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Abstract

Zero-shot learning (ZSL) aims to accurately recognize

unseen objects by learning mapping matrices that bridge

the gap between visual information and semantic attributes.

Previous works implicitly treat attributes equally in com-

patibility score while ignoring that they have different im-

portance for discrimination, which leads to severe semantic

ambiguity. Considering both low-level visual information

and global class-level features that relate to this ambigu-

ity, we propose a practical Latent Feature Guided Attribute

Attention (LFGAA) framework to perform object-based at-

tribute attention for semantic disambiguation. By distract-

ing semantic activation in dimensions that cause ambigu-

ity, our method outperforms existing state-of-the-art meth-

ods on AwA2, CUB and SUN datasets in both inductive

and transductive settings. The source code is released at

https://github.com/ZJULearning/AttentionZSL.

1. Introduction

Zero-shot learning (ZSL), whose goal is to construct a

classification model for classes that have no labeled sam-

ples before, is an active research topic recently [1, 18, 46,

33, 27, 39, 24, 43, 4]. Unlike supervised classification that

directly assigns an unlabeled object to one of training ac-

cessible (seen) categories, ZSL aims to recognize objects

that are unseen in training. To achieve this goal, auxiliary

semantic attributes are provided for both seen and unseen

classes [46, 44, 30]. ZSL then learns to predict in semantic

space for the unseen object and infer its label by searching

the class that attains the most similar semantic attribute.

Existing ZSL methods can be divided into inductive ZSL

and transductive ZSL depending on whether images from

unseen classes are available during training. Neither visual

information nor side-information of unseen classes is avail-
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Figure 1: An illustrative diagram of semantic ambiguity

where spotty pig is likely to be misclassified as dalmatian in

semantic space. Based on objects’ visual features and latent

category features, we propose an attention based model to

distract high activation in objects’ sambiguous dimensions.

able for inductive ZSL [49, 35, 17, 24, 16] while transduc-

tive ZSL [20, 13, 42, 47, 10, 39] has access to part of the

unlabeled images. During the test phase, both conventional

setting and generalized setting are considered in most re-

cent works [42, 16, 39]. The search space for classifying

new images is restricted to unseen classes in the conven-

tional setting. While in generalized ZSL setting, we assume

the test images come from both seen and unseen classes.

Compatibility score based measurement, which exploit

linear or nonlinear function F (x, y;W ) = θ(x)TWφ(y)
to associate visual representation θ(x) and provided aux-

iliary side-information φ(y), have dominated the ZSL lit-

erature in the past few years [9, 1, 2, 35, 45]. Compati-

bility score could be adopted not only in user-defined se-

mantic space (φ(y) = ay) but also in latent feature space

(φ(y) = σy) that recently introduced in several state-of-

the-art ZSL methods [17, 24, 48, 31].

While previous works mostly focus on introducing var-

ious regularization targets [9, 2, 35, 1] to learn better map-

ping matrices W , semantic attribute itself is less concerned

in the literature. Attributes are implicitly treated equally in
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compatibility score for almost all existing works, while in

this work, we argue that this kind of equal treatment leads to

severe ambiguity in semantic attribute space. We use word

semantic-ambiguous to describe those atypical objects that

carry other classes’ common attributes.

The misclassification of semantic-ambiguous objects can

be described as follows: attribute P is typical in class A but

is rarely found in class B; a semantic-ambiguous instance

from B that carries attribute P will be categorized to class

A since P is relatively common in class A. For example,

spotty pig, as shown in Figure 1, is more likely to be clas-

sified to dalmatian since attribute spots is more typical in

dalmatian than in pig (100.0 for dalmatian and 21.2 for pig).

Since attribute with great value is generally thought to be

common for instances within the class, the decision bound-

ary of that attribute dimension is therefore closer to the class

that owns greater attribute value. This kind of property

makes classifications work well in most general cases, while

at the same time, makes semantic-ambiguous objects that

own atypical attributes be easily misclassified. Other exam-

ples include ocean for polar bear (35.0) against humpback

whale (89.4) and stripes for squirrel (12.50) against zebra

(98.9).

To alleviate the problem above, we propose third object-

based attribute attention p apart from semantic attributes

and latent category features to distract atypical semantic

activations. Specifically, the attribute attention pj at di-

mension j should be small if its corresponding attribute is

not general in its potential class. By analyzing the factors

that relate to the proposed attribute attention, we take both

global class-level features and low-level visual information

into considerations. In summary, the contributions are:

(1) We point out that semantic ambiguity exists in current

ZSL methods and design an end-to-end attribute attention

framework for semantic disambiguation.

(2) We propose an offline prototype learning strategy in-

dependent from visual-semantic training that shows effec-

tiveness in both conventional and generalized ZSL settings.

(3) Combined with different prototype learning strate-

gies, our method achieves the state-of-the-art performance

in both inductive and transductive settings.

2. Related Work

Zero-Shot Learning Traditional ZSL work [22, 3, 15,

29] follows a two-stage inference. The visual representa-

tions of unlabeled objects are firstly projected to semantic

space, and classification is then performed via searching the

class that attains the most similar attributes [11, 10, 34, 48].

Various semantic spaces have been investigated including

user-defined attribute annotations [8] and unsupervised se-

mantic representations (word2vec [26], GloVe [32]).

Although most works pay attention to learning within

single semantic space, other feature spaces are also inves-

tigated recently. CDL [16] jointly aligns the class struc-

tures in both visual and semantic space. LAD [17] exploits

dictionary learning to obtain a discriminative but semantic-

preserving latent feature space. JSLA [31] learns latent rep-

resentations by minimizing the intra-class distance. LDF

[24] considers both intra-class and inter-class distances in

latent feature space. In this work, we further connect those

two spaces by (1) latent category features give guidance in

semantic attribute attention; (2) semantic features provide

hints in latent prototype construction.

Prototype Learning Prototype [10] is the most represen-

tative class-level embeddings used in classification. Exist-

ing ZSL methods learn prototypes for different purposes.

Among them, DMaP [23] uses an iterative method to re-

vise more semantically consistent prototypes within single

semantic space. LDF [24] and JSLA [31] exploit ridge re-

gression in learning class relatedness to obtain unknown

prototypes in latent feature space. CDL [16] learns unseen

class prototypes by sharing the structures between the vi-

sual and semantic space. Since our method also involves

learning in multiple feature spaces, we also need latent pro-

totypes in classification. We first adopt the same prototype

learning framework as in [31, 24] to show our effectiveness

in inductive ZSL setting and then propose another offline

learning strategy to mitigate domain shift [10] in transduc-

tive ZSL setting. The proposed offline learning strategy dif-

fers from [23] in that (1) We separate prototype learning

from visual-semantic training and make LFGAA train in an

end-to-end manner. (2) We align prototypes across feature

spaces rather than optimizing within single semantic space.

Attribute Selection As mentioned in NAS [12], attributes

own different properties (e.g. class distribution, variance,

and entropy) and have different importance in discrimina-

tion. NAS proposes to use a refined subset of attributes

to build specific ZSL models. However, their refined at-

tribute subset varies from models and datasets, which is a

kind of dataset-based and model-based attribute selection.

Our proposed attribute attention can also be regarded as a

soft attribute selection. Different from NAS, our proposed

attribute attention varies from objects even within the same

class. To the best our knowledge, this is the first work to

consider object-based attribute attention in ZSL.

3. Pre-analysis

3.1. Problem Formulation and Notations

We formulate ZSL problem as follows: a seen dataset

S = {(xs
i , y

s
i )}

Ns

i=1 that consists of Ns images is used as

the training set, where xs
i is the i-th image and ysi ∈ Y

S

is its corresponding label; a similar unseen dataset U =
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{(xu
i , y

u
i )}

Nu

i=1 is used as the testing set. The seen and un-

seen classes are disjoint, i.e., YS ∩YU = ∅, YS ∪YU = Y .

For each y ∈ Y , there is an attribute vector ay ∈ R
k as-

sociated to it. We denote ϕ(x) = θ(x)TW and σ(x) to

represent semantic prediction and latent feature prediction

respectively in this work.

3.2. Importance of Objectbased Attention

Attribute attention selectively concentrates on a discrete

set of attributes and ignores less important ones. We demon-

strate the importance of object-based attribute attention for

dealing with the aforementioned semantic-ambiguous ob-

jects in this section.

We first view the nearest class search as multiple binary

classifications among different combinations of categories,

e.g., deciding if object x closer to class y1 or y2 by:

D(x, y1, y2;W ) = F (x, y1;W )− F (x, y2;W ) (1)

where the sign ofD indicates the binary classification result

and D = 0 is its decision hyperplane.

Consider the most straightforward form of compatibility

score between semantic prediction and class-level attribute:

Dip(x, y1, y2) = ϕ(x)T∆(a, y1, y2)

∆(a, y1, y2) = ay1
− ay2

(2)

where inner product is directly applied on them. It can be

seen that Dip is decided by both semantic prediction ϕ(x)
and attribute difference ∆(a, y1, y2). We use l1-normalized

∆(a, y1, y2) as information amount to denote the discrim-

inative information that each attribute dimension carries in

binary classification, i.e., attribute i is more discriminative

than attribute j in classifying between class y1 and y2 if

|∆(a, y1, y2)i| is greater than |∆(a, y1, y2)j |. As shown in

Figure 2, classification greatly depends on a small subset of

attributes that carry greater discriminative information.

Another widely used similarity measurement [4, 16, 10,

17, 31] is cosine distance:

Dcos(x, y1, y2) =
1

‖ϕ(x)‖‖ay1
‖
ϕ(x)T∆′(a, y1, y2)

∆′(a, y1, y2) = ay1
−
‖ay1
‖

‖ay2
‖
ay2

(3)

Compared with the simple inner product, cosine distance

takes additional l2-norm into consideration where classes

with great attribute norm are unfavorable in discrimination.

Both inner product and cosine distance work well in gen-

eral cases; however, it fails to deal with those semantic-

ambiguous cases. Those objects usually have great activa-

tions at their less typical attribute dimensions that leads to

ambiguity. Worse still, there also exists correlation across

attribute dimensions (e.g., spots is highly related to black
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Figure 2: Attribute information amount in classifying be-

tween pig and dalmatian. Attributes with positive informa-

tion amount are favourable to dalmatian.

and white) that further aggregates such ambiguity. Based

on this observation, we argue that the gap of semantic pre-

dictions among different dimensions should be reduced so

that one or a few prominent attribute predictions would not

dominate in classification. We then propose attribute atten-

tion to distract high activations on atypical attribute dimen-

sions.

Compatibility score with proposed object-based attribute

attention can be written as:

F ′(x, y;W ) = θ(x)TWdiag(p(x))ay (4)

where p(x) is the proposed attention and W is the param-

eter for visual-semantic projection. The proposed compati-

bility score differs from the traditional ones [22, 3, 15, 29]

in that: (1) Our attention p(x) is object-based (a function

of x) where low-level visual information is also exploited,

while visual-semantic mapping matrices in traditional ZSL

are learned directly from deep visual embedding θ(x). (2)

Learning in semantic space alone makes projection matrices

highly related to semantic attributes while aforementioned

challenging cases are ambiguous in that space; in contrast,

our proposed attention is learned independently from se-

mantic space that won’t enhance such ambiguity.

4. Latent Feature Guided Attribute Attention

Based on the description of semantic ambiguity problem,

we adopt the idea that attribute attention should be highly

related to both global category features and low-level vi-

sual information. The proposed Latent Feature Guided At-

tribute Attention (LFGAA) network is shown in Figure 3.

At the core of our network, an Embedding Subnet learns

projections from visual space to semantic space and latent

feature space at the same time. The Embedding Subnet is

decomposed into several branches according to their recep-

tive fields. The Latent Guided Attention (LGA) module is

attached within each branch to fuse visual information and

global category features. Attribute attention from different

visual levels aggregates at the end of the network.
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𝑥
LGA LGA LGA

𝜑 𝑥
𝜎 𝑥

FC

⊕

Embedding Subnet

𝑝(𝑥)⊕
Figure 3: Overview of the proposed Latent Feature Guided Attribute Attention (LFGAA) network. Given an image, we first

use Embedding Subnet to extract visual information. We build a fully connected layer on top to project visual embeddings

into both user-defined semantic space and latent feature space. At the middle layers of Embedding Subnet, several Latent

Guided Attention (LGA) modules are branched to perform object-based attribute attention. For each image input, LFGAA

simultaneously produces semantic prediction ϕ(x), latent feature prediction σ(x) and semantic attribute attention p(x).
Notations: FC fully connected layer, ⊕ element-wise summation.

4.1. Attribute Embedding Subnet

Different from existing ZSL methods [17, 7, 28] that di-

rectly use pre-trained deep CNN features as their visual rep-

resentations, we jointly optimize backbone CNN as well as

other parts of Embedding Subnet in our work. Image fea-

tures extracted from backbone CNN are fed to several fully

connected layers with ReLU activation to be non-linearly

projected to semantic and latent feature space respectively.

Latent features are then used in both giving global class-

related guidances in LGA module and making predictions

in latent space, while semantic features are compared with

attribute annotations via attention for semantic predictions.

4.2. Latent Guided Attention Module

Despite learning in both semantic space and latent fea-

ture space achieves promising performance for most general

cases in the literature [17, 31, 24], object-based attribute

attention should be incorporated to deal with semantic-

ambiguous objects. Latent Guided Attention module, as

detailed in Figure 4, stems from the intuition that attribute

attention is related to global class-level features as well as

information from different visual levels. Given an visual

feature map Mi,l ∈ R
C×H×W of i-th image at specific

layer l of Embedding Subnet and its corresponding latent

feature embedding σ(xi) ∈ R
k, the proposed attribute at-

tention pi,l ∈ R
k from layer l is obtained as follows:

Visual feature map Mi,l is firstly mapped through a

set of standard convolutional layers F to obtain M′
i,l ∈

R
k×H′

×W ′

that shares the same channel dimensions as la-

tent features:

M′
i,l = F(Mi,l) (5)

ℱ
ℳ𝑖,𝑙 ∈ ℝ𝐶×𝐻×𝑊

𝜎 𝑥𝑖 ∈ ℝ𝑘×1×1

ℳ𝑖,𝑙′ ∈ ℝ𝑘×𝐻′×𝑊′
⊕ ℱ𝑠𝑞ℋ𝑖,𝑙 ∈ ℝ𝑘×𝐻′𝑊′

𝐹𝐶 softmax 𝑝 𝑥𝑖 ∈ ℝ𝑘

Figure 4: An illustration of Latent Guided Attention (LGA).

We use the same H ′ and W ′ for all LGA modules at differ-

ent branch layers l ∈ lB in this work.

We then combine the projected feature mapM′
i,l and the

latent feature σ(xi) to obtain attribute attention as follows:

Hi,l = Fsq(M
′
i,l ⊕ σ(xi))

pl(xi) = softmax(WlHi,l + bl)
(6)

where V = Fsq(M) is a squeeze function that turns feature

mapM ∈ R
C×H×W into feature vector V ∈ R

C×HW and

⊕ is channel-wise addition. Wl and bl are parameters of

single fully connected layer at specific branch layer l that

assembles regional visual information.

Attribute attention obtained from specific layer l corre-

sponds to a certain depth of visual perception. As informa-

tion from different visual levels contributes to different se-

mantic meanings, we fuse multiple attribute attention from

different layers to obtain integrated attention.

4.3. Optimization

We consider both visual-semantic and visual-latent pro-

jection in our work and optimize them at the same time.
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For visual-latent projection, we follow the same way as in

LDF [24] that uses triplet loss [36] to learn discriminative

latent category features by simultaneously enlarging inter-

class distance and reducing intra-class distance:

LF =
1

N

N∑

i

[‖σ(xi)−σ(xj)‖
2−‖σ(xi)−σ(xk)‖

2+α]+

(7)

where xi, xj and xk serve as anchor, positive and negative

sample within a triplet respectively. Symbol [◦]+ is equiv-

alent to max(◦, 0). α is a preset parameter to control the

desired margin between anchor-positive pair and anchor-

negative pair.

For visual-semantic projection, we jointly learn param-

eters in Embedding Subnet as well as in LGA modules via

widely used softmax loss:

LA = −
1

N

N∑

i

log
exp(ϕ(xi)

T
diag(p(xi))ayi

)
∑

y∈YS

exp(ϕ(xi)
T

diag(p(xi))ay)
(8)

We combine these two optimization targets with a bal-

ancing factor β as our final optimization target, which can

be written as:

L = LF + βLA (9)

4.4. Prototype Construction and ZSL Prediction

We investigate both inductive and transductive prototype

construction in our work to prove the effectiveness of pro-

posed attention. For inductive setting, we adopt the same

construction process as in JSLA [31] and LDF [24], where

mean latent features are directly used as prototypes for seen

classes σys = 1

N

∑
x∈xs

i

σ(x) and unseen prototypes are

obtained in a hybrid way with ridge regression:

βu
y = argmin

y∈YS

‖ayu −
∑

βu
yay‖

2
2 + λ‖βu

y ‖
2
2

σyu =
∑

y∈YS

βu
yσy

(10)

Then inductive hybrid ZSL prediction is performed by:

yci = argmax
yc∈Y

s(ϕ′
i,ayc) + s(σ(xi),σyc) (11)

It can be observed from Eq.(10) that domain shift [10]

problem exists in hybrid prototypes where βu
y is computed

in semantic space and it cannot exactly reflects the true class

relationship in latent space. Directly adopting this class-

relatedness learned in semantic space without any adapta-

tion to latent space causes an unknown shift.

Inspired by NCM classifier [25] that assigns images to

the class with the closest mean, we propose an offline Self-

Adaptation (SA) strategy to build prototypes directly in la-

tent feature space in transductive ZSL setting. The basic

ideas for self-adaptation are that (1) samples should locate

near their corresponding prototypes; (2) samples close in

semantic space tend to be close in latent space. We denote

attended semantic predictions ϕ′(xi) = ϕ(xi)
T diag(p(xi))

and use cosine-similarity as the basic measurement of such

closeness for simplicity in this section:

s =
ϕT

ay

‖ϕ‖ · ‖ay‖
(12)

We first introduce a single SA step as follows: pseudo

labels yc are first assigned to unlabeled objects based on

their attended semantic predictions:

yci = argmax
yc∈Y

s(ϕ′(xi),ayc) (13)

The latent feature prototype of unseen class u ∈ U can

then be obtained by averaging latent feature predictions of

instances within pseudo-labeled class u:

σyu =

∑
i σ(xi)1(y

u, yci )∑
i 1(y

u, yci )
(14)

1(x, y) returns 1 if x = y or 0 otherwise. Prototypes ob-

tained in Eq.(14) alleviate domain shift problem by directly

averaging in latent feature space, and semantic space only

provides a hint in this process.

Self-Adaptation then, as described below, iteratively re-

vises the semantic prototypes and aligns the latent proto-

types with initialization σ
0
yu = σyu . We use the latest

pseudo labels as our transductive prediction labels yui =
yci,T in this work.

Self-Adaptation: simultaneously build latent feature pro-

totypes, revise semantic prototypes and make predictions.

Initialize:

σ
0
yu ← σyu , a0

yu ← ayu , yci,0 ← yci
for t = 1 to T do

yci,t ← argmax
yu

s(ϕ′(xi),a
t−1
yu ) + s(σ(xi),σ

t−1
yu )

σ
t
yu ←

∑
i σ(xi)1(y

u, yci,t)∑
i 1(y

u, yci,t)

a
t
yu ←

∑
i ϕ

′(xi)1(y
u, yci,t)∑

i 1(y
u, yci,t)

5. Experiments

5.1. Setting

Datasets Experiments are conducted on three representa-

tive ZSL datasets: Animals with Attribute 2 [46] (AwA2),

Caltech-UCSD Birds 200-2011 [44] (CUB) and SUB At-

tribute Database [30] (SUN). AwA2 is a coarse-grained
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Table 1: Comparisons in the conventional ZSL setting (%). For each dataset, the best performance is marked in bold font

for both inductive and transductive methods. For LFGAAG, LFGAAV and LFGAAR, the visual embedding function is

implemented with GoogleNet[40], VGG19[37], and ResNet101[14] respectively. Both standard split (SS) and proposed split

(PS) are considered. Notations: I inductive ZSL methods, T transductive ZSL methods.

Method
AwA2 CUB SUN

SS PS SS PS SS PS

I

DAP[22] 58.7 46.1 37.5 40.0 38.9 39.9

SSE[49] 67.5 61.0 43.7 43.9 25.4 54.5

CONSE[29] 67.9 44.5 36.7 34.3 44.2 38.8

DEVISE[9] 68.6 59.7 53.2 52.0 57.5 56.5

ESZSL[35] 75.6 55.1 43.7 53.9 57.3 54.5

ALE[1] 80.3 62.5 53.2 54.9 59.1 58.1

SJE[2] 69.5 61.9 55.3 53.9 57.1 53.7

SYNC[5] 71.2 46.6 54.1 55.6 59.1 56.3

LAD[17] 78.4 67.8 56.6 57.9 51.7 62.6

CDL[16] 79.5 67.9 54.5 54.5 61.3 63.6

Y. Annadani et al. [4] - 63.8 - 56.0 - 61.4

LFGAA+Hybrid (Ours) 84.3 68.1 67.6 67.6 62.0 61.5

T

TAAw[21] 82.0 - 51.0 - 57.0 -

SE-ZSL[42] 80.8 69.2 60.3 59.6 64.5 63.4

QFSL[39] 84.8 79.7 69.7 72.1 61.7 58.3

LFGAAV+SA (Ours) 94.0 75.5 80.0 76.9 66.7 61.4

LFGAAG+SA (Ours) 95.1 76.6 78.1 81.1 63.1 64.8

LFGAAR+SA (Ours) 94.4 84.8 79.7 78.9 64.0 66.2

dataset that is medium-scale regarding the number of im-

ages, i.e. 37,322 images from 50 animal classes with 85

user-defined attributes. CUB is a fine-grained dataset con-

sisting of 11,788 images from 200 different bird species

with 312 user-defined attributes. SUN is another fine-

grained dataset including 14,340 images from 717 dif-

ferent scenes provided 102 user-defined attributes. Stan-

dard 40/10, 150/50, 645/72 zero-shot splits are adopted on

AwA2, CUB and SUN respectively for both standard split

and proposed split [46].

Evaluation Metrics We use average per-class top-1 ac-

curacy (AccY ) as the primary metric in our experiments

and conduct the experiments in both conventional and gen-

eralized setting [46]. Unlabeled objects in conventional

setting only come from unseen classes (Y = YS ), while

in the generalized setting, they come from both seen and

unseen classes (Y = YS ∪ YU ). We report AccYU in

conventional setting and AccYS , AccYU , harmonic mean

H =
2∗Acc

YU ∗Acc
YS

Acc
YU +Acc

YS
in generalized setting.

Implementations Different backbone networks including

GoogleNet [40], VGG19 [37] and ResNet101 [14] are used

to initialize our Embedding Subnet, and images are ran-

domly cropped to the corresponding size before fed into the

LFGAA network. The triplet margin α and ridge regression

λ are both set to 1.0 for all the experiments. We select four

feature maps of different sizes and learn attribute attention

in different visual levels. We set iteration SA steps T = 10
but in practice it converges on the first few iterations. We

perform online triplet mining with batch-hard strategy and

the whole LFGAA is trained in an end-to-end manner with

Adam optimizer [19] throughout all the experiments.

5.2. Conventional Comparison

We make the conventional ZSL (CZSL) comparison

with several state-of-the-art transductive ZSL methods [39,

21, 42] and competitive inductive ZSL methods [22, 29,

5, 17, 9, 35, 2, 4, 16]. We conduct both inductive LF-

GAA+Hybrid and transductive LFGAA+SA that has no

differences except for prototype construction described in

Section 4.4 on CZSL and results are shown in Table 1.

Overall Performance It can be seen from Table 1 that

proposed attribute attention achieves the state-of-the-art

performances in both inductive and transductive settings on

CZSL. Verified from experimental results on different back-

bone networks, our method is not only effective to a specific

CNN model or specific data split. We also find the attribute

(shape, color of different body regions) in CUB is much

simpler than SUN that involves scene understanding and at-

tribute attention benefits from low-level visual information.
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chimpanzee giant+panda

leopard persian+cat pig

hippopotamus humpback+whale raccoon

rat seal

(a) LFGAA+Hybrid (b) LFGAA+SA (T = 1) (c) LFGAA+SA (T = 5) (d) Ground Truth

Figure 5: Visualization of latent feature predictions and latent class prototypes on AwA2 unseen objects. Comparisons

among different methods are shown in (a-c) where those methods share the same feature network (that leads to the same

point distributions) but differ in prototype constructions only. Colors in (a-c) represent prediction labels while colors in (d)

represent the ground truth. We use black circles to mark latent prototypes in each method.

Method Acc. (%) 𝜎2 × 10−3
w/o attention 62.1 2.48

w/ sigmoid 73.5 1.75

w/ softmax 81.1 0.86

Figure 6: Comparisons on CUB dataset with proposed data

split [46] and LFGAAG+SA. σ2 is the l2-normalized pre-

diction variance of 312 semantic dimensions.

Comparisons with state-of-the-art methods As shown

in Table 1, our attention based method outperforms the

state-of-the-art on three ZSL datasets. Compared in in-

ductive settings, our LFGAA+Hybrid shows superiority

on both AwA2 and CUB and achieves comparable perfor-

mance on SUN. In transductive settings, our proposed LF-

GAA+SA has an impressive gain over the state-of-the-art

QFSL [39] by a large margin of 5.1% ∼ 10.3% on both

AwA2 and challenging CUB datasets. Our performance

improvement on SUN is slightly lower than on the other

datasets because of the scarcity (about 20 unseen instances

within the class) where our self-adapted prototypes are not

representative enough for 72 unseen categories.

Effective Attribute Attention The architecture of our

LFGAA network follows LDF [24] to learn in both seman-

tic and latent feature space. Differently, we introduce a

third attention branch to make predictions more discrim-

inative for those challenging objects. Our baseline LF-

GAA+Hybrid (84.3% on AwA2, 67.6% on CUB) outper-

forms the results reported in LDF [24] (81.4% on AwA [22],

Table 2: Ablation results (%) on all three datasets (proposed

split) with the same backbones.

Method AwA2 CUB SUN

LFGAA+Hybrid+w/o attention 62.4 62.1 61.2

LFGAA+Hybrid 68.1 67.6 61.5

LFGAA+SA+w/o attention 70.9 67.4 62.8

LFGAA+SA 75.5 78.9 66.2

65.9% on CUB) and achieves the state-of-the-art.

To gain an insight into the effectiveness of proposed at-

tention, we conduct another experiment on the CUB dataset

by comparing with methods LFGAA w/o attention and

LFGAA w/ sigmoid, and the results are shown in Figure

6. It can be observed that, with proposed attention mech-

anism, the variance of predictions among different dimen-

sions is reduced which shows the basic idea discussed in

Section 3.2 that prominent attributes shouldn’t completely

dominate in discrimination. It can also be found that the

distracting effect of softmax-based attention is better since

it creates competitions among different attribute dimensions

in training. We also visualize the normalized semantic pre-

dictions of each unseen class for those three methods and

their approximate density functions with kernel density es-

timation, which also shows this distracting effect.

To further probe the efficacy of attribute attention, we

perform an ablation study for the CZSL setting. The results

in Table 2 clearly demonstrate that proposed attention ben-

efits in both inductive and transductive settings.

Effective Self-Adaptation Domain shift problem exists

in methods [17, 31, 24] that learn in both semantic and latent

space. By directly building prototypes in latent space, our

self-adaptation based method outperforms hybrid based one

by an obvious margin. To prove that our performance boost
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Table 3: Comparisons in the generalized ZSL setting (%). For each dataset, the best result is marked in bold font.

Method
AwA2 CUB SUN

AccYU AccYS H AccYU AccYS H AccYU AccYS H

SYNC[5] 10.0 90.5 18.0 11.5 70.9 19.8 7.9 43.3 13.4

DEVISE[9] 17.1 74.7 27.8 23.8 53.0 32.8 14.7 30.5 19.8

ESZSL[35] 5.9 77.8 11.0 12.6 63.8 21.0 11.0 27.9 15.8

CMT[38] 0.5 90.0 1.0 7.2 49.8 12.6 8.1 21.8 11.8

CMT∗[38] 8.7 89.0 15.9 4.7 60.1 8.7 8.7 28.0 13.3

CDL[16] 29.3 73.9 41.9 23.5 55.2 32.9 21.5 34.7 26.5

Y. Annadani et al. [4] 20.7 73.8 32.3 24.6 54.3 33.9 20.8 37.2 26.7

f-CLSWGAN[47] 57.9 61.4 59.6 43.7 57.7 49.7 42.6 36.6 39.4

SE-ZSL[42] 58.3 68.1 62.8 41.5 53.3 46.7 40.9 30.5 34.9

LFGAA+Hybrid (Ours) 27.0 93.4 41.9 36.2 80.9 50.0 18.5 40.0 25.3

LFGAA+SA (Ours) 50.0 90.3 64.4 43.4 79.6 56.2 20.8 34.9 26.1

mainly comes from the correction of latent prototypes, we

use t-SNE [41] to visualize this correction process in Fig-

ure 5 (a-c). It can be seen that most of the hybrid proto-

types (e.g. persian cat, giant panda and rat) are at the edge

of clusters while self-adapted prototypes gradually move to

the center. With self-adaptation strategy, our final label pre-

dictions are also separable in latent space alone.

5.3. Generalized Comparisons

We also apply our method in generalized ZSL (GZSL) to

further demonstrate its effectiveness. Latent feature proto-

types of seen classes and unseen classes are jointly obtained

by self-adaptation with pseudo labels extending from YU to

Y = YS ∪ YU and the results are shown in Table 3.

Our performance boost mainly comes from the improve-

ment both in AccYS and AccYU but the issue of the bias

towards seen classes [6, 46] still exists since our LFGAA

model has no access to the unseen images. Although we

achieve outstanding CZSL performance on SUN, our GZSL

performance is not as good as other transductive methods

on SUN as it is an extremely biased dataset (seen classes

are ∼ 9 times of unseen classes). Methods like SE-ZSL

[42] and f-CLSWGAN [47] use synthetic unseen examples

to remove this bias at the cost of AccYS drop.

6. Quality of Disambiguation

The information amount (IA) introduced in Section 3.2

reflects the importance of attribute j in binary classifying

class y1 from y2. IA is originally image-irrelevant but be-

comes relevant in our method as we propose to re-weigh the

importance of attribute according to image I .

IA∗(I, j, y1, y2) =
p(I)j(ay1,j − ay2,j)∑
i ‖ay1,i − ay2,i‖1p(I)i

(15)

We show the disambiguation of misleading attribute IA

in Figure 7 where IA is drastically reduced for ambiguous

examples but not impacted much for its counterpart.

IA(horn, cow, antelope) IA(swim, polar bear, otter) IA(spots, pig, dalmatian)

Figure 7: IA in binary classification. Green bar is w/o atten-

tion, brown bar is w/ attention for ambiguous example and

purple bar is w/ attention for its counterpart.

7. Conclusion

In this paper, we present the drawback of equal treatment

on different semantic dimensions, especially when dealing

with semantic-ambiguous objects. It is reasonable to think

that classifications should depend on multiple factors in-

stead of one or a few prominent semantic predictions. Mo-

tivated by this, we propose an end-to-end attention frame-

work to distract semantic predictions that may cause am-

biguity. The proposed attention, which is learned indepen-

dently from semantic space, integrates both low-level visual

information and global category features in discrimination.

Various experimental results conducted on different datasets

demonstrate its efficiency in both inductive and transductive

settings.
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