based ad-

versarial loss. The clear disadvantage of this approach is

the ambiguous topology, which needs to be recovered in

post-processing, in order for the object to be properly lit

and textured.

Another form of 3D representation that is especially

suited for 2D projections is the polygon mesh. Kato et
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Voxels Point Clouds Polygon Mesh Implicit functions Meta Functionals

Memory Footprint High* Low Low High Low

Reconstruction Resolution Limited by memory High Limited by template mesh Unlimited Unlimited

Topology Limited by resolution No topology Limited by template mesh Unlimited Unlimited

Train Time Long Short Short Long Short

Rendering Suited Suited Very suited Suited Suited

Table 1. Comparison of the major traits between prominent 3D representation approaches. *The memory footprint of voxel representation

has been somewhat alleviated by more elaborate hierarchical data structures.

al. [21] introduced a render-and-compare based architecture

that enables back-propagation of gradients, through a 2D

projection of a template mesh. In order to facilitate mean-

ingful training, they designed a differentiable mesh render-

ing pipeline that approximates the gradients of a silhouette-

comparing cost function. Liu1 et al. [26] extended their

work, by designing a more efficient differentiable rendering

engine to produce very compelling results. Wang et al. [36]

employed an innovative graph based CNN to extract per-

ceptual features from an image, utilizing a pre-trained VGG

network in a fully supervised scenario.

There are some works that break from these categories.

Groueix et al. [11] learn to generate a surface of a 3D shape

by predicting a collection of local 2-manifolds and obtain-

ing the global surface by applying a union operation.

Recently and concurrently with our work, several publi-

cations demonstrated the usage of continues implicit fields

for shape representation. Chen et al. [7], Park et al. [31]

and Mescheder et al. [29] used an MLP conditioned on a

shape embedding to represent shapes. While the authors

used slightly different formulations and conditioning tech-

niques to achieve the goal of shape representation, the com-

mon attribute to all three methods is a large MLP that acts as

a decoder. Contrary to these methods, our decoder decodes

the embedding vector into a set of weights which parameter-

ize a function space that in turn, forms a mapping between

samples in space and shape occupancy. At train and infer-

ence time, the model generates decoders that are uniquely

defined for each shape and so are very parameter efficient.

These outlined categories for 3D representations all suf-

fer from different drawbacks and present different advan-

tages, see Tab. 1. Grid based approaches draw from a large

body of work conducted in parallel topics of research but

do not scale well or require elaborate custom layers to han-

dle these restrictions. Point cloud based methods overcome

this limitation but do not reconstruct topologically coherent

shapes or require post-processing to do so. Polygon mesh

based methods are more suited in nature for 2D supervision

but enforce a very restrictive representation, which prevents

reconstruction of even very simple shapes that exhibit dif-

ferent topology than the chosen template. The recently in-

troduced implicit shape based methods [7, 31, 29] overcome

most of these issues but pay a price in the form of very long

train times (as reported by the authors) and a very large de-

coder which is problematic when evaluating in high reso-

lution. It is also not clear how these methods generalize to

very large training sets which include multiple shape classes

since none of these publications have reported results on the

commonly used ShapNet ground-truth annotations and in-

stead opted with retraining the baseline methods on subsets

of the data. Mescheder et al. [29] is the only implicit-shape

method to report multi-class results, but introduced addi-

tional supervision in the form of a pre-trained on imagenet.

Implicit Surfaces The classical active contour methods,

first introduced by Kass et al. [19], have employed energy-

minimizing iterations to guide an image curve (also known

as a snake) towards image features, such as image edges.

Limited in topology and suffering from an ineffective evo-

lution procedure, the method was reformulated as a level set

method [3, 5, 28, 22]. The level set method was generalized

to volumetric 3D data [25]. The literature level set meth-

ods are mostly used for evolving a curve. This scenario is

vastly different than our method, which uses the level set

of a classifier at the natural threshold of 0.5, and employs a

direct regression for obtaining the parameters of that classi-

fier. The properties of the level set representation still carry

over to our case.

Hypernetworks or dynamic networks refer to a technique

in which one network f is trained to predict the weights of

another network g. The first contributions learned specific

layers for tasks that require an adaptive behavior [23, 33].

Fuller dynamic networks were subsequent used for video

frame prediction [16]. The term hypernetwork is due

to [12], and the application to few-shot learning was intro-

duced in [1].

3. Method

The method employs two networks f, g with parameter

values θf , θI respectively. The network weights θf are fixed

in the model and are learned during the training phase. The

weights of network g are a function of input image I , given

as the output of the network f .

The two networks represent different levels of the shape

abstraction. f is a mapping from the input image I to the

parameters θI of network g, and g is a classification function

that maps a point p with coordinates (x, y, z) in 3D into

a score s
p
I ∈ [0, 1], such that the shape is defined by the
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classifier’s decision boundary.

The model is formally given by the following equations:

θI = f(I, θf ) (1)

s
p
I = g(p, θI) (2)

We parameterize f(I, θf ) as a CNN and g(p, θI) as a Multi-

Layered Perceptron (MLP). A-priori, it is not clear that a

generic architecture for g can perform the modeling task.

The normalized shapes in the ShapeNet dataset represent

closed 2D manifolds restricted to the 3D cube x, y, z ∈
{−1, 1}. g(p, θI) should be able to accurately capture both

inter and intra shape variations. As we show in our experi-

ments, a fully connected neural network with as few as four

hidden layers and less than 5000 trainable parameters is in-

deed an adequate choice.

Training is done with a single loss, which is the cross-

entropy classification loss. Let the score s
p
I ∈ R represent a

Bernoulli distributions [1−g(p, θI), g(p, θI)] and let y(p) ∈
{0, 1} be the ground truth target representing whether the

point p is inside (y(p) = 1) or outside (y(p) = 0) the shape.

The unweighted loss of the learned parameters θf , for

image I with ground truth shape y is given by

H(θf , I) = −

∫

V

y(p)log(g(p, f(I, θf )))+

(1− y(p))log(1− g(p, f(I, θf )))dp (3)

where V is the 3D volume in which the shapes reside. Dur-

ing training, the integral is estimated by sampling points in

the volume V .

Point sampling during training Similar to the training of

other classifiers, the points near the decision boundary are

more informative. Therefore, in order to make the training

more efficient, we sample more points in the vicinity of the

shape’s boundary.

This sampling takes place in the vicinity of every vertex

of the ground truth mesh. A uniform Gaussian with a vari-

ance of 0.1 is used. The label is computed efficiently, by

using a voxel occupancy grid for each shape.

At every training batch, we sample a fixed number of

points from every shape sample in the batch. In order to

cover regions of space that are scarcely sampled due to the

shape distribution, we add 10% of uniformly distributed

points to each sample. See Fig. 1 for an illustration.

Architecture The architecture of the networks is depicted

in Fig. 2. Network f is a ResNet with five blocks; g is fully

connected. The network g(p, θI) is an MLP which maps

points p ∈ R
3 to a scalar field. Our default architecture in-

cludes four hidden layers with 32 neurons per hidden layer.

In order to make this architecture more suitable for regres-

sion, we add a scaling factor that is separate from the weight

matrix. Each layer n performs the following computation:

y = ((θ
W (n)
I x) · θ

s(n)
I ) + θ

b(n)
I (4)

Figure 1. Point sampling. On the left, the mesh vertices and on the

right points sampled during training.

Figure 2. The architecture of our neural networks. f ’s output given

an input image I is the set of parameters θI of the network g.

These include weights, bias, and scale parameters. The network g

classifies each input point as either inside or outside the object.

where x is the layer’s input, y is its computation result,

θ
W (n)
I is the weight matrix of layer n, θ

b(n)
I is the bias

vector of that layer, and θ
s(n)
I is the learned scale vector.

The multiplication between the weighted input and the scale

vector is done per coordinate.
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For the network g, the ELU activation function [9] is

used. However, the experiments reveal that ReLU or tanh

are almost as effective.

Note that the weights of network g are, in fact, feature

maps produced by network f and, therefore, represent a

space of functions constrained by the architecture of g. The

architecture presented includes 3394 parameters and so is

very efficient for both training and inference.

f(I, θf ) is a ResNet very similar in structure to the

ResNet-34 model introduced by He et al. [15]. It starts with

a convolutional layer that operates on I with N (5 × 5)
kernels and then goes through B consecutive blocks, which

share the same structure.

Each one of the blocks is comprised of 3 residual mod-

ules, all utilizing (3× 3) kernels. The first residual module

in each block reduces the spatial resolution by 2 via strided

convolutions and increases the number of feature maps by

2. The succeeding modules keep both spatial and feature di-

mensionalities. The modules use the pre-activation scheme

(BN-ReLU-Conv). The network then employs an average

pooling layer, which yields a feature vector of size (16×N).
K fully connected layers with (16 × N) neurons each are

applied to this feature vector (ReLU-Conv-Relu-Conv for

K = 2). This results in a feature vector of size (16 × N),
which we view as the shape embedding e(I, θf ).

The f network then splits into multiple heads. There is

one group of heads per each layer of g, indexed by n =
1, 2, ...L, and each group contains a set of linear regressors

that provide the weights for this layer (a matrix θ
W (n)
I ), the

bias term (a vector θ
b(n)
I ), and the scale vector (θsI(n)).

Unless otherwise specified, we use N = 64, B = 5,

K = 2, and L = 4. However, as our experiments show, the

performance is stable with regards to these parameters.

Rendering Since we wish to use off the shelf renderers,

rendering is done via the following procedure; see Sec.6 for

a discussion of future renderers. First, we evaluate the field

s
p
I = (Eq. 2) using a grid of points p ∈ [−1, 1]3 with a

spatial resolution of 128 in each axis. The marching cube

algorithm [27] is then applied to obtain a polygon mesh.

Note that the rendering resolution is not limited to the

resolution used in training and in-fact, is only limited by

computing resources.

4. Properties of the representation

The shape is defined by the isosurface of g at the level

of 0.5. Since g employs ELU activation units, it is differ-

entiable. Therefore, by using known results for level sets,

from the implicit function theorem, the obtained surface is

a smooth manifold [24]. This property is obtained, without

restricting to a certain mesh topology, unlike other methods.

Figure 3. A t-SNE visualizations of object embedding from the 13

main categories of the ShapeNet-Core V1 test set

In order to understand the capacity of the shape defined

by g, we consider the equivalent network, where the ELU

activations are replaced by ReLU ones. For such a net-

work, the number of linear regions is upper bounded by

O(( n
n0

)(L−1)n0nn0) for a network with n0 inputs, L hidden

layers and n > n0 neurons per hidden layer [30]. For the

architecture of network g, this amounts to between 1e+4 to

8.6e+19 linear regions for our smallest MLP (three layers

with 16 hidden units each) and our largest tested MLP (six

layers with 64 hidden units) respectively. While only a sub-

set of these regions are included in the decision boundary

itself, it demonstrates that a network-based representation

can present a very high shape representation capacity, even

for relatively shallow and narrow networks. This capacity

increases exponentially in L and polynomially in n.

5. Experiments

We demonstrate the effectiveness of our method by com-

paring it to other state-of-the-art-methods. Experiments are

conducted on 2 base resolutions of 323 and 2563. For the

low resolution experiments we use the dataset provided by

Choy et al. [8], which includes more than 40k objects span-

ning 13 categories. Each object is rendered from 24 differ-

ent views sampled uniformly but with a fixed elevation axis

viewpoint of 30◦. The image resolution is set to (137×137)
and the voxel grid resolution is set to 32 on each axis.

This resolution limits the resolution of the network’s output.

However, it allows a direct comparison with previous work.

For a fair comparison, we also use the same train/test split

used by the authors. For the high resolution experiments,

we used the data provided by Hänee et al [13], which in-

troduced higher quality rendered images at the resolution of

1827



Figure 4. Linear shape interpolation between objects of the same

class of the ShapeNet-Core V1 test set. (row 1) car-car, (row 2)

chair-chair, (row 3) table-table, (row 4) plane-plane

(224 × 224) that were sampled at a wider elevation angle

distribution of −20◦ : 30◦. The dataset, as provided by the

authors, is generated in two grid resolutions of 323 and 2563

and split into train/validation/test sets.

5.1. Training and qualitative results

The network, with a shape parameters of N = 64, B =
5,K = 2 and L = 4 was trained for 20 epochs (around 4

days), starting with a learning rate of 5e−5, and reducing by

a factor of 10 after 10 epochs and by a factor of two after 5

additional epochs. One network was trained for all classes,

without enjoying the class information.

As Fig. 3 shows, the embedding e obtained by the net-

work (of size 16N ) has learned to separate between the

classes in an unsupervised way. The learned embedding

also presents what can be considered a quasi-linear behav-

ior in the semantic space. This is evident in Fig. 4, in which

the embeddings e1 and e2 obtained from single image I1, I2
of two random shapes from the same class of the test set are

linearly interpolated (λ∗e1+(1−λ)e2) using the interpola-

tion weights λ = 0, 0.25, 0.5, 0.75, and 1. This effect is not

limited to same class objects, and as can be seen in Fig 5

objects from different classes also blend successfully. As

far as we know, we are the only method out of the related

work that presents cross-class interpolations.

The resulting scalar field S
p
I encodes the object in a sta-

ble manner. When varying the threshold between 0.1 and

0.9, we obtain shapes that resemble the shape at the default

0.5 threshold, as can be seen in Fig. 6.

5.2. Quantitative results

323 grid resolution Tab.2 presents a comparison with the

literature methods, conducted on the data provided by Choy

et al. [8]. Both per class and average results are presented.

Note that all results are provided by a single model that cap-

tures all classes, and is trained without conditioning on the

class and without access to out-of-scope data in the form

of pre-trained models. As can be seen, our method outper-

Figure 5. Linear shape interpolation between objects from differ-

ent classes of the ShapeNet-Core V1 test set. (row 1) table-bench,

(row 2) plane-car, (row 3) car-couch

Figure 6. Shape surface extracted with different thresholds on s
p

I ,

corresponding to different level-sets of the implicit field. From

bottom right going clockwise: 0.9, 0.7, 0.6, 0.5, 0.3, 0.1.

forms all literature methods in mean performance. Out of

the 13 categories, our method outperforms all methods in 12

categories and PCDI [37] leads in one category (firearm).

In order to further evaluate the strength of our embed-

ding, we have designed a simple multi-view test, in which

during test time the embedding e(Ii, θf ) of multiple views

Ii of the same shape are averaged. As can be seen in Fig. 7,

the performance improves as the number of views increases.

The ability to improve performance in a late fusion manner

indicates that our embedding is well-behaved and invariant

to the exact viewpoint. Our multiview results also outper-

form those of 3D-R2N2 [8], which is the only literature

method we found to report multi-view results on the data

split we employ. We stress that unlike the baseline method,

we did not re-train our model to handle the multi-view task.

2563 grid resolution Tab.3 presents a comparison with

the literature methods, conducted on the data provided by

Hänee et al [13]. In order to compare with previous work
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Figure 7. Adding views in test-time only by averaging the embed-

ding. The x-axis is the number of views, and the y-axis is the

mean IOU. As can be seen, averaging more views improves the

accuracy of the obtained shape. We compare with the reported re-

sults of 3D-R2N2 [8], which trains specifically for the multi-view

scenario.

which reported results in a grid resolution of 323, pooling

with stride 8 was applied to the predicted voxel grid gen-

erated at test time. Out of the 13 categories, our method

outperforms all methods in 8 categories, LSM [18] leads

in one category and VP3D [20] leads in 4 categories. For

these experiments network g was parametrized by six hid-

den layers with 32 hidden units each tanh activation was

employed. Parameters of network f(I, θf ) were chosen as

N = 64, B = 5, K = 2, and L = 4. Although we be-

lieve IOU is a more suitable metric for task of 3D shape

reconstruction, we have also evaluated our model with the

Chamfer distance (CD) metric. To this end we follow the

protocol and reported results provided by AtlasNet [11] in

section 5.2 and table 4 of their publication. Results are pre-

sented in Tab.4 and demonstrated in Fig. 11

5.3. Parameter sensitivity

Since only one loss term is used, there are not many pa-

rameters to select, except for the architecture of the network

itself. The method seems to be insensitive to the selection

of architecture. In Tab. 5, we evaluated the sensitivity of the

method to the architecture of the network g used to repre-

sent each shape. These experiments were run for 12 epochs

and not until convergence. As can be seen, the performance

is relatively constant across the three activation functions

tested (ELU, ReLU, and tanh) and for a wide range of the

number of layers and number of hidden units per layer.

Sensitivity was also evaluated with respect to the pa-

rameters of network f . To that end, we tested four dif-

ferent ResNet architectures. We parameterize them by the

number of blocks (B ∈ {4, 5}), number of base kernels

(N ∈ {64, 128}) and number of fully connected layers

(K ∈ {0, 2}). Overall, it seems that there is little sensi-

Figure 8. Learning curves for ShapeNet showing mean IOU vs.

training epoch on the test set. Training with boundary sampling

(blue) is compared to training with random uniform sampling

(green). The learning rate was not reduced in these runs, in or-

der not to bias the results toward the timing of a specific scenario.

Figure 9. Reconstruction from real-world images. (left) input im-

age. (right) reconstruction result.

tivity to the parameters and a slight preference to the larger

number of blocks B = 5.

5.4. Sampling Technique

We evaluate our sampling method by comparing the ac-

curacy over epochs, obtained by a network that was trained

with boundary sampling versus a network that was trained

with random uniform sampling in the [−1, 1] volumetric

cube. For a fair comparison, both networks share the same

relatively lightweight architecture (N = 64,B = 5,K = 2)

and were trained with the same set of hyper-parameters for

20 epochs, without lowering the learning rate. The network

trained with boundary sampling reached a mean IOU score

of 65.8% vs. 63.5% for the network trained with random

uniform sampling.

5.5. Reconstruction of real-world images

We follow previous methods and test our model on real-

world images from the internet, using the same model

trained on the ShapeNet dataset. As demonstrated in

Fig. 9, our model generalizes well across different cate-

gories. However, we notice that successful reconstruction is

dependent on the point of view. Since the existing datasets

are very biased in that respect, a next step would be to

render a more uniformly distributed dataset with respect to

camera parameters.
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3D-R2N2 [8] 51.3 42.1 71.6 79.8 66.1 46.6 62.8 54.4 38.1 46.8 66.2 51.3 51.3 56.0

OGN [35] 58.7 48.1 72.9 81.6 70.2 48.3 64.6 59.3 39.8 50.2 63.7 53.6 63.2 59.6

PSGN [10] 60.1 55.0 77.1 83.1 74.9 54.4 70.8 60.4 46.2 55.2 73.7 60.6 61.1 64.0

VTN [32] 67.1 63.7 76.7 82.1 74.2 55.0 69.0 62.6 43.6 53.4 68.1 57.3 59.9 64.1

MTN [32] 64.7 57.7 77.6 85.0 75.6 54.7 68.1 61.6 40.8 53.2 70.1 57.3 59.1 63.5

PCDI [37] 61.2 60.9 68.3 83.2 74.4 57.2 69.9 69.5 46.4 61.4 69.8 61.5 58.5 64.8

Ours 71.4 65.9 79.3 87.1 79.1 60.7 74.8 68.0 48.6 61.7 73.8 62.8 65.4 69.1

Table 2. Shape reconstruction from a single image on ShapeNet-core at 323 grid resolution. Mean IOU (%) per category is reported as well

as the average IOU (%) over all 13 categories. Dataset provided by Choy et al. [8]
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3D-R2N2 [8] 56.7 43.2 61.8 77.6 65.8 50.9 58.9 56.5 40.0 44.0 56.7 51.6 53.1 55.1

LSM [18] 61.1 50.8 65.9 79.3 67.7 57.8 67.0 69.7 48.1 53.9 63.9 55.6 58.3 61.5

VP3D [20] 69.1 59.8 72.4 80.2 77.5 60.1 65.6 66.4 50.5 59.7 68.0 60.7 61.3 65.5

Ours 71.3 63.4 75.6 81.5 75.1 61.4 72.3 65.7 52.0 56.2 64.7 61.6 60.2 66.2

Table 3. Same as Tab. 2 for the dataset provided by Hänee et al [13].

HSP [13] AtlasNet [11] Ours

Average CD ×103 11.6 9.52 4.35

Table 4. Shape reconstruction from a single image on ShapeNet-

core at 2563 grid resolution. Average CD (%) is reported over all

13 categories. Dataset provided by Hänee et al [13]. The Chamfer

Distance (CD) reported is computed on 10000 uniformly sampled

points, multiplied by 10
3 and averaged over all classes.

ELU ReLU tanh

16 32 64 16 32 64 16 32 64

3 65.2 65.2 66.1 65.4 65.6 66.1 65.1 65.4 65.7

4 65.4 65.6 65.8 65.1 65.5 66.0 65.8 64.9 66.1

5 64.8 65.5 66.1 65.2 65.5 65.9 65.6 65.7 65.3

6 65.7 65.5 66.0 64.5 65.1 65.8 64.8 65.4 65.6

Table 5. Sensitivity to the hyperparameters of g. Reported is the

IOU (%) after 12 epochs for a network trained with the ELU,

ReLU, or tanh activation. Each row (column) has a different num-

ber of layers (hidden units per layer).

5.6. Visualization of Jacobian norm

We wish to evaluate the gradients of g with respect to

p(x, y, z) which correspond to the Jacobian of g.

J(θf , I, p) =
∂(g(p, f(I, θf )))

∂p
(5)

Hyperparameters IOU

N B K

64 4 2 67.0

128 4 0 67.0

64 5 2 67.3

128 5 0 67.3

Table 6. Sensitivity to parameters of network f . Reported is the

IOU (%) after convergence for a network trained with different

settings of hyperparameters. Experiments were run for 15 epochs.

In order to evaluate the traits of the shape boundary,

we calculate the Jacobian norm at the zero levelset:
∣

∣J(θf , I, p)|s(p)=0

∣

∣.

Ths obtained norm can be viewed as a local sensitiv-

ity score of the shape, or as some sort of confidence. It

is displayed in Fig. 10 on a scale in which the low norms

are yellow and the high norms are bluish. Flat surfaces

present smaller gradient norms than the highly curved sur-

faces. Note that the direction of the gradient is always nor-

mal to the surface, which is a property of isosurfaces.

6. Extensions

The simplicity of our method in comparison to the

alternative representations leads to straightforward exten-

sions. For example, we can model dynamic shapes sim-
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Figure 10. Jacobian norm values evaluated on the shape surface.

Figure 11. Single Image 3D Reconstruction. (rows 1,3) input im-

age. (rows 2,4) our results.

ply by employing functionals g with inputs of the form

p = (x, y, z, t), where t represents the time dimension, and

recover the weights of g using a learned function f , which

takes a sequence of images as input. A loss term S could be

added to encourage g to be smooth in time near the model’s

boundary:

S(θf , I) = −

∫

V×T

∣

∣

∣

∣

∂(g(p, f(I, θf )))

∂t

∣

∣

∣

∣

dp (6)

where I is now a sequence of images, y the ground truth

sequence of 3D shapes, V is the 3D volume and T is the

time dimension. Note that this extension requires very little

change to the method’s code. In comparison, if one were to

model sequences in time using meshes or voxels, the added

complexity of the representation would be significant, mak-

ing high resolution models less tractable, and the smooth-

ness over time would require significant code.

In a POC experiment, we autoencode the mnist dataset

where g maps a 3D point p with coordinates (x, y, α) to a

value in [0, 1]. α is a dynamic parameter which smoothly

interpolates between a digit and its mirrored version. As

Figure 12. A sequence of temporal reconstruction results obtained

from the single digit on the left.

can be seen in Fig. 12, from a single view (282), the method

learns to generate the entire sequence (rendered for different

values of α and at a higher resolution of 10242).

The method can be also applied directly beyond points to

other geometric primitives. For example, the functional can

indicate whether a set of three points is a triangular mesh

that belongs to a shape’s boundary or not.

Our representation also opens up interesting options in

the realm of differentiable rendering. Implicit fields have

long been used for graphical applications [2]. Several ren-

dering techniques, such as ray tracing [14] and sphere trac-

ing [4] were designed to deal with the task of projecting

these fields into 2D in order to generate images. Since

our inferred implicit field is differentiable anywhere, apply-

ing these techniques results in the ability to back-propagate

errors generated by image-image comparison. This could

lead, for example, to efficient multi-image training.

A POC implementation of a differentiable renderer was

conducted in the context of learning 3D from silhou-

ettes using a simple L2 loss with the ground truth silhou-

ettes, which were captured from three canonical viewpoints

around the object. Silhouettes were rendered by max pool-

ing sigmoid(g(p)) for points p along the 3D rays associated

with every image pixel. We obtain an IOU of 64.4, whereas

the literature for learning from three silhouettes [20] gets

60.0. However, the three views used were different.

7. Conclusion

Learning the novel functional representation of shapes

introduced in this work requires only a single loss term. The

smooth manifold obtained has a high capacity. The method

is elegant, simple to implement, and easily extendable. The

embedding learned by the method displays an intuitive se-

mantic behavior and averaging in this latent space, multi-

ple representations obtained from different views leads to

more accurate shapes. Our experiments indicate that the

new representation leads to more accurate results than the

literature methods for the task of 3D reconstruction from a

single view.
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