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Abstract

Automatic estimation of the number of people in uncon-

strained crowded scenes is a challenging task and one ma-

jor difficulty stems from the huge scale variation of people.

In this paper, we propose a novel Deep Structured Scale

Integration Network (DSSINet) for crowd counting, which

addresses the scale variation of people by using structured

feature representation learning and hierarchically struc-

tured loss function optimization. Unlike conventional meth-

ods which directly fuse multiple features with weighted av-

erage or concatenation, we first introduce a Structured Fea-

ture Enhancement Module based on conditional random

fields (CRFs) to refine multiscale features mutually with a

message passing mechanism. In this module, each scale-

specific feature is considered as a continuous random vari-

able and passes complementary information to refine the

features at other scales. Second, we utilize a Dilated Mul-

tiscale Structural Similarity loss to enforce our DSSINet to

learn the local correlation of people’s scales within regions

of various size, thus yielding high-quality density maps. Ex-

tensive experiments on four challenging benchmarks well

demonstrate the effectiveness of our method. Specifically,

our DSSINet achieves improvements of 9.5% error reduc-

tion on Shanghaitech dataset and 24.9% on UCF-QNRF

dataset against the state-of-the-art methods.

1. Introduction

Crowd counting, which aims to automatically generate

crowd density maps and estimate the number of people in

unconstrained scenes, is a crucial research topic in comput-

er vision. Recently, it has received increasing interests in

both academic and industrial communities, due to its wide

range of practical applications, such as video surveillance
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Figure 1. Visualization of people with various scales in uncon-

strained crowded scenes. The huge scale variation of people is a

major challenge limiting the performance of crowd counting.

[40], traffic management [46] and traffic forecast [21].

Although numerous models [8, 11] have been proposed,

crowd counting remains a very challenging problem and

one major difficulty originates from the huge scale varia-

tion of people. As shown in Fig. 1, the scales of people

vary greatly in different crowded scenes and capturing such

huge scale variation is non-trivial. Recently, deep neural

networks have been widely used in crowd counting and have

made substantial progress [43, 25, 42, 24, 45, 22, 27]. To

address scale variation, most previous works utilized multi-

column CNN [47] or stacked multi-branch blocks [4] to ex-

tract multiple features with different receptive fields, and

then fused them with weighted average or concatenation.

However, the scale variation of people in diverse scenarios

is still far from being fully solved.

In order to address scale variation, our motivations are

two-fold. First, features of different scales contain differen-

t information and are highly complementary. For instance,

the features at deeper layers encode high-level semantic in-

formation, while the features at shallower layers contain

more low-level appearance details. Some related research-

es [41, 44] have shown that these complementary features

can be mutually refined and thereby become more robust to

scale variation. However, most existing methods use simple

strategies (e.g., weighted average and concatenation) to fuse

multiple features, and can not well capture the complemen-

tary information. Therefore, it is very necessary to propose

1774



a more effective mechanism for the task of crowd counting,

to fully exploit the complementarity between different scale

features and improve their robustness.

Second, crowd density maps contain rich information of

the people’s scales1, which can be captured by an effective

loss function. As shown in Fig. 2, people in a local region

usually have similar scales and the radiuses of their heads

are relatively uniform on density maps, which refers to the

local correlation of people’s scales in our paper. Moreover,

this pattern may vary in different locations. i) In the area n-

ear the camera, the radiuses of people’s heads are large and

their density values are consistently low, thus it’s better to

capture the local correlation of this case in a large region

(See the green box in Fig. 2). ii) In the place far away from

the camera, the heads’ radiuses are relatively small and the

density map is sharp, thus we could capture the local cor-

relation of this case in a small region (See the red box in

Fig. 2). However, the commonly used pixel-wise Euclidean

loss fails to adapt to these diverse patterns. Therefore, it is

desirable to design a structured loss function to model the

local correlation within regions of different sizes.

In this paper, we propose a novel Deep Structured Scale

Integration Network (DSSINet) for high-quality crowd den-

sity maps generation, which addresses the scale variation of

people from two aspects, including structured feature rep-

resentation learning and hierarchically structured loss func-

tion optimization. First, our DSSINet consists of three par-

allel subnetworks with shared parameters, and each of them

takes a different scaled version of the same image as input

for feature extraction. Then, a unified Structured Feature

Enhancement Module (SFEM) is proposed and integrated

into our network for structured feature representation learn-

ing. Based on the conditional random fields (CRFs [16]),

SFEM mutually refines the multiscale features from differ-

ent subnetworks with a message passing mechanism [15].

Specifically, SFEM dynamically passes the complementary

information from the features at other scales to enhance the

scale-specific feature. Finally, we generate multiple side

output density maps from the refined features and obtain a

high-resolution density map in a top-down manner.

For the hierarchically structured loss optimization, we

utilize a Dilated Multiscale Structural Similarity (DMS-

SSIM) loss to enforce networks to learn the local corre-

lation within regions of various sizes and produce locally

consistent density maps. Specifically, our DMS-SSIM loss

is designed for each pixel and it is computed by measur-

ing the structural similarity between the multiscale regions

centered at the given pixel on an estimated density map and

the corresponding regions on ground-truth. Moreover, we

implement the DMS-SSIM loss with a dilated convolution-

1In this paper, ground-truth crowd density maps are generated with

geometry-adaptive Gaussian kernels [47]. Each person is marked as a

Gaussian kernel with individual radius

Figure 2. Illustration of the information of people’s scales on

crowd density maps. The radiuses of people’s heads are relative-

ly uniform in a local region. Moreover, the local correlation of

people’s scales may vary in different regions.

al neural network, in which the dilated operation enlarges

the diversity of the scales of local regions and can further

improve the performance.

In summary, the contributions of our work are three-fold:

• We propose a CRFs-based Structured Feature En-

hancement Module, which refines multiscale features

mutually and boosts their robustness against scale vari-

ation by fully exploiting their complementarity.

• We utilize a Dilated Multiscale Structural Similarity

loss to learn the local correlation within regions of var-

ious sizes. To our best knowledge, we are the first to

incorporate the MS-SSIM [39] based loss function for

crowd counting and verify its effectiveness in this task.

• Extensive experiments conducted on four challeng-

ing benchmarks demonstrate that our method achieves

state-of-the-art performance.

2. Related Work

Crowd Counting: Numerous deep learning based meth-

ods [36, 30, 40, 19, 20, 23, 7] have been proposed for crowd

counting. These methods have various network structures

and the mainstream is a multiscale architecture, which ex-

tracts multiple features from different columns/branches of

networks to handle the scale variation of people. For in-

stance, Boominathan et al. [3] combined a deep network

and a shallow network to learn scale-robust features. Zhang

et al. [47] developed a multi-column CNN to generate den-

sity maps. HydraCNN [25] fed a pyramid of image patch-

es into networks to estimate the count. CP-CNN [35] pro-

posed a Contextual Pyramid CNN to incorporate the global

and local contextual information for crowd counting. Cao et

al. [4] built an encoder-decoder network with multiple scale

aggregation modules. However, the issue of the huge varia-

tion of people’s scales is still far from being fully solved. In

this paper, we further strengthen the robustness of DSSINet

against the scale variation of people from two aspects, in-

cluding structured feature representation learning and hier-

archically structured loss function optimization.

Conditional Random Fields: In the field of comput-

er vision, CRFs have been exploited to refine the features

and outputs of convolutional neural networks (CNN) with

a message passing mechanism [15]. For instance, Zhang et
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Figure 3. The overall framework of the proposed Deep Structured Scale Integration Network (DSSINet). DSSINet consists of three

parallel subnetworks with shared parameters. These subnetworks take different scaled versions of the same image as input for feature

extraction. First, DSSINet integrates four CRFs-based Structured Feature Enhancement Modules (SFEM) to refine the multiscale features

from different subnetworks. Then, we progressively fuse multiple side output density maps to obtain a high-resolution one in a top-down

manner. Finally, a Dilated Multiscale Structural Similarity (DMS-SSIM) loss is utilized to optimize our DSSINet.

al. [49] used CRFs to refine the semantic segmentation map-

s of CNN by modeling the relationship among pixels. Xu et

al. [41] fused multiple features with Attention-Gated CRF-

s to produce richer representations for contour prediction.

Wang et al. [37] introduced an inter-view message passing

module based on CRFs to enhance the view-specific fea-

tures for action recognition. In crowd counting, we are the

first to utilize CRFs to mutually refine multiple features at

different scales and prove its effectiveness for this task.

Multiscale Structural Similarity: MS-SSIM [39] is

a widely used metric for image quality assessment. Its

formula is based on the luminance, contrast and structure

comparisons between the multiscale regions of two images.

In [48], MS-SSIM loss has been successfully applied in

image restoration tasks (e.g., image denoising and super-

resolution), but its effectiveness has not been verified in

high-level tasks (e.g, crowd counting). Recently, Cao et

al. [4] combined Euclidean loss and SSIM loss [38] to op-

timize their network for crowd counting, but they can only

capture the local correlation in regions with a fixed size. In

this paper, to learn the local correlation within regions of

various sizes, we modify MS-SSIM loss with a dilated oper-

ation and show its effectiveness in this high-level task.

3. Method

In this section, we propose a Deep Structured Scale Inte-

gration Network (DSSINet) for crowd counting. Specifical-

ly, it addresses the scale variation of people with structured

feature representation learning and structured loss function

optimization. For the former, a Structured Feature Enhance-

ment Module based on conditional random fields (CRFs) is

proposed to refine multiscale features mutually with a mes-

sage passing mechanism. For the latter, a Dilated Multiscale

Structural Similarity loss is utilized to enforce networks to

learn the local correlation within regions of various sizes.

3.1. DSSINet Overview

In crowd counting, multiscale features are usually ex-

tracted to handle the scale variation of people. Inspired by

[18, 13, 5], we build our DSSINet with three parallel subnet-

works, which have the same architecture and share param-

eters. As shown in Fig. 3, these subnetworks are composed

of the first ten convolutional layers (up to Conv4 3) of VG-

G16 [33] and each of them takes a different scaled version

of the same image as input to extract features. Unlike pre-

vious works [47, 4] that simply fuse features by weighted

averaging or concatenation, our DSSINet adequately refines

the multiscale features from different subnetworks.

Given an image of size H ×W , we first build a three-

levels image pyramid {I1, I2, I3}, where I2 ∈ RH×W is

the original image, and I1 ∈ R2H×2W and I3 ∈ R
H

2
×

W

2

are the scaled ones. Each of these images is fed into one of

the subnetworks. The feature of image Ik at the Convi j

layer of VGG16 is denoted as fk
i,j . We then group the

features with the same resolution from different subnet-

works and form four sets of multiscale features {f1
2,2, f

2
1,2},

{f1
3,3, f

2
2,2, f

3
1,2}, {f1

4,3, f
2
3,3, f

3
2,2}, {f2

4,3, f
3
3,3}. In each set,

different features complement each other, because they are

inferred from different receptive fields and are derived from

different convolutional layers of various image sizes. For

instance, f2
1,2 mainly contains the appearance details and

f1
2,2 encodes some high-level semantic information. To im-

prove the robustness of scale variation, we refine the fea-

tures in the aforementioned four sets with the Structured

Feature Enhancement Module described in Section 3.2.

With richer information, the enhanced feature f̂k
i,j of fk

i,j

becomes more robust to the scale variation. Then, f̂k
i,j is

fed into the following layer of kth subnetwork for deeper

feature representation learning.

After structured feature learning, we generate a high-
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resolution density map in a top-down manner. First, we ap-
ply a 1×1 convolutional layer on top of the last feature f3

4,3

for reducing its channel number to 128, and then feed the
compressed feature into a 3× 3 convolutional layer to gen-
erate a density map M4. However, with a low resolution of
H
16

×W
16

, M4 lacks spatial information of people. To address
this issue, we generate other four side output density maps

M̃0, M̃1, M̃2, M̃3 at shallower layers, where M̃i has a reso-

lution of H
2i

× W
2i

. Specifically, M̃3 is computed by feeding

the concatenation of f2
4,3 and f3

3,3 into two stacked convo-
lutional layers. The first 1 × 1 convolutional layer is also
utilized to reduce the channel number of the concatenated
feature to 128, while the second 3×3 convolutional layer is

used to regress M̃3. M̃2, M̃1, M̃0 are obtained in the same
manner. Finally, we progressively pass the density maps at
deeper layers to refine the density maps at shallower layers
and the whole process can be expressed as:

Mi = wi ∗ M̃i + wi+1 ∗ Up(Mi+1), i = 3, 2, 1, 0 (1)

where wi and wi+1 are the parameters of two 3 × 3 con-

volutional layers and Up() denotes a bilinear interpolation

operation with a upsampling rate of 2. Mi is the refined den-

sity map of M̃i. The final crowd density map M0 ∈ RH×W

has fine details of the spatial distribution of people.

Finally, we train our DSSINet with the Dilated Mul-

tiscale Structural Similarity (DMS-SSIM) loss described

in Section 3.3. We implement DMS-SSIM loss with a

lightweight dilated convolutional neural network with fixed

Gaussian-kernel and the gradient can be back-propagated to

optimize our DSSINet.

3.2. Structured Feature Enhancement Module

In this subsection, we propose a unified Structured Fea-

ture Enhancement Module (SFEM) to improve the robust-

ness of our feature for scale variation. Inspired by the dense

prediction works [6, 41], our SFEM mutually refines the

features at different scales by fully exploring their comple-

mentarity with a conditional random fields (CRFs) model.

In this module, each scale-specific feature passes its own

information to features at other scales. Meanwhile, each

feature is refined by dynamically fusing the complementary

information received from other features.

Let us denote multiple features extracted from differen-
t subnetworks as F = {f1, f2, ..., fn}. F can be any of
the multiscale features sets defined in Section 3.1. Our
objective is to estimate a group of refined features F̂ =

{f̂1, f̂2, ..., f̂n}, where f̂i is the corresponding refined fea-
ture of fi. We formulate this problem with a CRFs model.
Specifically, the conditional distribution of the original fea-

ture F and the refined feature F̂ is defined as:

P (F̂ |F,Θ) =
1

Z(F )
exp{E(F̂ , F,Θ)}, (2)

where Z(F ) =
∫

F̂
exp{E(F̂ , F,Θ)}dF̂ is the partition

function for normalization and Θ is the set of parameters.

The energy function E(F̂ , F,Θ) in CRFs is defined as:

E(F̂ , F,Θ) =
∑

i

φ(f̂i, fi) +
∑

i,j

ψ(f̂i, f̂j). (3)

In particular, the unary potential φ(f̂i, fi), indicating the
similarity between the original feature and the refined fea-
ture, is defined as:

φ(f̂i, fi) = −
1

2
||f̂i − fi||

2
. (4)

We model the correlation between two refined features with
a bilinear potential function, thus the pairwise potential is
defined as:

ψ(f̂i, f̂j) = (f̂i)
T
w

i
j f̂j , (5)

where wi
j is a learned parameter used to compute the rela-

tionship between f̂i and f̂j .

This is a typical formulation of CRF and we solve it with

mean-field inference [29]. The feature f̂i is computed by:

f̂i = fi +
∑

j 6=i

w
i
j f̂j , (6)

where the unary term is feature fi itself and the second ter-
m denotes the information received from other features at
different scales. The parameter wi

j determines the informa-

tion content passed from fj to fi. As f̂i and f̂j are interde-
pendent in Eq.(6), we obtain each refined feature iteratively
with the following formulation:

h
0
i = fi, h

t
i = fi +

∑

j 6=i

w
i
j h

t−1

j , t = 1 to n, f̂i = h
n
i , (7)

where n is the total iteration number and ht
i is the inter-

mediate feature at tth iteration. The Eq.(7) can be easily

implemented in our SFEM. Specifically, we apply a 1 × 1
convolutional layer to pass the complementary information

from fj to fi. wi
j is the learned parameter of the convolu-

tional layer and it is shared for all iterations.

As shown in Fig. 3, we apply the proposed SFEM to mu-

tually refine the features in {f1
2,2, f

2
1,2}, {f1

3,3, f
2
2,2, f

3
1,2},

{f1
4,3, f

2
3,3, f

3
2,2}, {f2

4,3, f
3
3,3}. After receiving the informa-

tion from other features at different scales, the refined fea-

ture becomes more robust to the scale variation of people.

The experiments in Section 4 show that our SFEM greatly

improves the performance of crowd counting.

3.3. Dilated Multiscale Structural Similarity Loss

In this subsection, we employ a Dilated Multiscale Struc-

tural Similarity (DMS-SSIM) loss to train our network. We

ameliorate the original MS-SSIM [39] with dilation oper-

ations to enlarge the diversity of the sizes of local regions

and force our network to capture the local correlation with-

in regions of different sizes. Specifically, for each pixel,

our DMS-SSIM loss is computed by measuring the struc-

tural similarity between the multiscale regions centered at

the given pixel on an estimated density map and the corre-

sponding regions on the GT density map.

As shown in Fig. 4, we implement the DMS-SSIM loss
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Figure 4. The network of Dilated Multiscale Structural Similarity

loss. The normalized Gaussian kernel w is fixed and shared for all

layers. ri is the dilation rate of the ith layer. X0 and Y0 are the es-

timated density map and the corresponding GT map respectively.

with a dilated convolutional neural network named as DMS-

SSIM network. The DMS-SSIM network consists of m di-

lated convolutional layers and the parameters of these layers

are fixed as a normalized Gaussian kernel with a size of 5×5
and a standard deviation of 1.0. The Gaussian kernel is de-

noted as w = {w(o)|o ∈ O,O = {(−2,−2), ..., (2, 2)}},

where o is an offset from the center.

For convenience, the estimated density map M0 in
DSSINet is re-marked as X0 in this subsection and its cor-
responding ground-truth is denoted as Y0. We feed X0

and Y0 into the DMS-SSIM network respectively and their
outputs at ith layer are represented as Xi ∈ RH×W and
Yi ∈ RH×W . Specifically, for a given location p, Xi+1(p)
is calculated by:

Xi+1(p) =
∑

o∈O

w(o) ·Xi(p+ ri+1 · o), (8)

where ri+1 is the dilation rate of the (i+1)th layer and it is
used to control the size of receptive field. Since

∑

o∈O w(o)
= 1, Xi+1(p) is the weighted mean of a local region cen-
tered at the location p on Xi and we could get Xi+1 = µXi

.
In this case, X1 is the local mean of X0 and X2 is the lo-
cal mean of X1. By analogy, Xi+1(p) can be considered as
the mean of a relatively large region on X0. Based on the
filtered map Xi+1 , we calculate the local variance σ2

Xi
(p)

as:

σ
2
Xi

(p) =
∑

o∈O

w(o) · [Xi(p+ ri+1 · o)− µXi
(p)]2. (9)

The local mean µYi
and variance σ2

Yi
of filtered map Yi are

also calculated with the same formulations as Eq.(8) and
Eq.(9). Moreover, the local covariance σ2

XiYi
(p) between

Xi and Yi can be computed by:

σ
2
XiYi

(p) =
∑

o∈O

{w(o) · [Xi(p+ ri+1 · o)− µXi
(p)]

· [Yi(p+ ri+1 · o)− µYi
(p)]}

(10)

Further, the luminance comparison Li, contrast compar-
ison Ci and structure comparison Si between Xi and Yi are
formulated as:

Li =
2µXi

µYi
+ c1

µ2
Xi

+ µ2
Yi

+ c1
, Ci =

2σXi
σYi

+ c2

σ2
Xi

+ σ2
Yi

+ c2
, Si =

σXiYi
+ c3

σXi
σYi

+ c3
,

(11)

where c1, c2 and c3 are small constants to avoid division by

Layer 1st 2nd 3rd 4th 5th

W/O Dilation 5 (1) 9 (1) 13 (1) 17 (1) 21 (1)

W/- Dilation 5 (1) 13 (2) 25 (3) 49 (6) 85 (9)

Table 1. Comparison of the receptive field in DMS-SSIM network

with and without dilation. The receptive field fi and dilation rate

ri of ith layer are denoted as “fi (ri)” in the table. Without di-

lation (ri = 1 for all layers), the receptive fields of all layers are

clustered into a small region, which makes DMS-SSIM network

fail to capture the local correlation in regions with large heads.

zero. The SSIM between Xi and Yi is calculated as:

SSIM(Xi, Yi) = Li · Ci · Si. (12)

Finally, the DMS-SSIM between the estimated density map
X0 and ground-truth Y0, as well as the DMS-SSIM loss are
defined as:

DMS-SSIM(X0, Y0) =

m−1∏

i=0

{SSIM(Xi, Yi)}
αi ,

Loss(X0, Y0) = 1− DMS-SSIM(X0, Y0)

(13)

where αi is the importance weight of SSIM(Xi, Yi) and we

refer to [39] to set the value of αi.

In this study, the number of layers in DMS-SSIM net-

work m is set to 5. The dilation rates of these layers are 1,

2, 3, 6 and 9 respectively and we show the receptive field

of each layer in Table 1. The receptive field of the 2nd

layer is 13, thus SSIM(X1, Y1) indicates the local similar-

ity measured in regions with size of 13 × 13. Similarly,

SSIM(X4, Y4) is the local similarity measured in 85 × 85
regions. When removing the dilation, the receptive fields

of all layers are clustered into a small region, which makes

DMS-SSIM network fail to capture the local correlation in

regions with large heads, such as the green box in Fig. 2.

The experiments in Section 4.4 show that the dilation oper-

ation is crucial to obtain the accurate count of crowd.

4. Experiments

4.1. Implementation Details

Ground-Truth Density Maps Generation: In this

work, we generate ground-truth density maps with the

geometry-adaptive Gaussian kernels [47]. For each head

annotation pi, we mark it as a Gaussian kernel N (pi, σ
2)

on the density map, where the spread parameter σ is equal

to 30% of the mean distance to its three nearest neighbors.

Moreover, the kernel is truncated within 3σ and normalized

to an integral of 1. Thus, the integral of the whole density

map is equal to the crowd count in the image.

Networks Optimization: Our framework is implement-

ed with PyTorch [26]. We use the first ten convolutional lay-

ers of the pre-trained VGG-16 to initialize the correspond-

ing convolution layers in our framework. The rest of convo-

lutional layers are initialized by a Gaussian distribution with

zero mean and standard deviation of 1e-6. At each training

1778



Method
Part A Part B

MAE MSE MAE MSE

MCNN [47] 110.2 173.2 26.4 41.3

SwitchCNN [30] 90.4 135 21.6 33.4

CP-CNN [35] 73.6 106.4 20.1 30.1

DNCL [32] 73.5 112.3 18.7 26.0

ACSCP [31] 75.7 102.7 17.2 27.4

IG-CNN [1] 72.5 118.2 13.6 21.1

IC-CNN [28] 68.5 116.2 10.7 16.0

CSRNet [17] 68.2 115.0 10.6 16.0

SANet [4] 67.0 104.5 8.4 13.6

Ours 60.63 96.04 6.85 10.34
Table 2. Performance comparison on Shanghaitech dataset.

iteration, 16 image patches with a size of 224 × 224 are

randomly cropped from images and fed into DSSINet. We

optimize our network with Adam [14] and a learning rate of

1e-5 by minimizing the DMS-SSIM loss.

4.2. Evaluation Metric

For crowd counting, Mean Absolute Error (MAE) and

Mean Squared Error (MSE) are two metrics widely adopted

to evaluate the performance. They are defined as follows:

MAE = 1

N

∑N

i=1
||P̂i − Pi||,MSE =

√

1

N

∑N

i=1
||P̂i − Pi||2 , (14)

where N is the total number of the testing images, P̂i and

Pi are the estimated count and the ground truth count of the

ith image respectively. Specifically, P̂i is calculated by the

integration of the estimated density map.

4.3. Comparison with the State of the Art

Comparison on Shanghaitech [47]: As the most rep-

resentative benchmark of crowd counting, Shanghaitech

dataset contains 1,198 images with a total of 330 thousand

annotated people. This dataset can be further divided into

two parts: Part A with 482 images randomly collected from

the Internet and Part B with 716 images taken from a busy

shopping street in Shanghai, China.

We compare the proposed method with ten state-of-the-

art methods on this dataset. As shown in Table 2, our

method achieves superior performance on both parts of the

Shanghaitech dataset. Specifically, on Part A, our method

achieves a relative improvement of 9.5% in MAE and 8.1%

in MSE over the existing best algorithm SANet [4]. Al-

though previous methods have worked well on Part B, our

method still achieves considerable performance gain by

decreasing the MSE from 13.6 to 10.34. The visualiza-

tion results in Fig. 5 show that our method can generate

high-quality crowd density maps with accurate counts, even

though the scales of people vary greatly in images.

Comparison on UCF-QNRF [12]: The recently re-

leased UCF-QNRF dataset is a challenging benchmark for

dense crowd counting. It consists of 1,535 unconstrained

Method MAE MSE

Idrees et al. [11] 315 508

MCNN [47] 277 426

Encoder-Decoder [2] 270 478

CMTL [34] 252 514

SwitchCNN [30] 228 445

Resnet-101 [9] 190 277

Densenet-201 [10] 163 226

CL [12] 132 191

Ours 99.1 159.2
Table 3. Performance of different methods on UCF-QNRF dataset.

Method MAE MSE

MCNN [47] 377.6 509.1

SwitchCNN [30] 318.1 439.2

CP-CNN [35] 295.8 320.9

IG-CNN [1] 291.4 349.4

ConvLSTM [40] 284.5 297.1

CSRNet [17] 266.1 397.5

IC-CNN [28] 260.9 365.5

SANet [4] 258.4 334.9

Ours 216.9 302.4
Table 4. Performance comparison on UCF CC 50. The results of

top two performance are highlighted in red and blue respectively.

crowded images (1,201 for training and 334 for testing) with

huge scale, density and viewpoint variations. 1.25 million

persons are annotated and they are unevenly dispersed to

images, varying from 49 to 12,865 per image.

On UCF-QNRF dataset, we compare our DSSINet

with eight methods, including Idrees et al. [11], MCN-

N [47], Encoder-Decoder [2], CMTL [34], SwitchCN-

N [30], Resnet-101 [9], Densenet-201 [10] and CL [12].

The performances of all methods are summarized in Table 3

and we can observe that our DSSINet exhibits the lowest

MAE 99.1 and MSE 159.2 on this dataset, outperforming

other methods with a large margin. Specifically, our method

achieves a significant improvement of 24.9% in MAE over

the existing best-performing algorithm CL.

Comparison on UCF CC 50 [11]: This is an extreme-

ly challenging dataset. It contains 50 crowded images of

various perspective distortions. Moreover, the number of

people varies greatly, ranging from 94 to 4,543. Following

the standard protocol in [11], we divide the dataset into five

parts randomly and perform five-fold cross-validation. We

compare our DSSINet with thirteen state-of-the-art methods

on this dataset. As shown in Table 4, our DSSINet obtains a

MAE of 216.9 and outperforms all other methods. Specifi-

cally, our method achieves a relative improvement of 19.1%

in MAE over the existing best algorithm SANet [4].

Comparison on WorldExpo’10 [43]: As a large-scale

crowd counting benchmark with the largest amount of im-

ages, WorldExpo’10 contains 1,132 video sequences cap-
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GT Count:  579

Est Count:  546

GT Count:  423 GT Count:  865

Est Count:  919Est Count:  441 Est Count:  155

GT Count:  153 GT Count:  69

Est Count:  62

Figure 5. Visualization of the crowd density maps generated by our method on Shanghaitech Part A. The first row shows the testing images

with people of various scales. The second row shows the ground-truth density maps and the standard counts, while the third row presents

our generated density maps and estimated counts. Our method can generate high-quality crowd density maps with accurate counts, even

though the scales of people vary greatly in images.

Method S1 S2 S3 S4 S5 Ave

Zhang et al [43] 9.8 14.1 14.3 22.2 3.7 12.9

MCNN [47] 3.4 20.6 12.9 13.0 8.1 11.6

ConvLSTM [40] 7.1 15.2 15.2 13.9 3.5 10.9

SwitchCNN [30] 4.4 15.7 10.0 11.0 5.9 9.4

DNCL [32] 1.9 12.1 20.7 8.3 2.6 9.1

CP-CNN [35] 2.9 14.7 10.5 10.4 5.8 8.86

CSRNet [17] 2.9 11.5 8.6 16.6 3.4 8.6

SANet [4] 2.6 13.2 9.0 13.3 3.0 8.2

DRSAN [20] 2.6 11.8 10.3 10.4 3.7 7.76

ACSCP [31] 2.8 14.05 9.6 8.1 2.9 7.5

Ours 1.57 9.51 9.46 10.35 2.49 6.67

Table 5. MAE of different methods on the WorldExpo’10 dataset.

tured by 108 surveillance cameras during the Shanghai

WorldExpo 2010. Following the standard protocol in [43],

we take 3,380 annotated frames from 103 scenes as training

set and 600 frames from remaining five scenes as testing set.

When testing, we only measure the crowd count under the

given Region of Interest (RoI).

The mean absolute errors of our method and thirteen

state-of-the-art methods are summarized in Table 5. Our

method exhibits the lowest MAE in three scenes and

achieves the best performance with respect to the average

MAE of five scenes. Moreover, compared with those meth-

ods that rely on temporal information [40] or perspective

map [43], our method is more flexible to generate density

maps and estimate the crowd counts.

4.4. Ablation Study

Effectiveness of Structured Feature Enhancement

Module: To validate the effectiveness of SFEM, we im-

plement the following variants of our DSSINet:

• W/O FeatRefine: This model feeds the image pyramid

{I1, I2, I3} into the three subnetworks, but it doesn’t

conduct feature refinement. It takes the original features

to generate side output density maps. For example, M̃1

is directly generated from f1
3,3, f2

2,2 and f3
1,2.

• ConcatConv FeatRefine: This model also takes

{I1, I2, I3} as input and it attempts to refine multiscale

features with concatenation and convolution. For in-

stance, it feeds the concatenation of f1
3,3, f

2
2,2, f

3
1,2 into

a 1 × 1 convolutional layer to compute the feature f̂1
3,3.

f̂2
2,2 and f̂3

1,2 are obtained in the same manner.

• CRF-n FeatRefine: This model uses the proposed

CRFs-based SEFM to refine multiscale features from

{I1, I2, I3}. We explore the influence of the iteration

number n in CRF, e.g., n=1,2,3.

We train and evaluate all aforementioned variants on

Shanghaitech Part A. As shown in Table 6, the variant “W/O

FeatRefine” obtains the worst performance for the lack of

features refinement. Although “ConcatConv FeatRefine”

can reduce the count error to some extent by simply refining

multiple features, its performance is still barely satisfacto-

ry. In contrast, our SFEM fully exploits the complemen-

tarity among multiscale features and mutually refines them

with CRFs, and thus significantly boosts the performance.

Specifically, our “CRF-2 FeatRefine” achieves the best per-

formance. However, too longer iteration number of CRF-

s in SFEM would degrade the performance (See “CRF-3

FeatRefine”), since those multiscale features may be exces-

sively mixed and loss their own semantic meanings. Thus,

the iteration number n in CRFs is 2 in our final model.

Influence of the Scale Number of Image Pyramid: To

validate the effectiveness of multiscale input, we train mul-
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Method MAE MSE

W/O FeatRefine 68.85 119.09

ConcatConv FeatRefine 67.11 110.87

CRF-1 FeatRefine 64.37 108.61

CRF-2 FeatRefine 60.63 96.04

CRF-3 FeatRefine 63.80 103.05
Table 6. Performance of different variants of DSSINet on Part A

of Shanghaitech dataset.

Scales 1 1+0.5 2+1+0.5 2+1+0.5+0.25

MAE 70.94 64.67 60.63 61.13
Table 7. Ablation study of the scale number of image pyramid on

Part A of Shanghaitech dataset.

tiple variants of DSSINet with different scale number of im-

age pyramid and summarize their performance in Table 7.

Notice that the single-scale variant directly feeds the given

original image into one subnetwork to extract features and

generates the final density map from four side output densi-

ty maps at Conv1 2, Conv2 2, Conv3 3 and Conv4 3. The

term “2+1+0.5” denotes an image pyramid with scales 2, 1

and 0.5. Other terms can be understood by analogy. We

can observe that the performance gradually increases as the

scale number increases and it is optimal with three scales.

Since the computation was too large when the scale ratio

was set to 4 or larger, we did not include more.

Effectiveness of Dilated Multiscale Structural Sim-

ilarity Loss: In this subsection, we evaluate the effec-

tiveness of the DMS-SSIM loss for crowd counting. For

the purpose of comparison, we train multiple variants of

DSSINet with different loss functions, including Euclidean

loss, SSIM loss and various configurations of DMS-SSIM

loss. Note that a DMS-SSIM loss with m scales is denot-

ed as “DMS-SSIM-m” and its simplified version without

dilation is denoted as “MS-SSIM-m”. The performances

of all loss functions are summarized in Table 8. We can

observe that the performance of DMS-SSIM loss gradually

improves, as the scale number m increases. When adopt-

ing “DMS-SSIM-5”, our DSSINet achieves the best MAE

60.63 and MSE 96.04, outperforming the models trained by

Euclidean loss or SSIM loss. We also implement a “DMS-

SSIM-6” loss, in which the sixth layer has a dilation rate of

9 and it attempts to capture the local correlation in 121×121
regions. However, the people’s scales may not uniform in

such large regions, thus the performance of “DMS-SSIM-

6” has slightly dropped, compared with “DMS-SSIM-5”.

Moreover, the performance of MS-SSIM loss is worse than

that of DMS-SSIM loss, since the receptive fields in MS-

SSIM loss are intensively clustered into a small region,

which makes our DSSINet fail to learn the local correla-

tion of the people with various scales. These experiments

well demonstrate the effectiveness of DMS-SSIM loss.

Complexity Analysis: We also discuss the complexity

Loss Function MAE MSE

Euclidean 67.68 108.45

SSIM 74.60 133.64

MS-SSIM-2 73.21 125.05

MS-SSIM-3 67.46 114.79

MS-SSIM-4 64.80 109.26

MS-SSIM-5 63.51 103.81

DMS-SSIM-2 73.33 121.87

DMS-SSIM-3 67.12 112.86

DMS-SSIM-4 62.90 105.14

DMS-SSIM-5 60.63 96.04

DMS-SSIM-6 62.60 103.27
Table 8. Performance evaluation of different loss functions on Part

A of Shanghaitech dataset. “DMS-SSIM-m” denotes a DMS-

SSIM loss with m scales and “MS-SSIM-m” is the corresponding

simplified version without dilation.

Model CP-CNN SwitchCNN CSRNet Ours

Parameter 68.4 15.11 16.26 8.85

Table 9. Comparison of the number of parameters (in millions).

of our method. As the subnetworks in our framework have

shared parameters and the kernel size of the convolutional

layers in SFEM is 1 × 1, the proposed DSSINet only has

8.858 million parameters, 86.19% (7.635 million) of which

come from its backbone network (the first ten convolutional

layers of VGG-16). As listed in Table 9, the number of pa-

rameters of our DSSINet is only half of that of the existing

state-of-the-arts (e.g. CSRNet). Compared with these meth-

ods, our DSSINet achieves better performance with much

fewer parameters. During the testing phase, DSSINet takes

450 ms to process a 720×576 frame from SD surveillance

videos on an NVIDIA 1080 GPU. This runtime speed is al-

ready qualified for the needs of many practical applications,

since people do not move so fast and not every frame needs

to be analyzed.

5. Conclusion

In this paper, we develop a Deep Structured Scale In-

tegration Network for crowd counting, which handles the

huge variation of people’s scales from two aspects, includ-

ing structured feature representation learning and hierarchi-

cally structured loss function optimization. First, a Struc-

tured Feature Enhancement Module based on conditional

random fields (CRFs) is proposed to mutually refine multi-

ple features and boost their robustness. Second, we utilize

a Dilated Multiscale Structural Similarity Loss to force our

network to learn the local correlation within regions of var-

ious sizes, thereby producing locally consistent estimation

results. Extensive experiments on four benchmarks show

that our method achieves superior performance in compari-

son to the state-of-the-art methods.
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