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Abstract

Many previous works on point sets learning achieve ex-
cellent performance with hierarchical architecture. Their
strategies towards points agglomeration, however, only per-
form points sampling and grouping in original Euclidean
space in a fixed way. These heuristic and task-irrelevant
strategies severely limit their ability to adapt to more var-
ied scenarios. To this end, we develop a novel hierarchical
point sets learning architecture, with dynamic points ag-
glomeration. By exploiting the relation of points in semantic
space, a module based on graph convolution network is de-
signed to learn a soft points cluster agglomeration. We con-
struct a hierarchical architecture that gradually agglomer-
ates points by stacking this learnable and lightweight mod-
ule. In contrast to fixed points agglomeration strategy, our
method can handle more diverse situations robustly and effi-
ciently. Moreover, we propose a parameter sharing scheme
for reducing memory usage and computational burden in-
duced by the agglomeration module. Extensive experimen-
tal results on several point cloud analytic tasks, including
classification and segmentation, well demonstrate the su-
perior performance of our dynamic hierarchical learning
framework over current state-of-the-art methods.

1. Introduction

3D vision analysis has attracted a lot of attention because
3D data contains richer spatial information compared with
2D image/video. 3D point cloud is the simplest 3D data for-
mat and consists of irregular and unordered points. With the
renaissance of convolution neural network (CNN) in 2D im-
age/video processing, there are many works that have tried
to make an adaptation of deep learning framework for point
cloud analyses [41, 24, 7, 16].

Recently, some works [26, 28, 22, 10, 32] focus on di-
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Figure 1. The motivation of our proposed framework. Given a
plane, we would like to agglomerate these points into two repre-
sentative points. If the initial sampling point is from the wing,
existing methods are likely to sample two points from two wings
of the plane with FPS algorithm and group surrounding points with
KNN algorithm. Thereby, information of the fuselage is lost. Our
proposed dynamic agglomeration strategy samples, groups and
pools points in semantic space, hence points from various local
semantic filed will be agglomerated.

rectly consuming point cloud rather than transforming it
into multi-view images or voxel. A well-known pioneer-
ing work in this domain is PointNet [26], where point-wise
multi-layer perceptrons (MLPs) are used to extract point-
wise feature and a max-pooling layer is used to aggregate
features of all points. However, every point is treated indi-
vidually and local dependency structure is not considered.
To overcome this problem, PointNet++ [28] proposes a hi-
erarchical architecture for multi-level feature aggregation.
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As demonstrated in [28], hierarchical learning is an effec-
tive design principle, and beneficial for the network to grad-
ually enlarge the receptive field of every point and capture
features of multiple spatial levels.

PointNet++ achieves hierarchical representation learning
by proposed sampling layer, grouping layer and pooling
layer. In sampling layer, representative points are gener-
ated with iterative Farthest Point Sampling (FPS), where
the farthest point (in Euclidean space) from the sampled
point set with regard to the rest points is chosen in every
iteration. Then for each sampled point, the grouping layer
finds K nearest neighbor points within a radius to it (i.e.,
grouping). Finally, a pooling layer (i.e., PointNet) aggre-
gates features of K points that belong to the same group
as local representations. Bottom-up hierarchical learning
is performed by repeating the above steps. In short, we can
regard PointNet++ as a hierarchical structure where individ-
ual points are agglomerated layer by layer. The limitations
of PointNet++ are obvious: 1) the sampling and grouping
strategies are heuristic, task-irrelevant and extremely time-
consuming, 2) the pooling scheme still does not consider
the relation between points. It should be noted that the
sampling and grouping operation designed in PointNet++
are based on a hypothesis that points far apart in input 3D
space are the most representative (i.e, should be sampled)
and points near in input 3D space are semantic similar (i.e.,
should be grouped and pooled). This heuristic strategy is
not feasible for learning 3D representations in many scenar-
ios. For example, as shown in Figure 1, given a plane, we
want to sample two points and generate groups. The strat-
egy adopted in PointNet++ is likely to sample two points
from two wings of the plane respectively, and the gener-
ated groups may not contain points from the fuselage. The
most important part of the plane is missing. Hence, sam-
pling and grouping points in input Euclidean space with a
fixed way cannot be adaptive to various scenarios. How-
ever, to the best of our knowledge, most existing hierarchi-
cal frameworks take a similar hierarchical learning strat-
egy. PointSIFT [13] designs a SIFT-like module for en-
coding information of different orientations, yet its hierar-
chical learning strategy is the same as PointNet++. [22]
and [37] develop novel methods to pool features of points,
however, they take the same sampling and grouping strate-
gies as PointNet++. It is thus demanding to develop a way
that points agglomeration could be performed in semantic
space with an adaptive and learnable scheme.

To address this problem, we design a 3D point cloud
learning framework where the hierarchical structure of rep-
resentation processing can be learned instead of being fixed.
Namely, for every level of the network hierarchy, points will
be sampled, grouped and pooled according to the underly-
ing distribution of the training points and the points features
are aggregated with adaptive weights. The motivation of

our method is shown in Figure 1. Specifically, we endow
the backbone network several dynamic points agglomera-
tion modules. This module is based on graph neural net-
work (GCN) [17], and takes points similarity graph as in-
put and performs message passing among points to learn
an agglomeration matrix. The process of points agglomer-
ation (sampling, grouping and pooling) is achieved by only
one step, i.e., multiplication of the agglomeration matrix
and points feature matrix. Moreover, it is a lightweight and
flexible module that can be neatly inserted into most ex-
isting architectures. In the meantime, we propose a points
diversity object function to encourage the sampled points
to be more diverse and representative. To further reduce
computations and memory usage, we propose a parameter
sharing scheme: a whole 3D model is divided into several
parts, which are sent into the dynamic points agglomeration
module respectively with shared parameters. By these de-
signs, our method achieves state-of-the-art performance in
standard classification and segmentation benchmarks (i.e.,
ModelNet10/40 [41], ShapeNet [48], S3DIS [2], etc.) with
high inference speed.

For the classification task, we plug three points agglom-
eration module into a backbone, and multi-level features are
combined to improve representation capacity. For the seg-
mentation task, we construct an U-net architecture which
contains an encoder and a decoder. The encoder is similar to
the architecture designed for classification. The decoder uti-
lizes the transposed matrix of the sampling matrix learned
in encoder as the corresponding up-sampling matrix.

2. Related Work

Handcrafted Features of 3D data Many handcrafted 3D
descriptors are elaborately designed to capture fixed pat-
tern (i.e., geometry and shape information) that exists in 3D
data. These descriptors can be divided into two categories
that include extrinsic and intrinsic descriptors. Extrinsic de-
scriptors such as spin images [14], 3D shape context [8],
MeshHOG descriptor [49] are invariant under rigid eu-
clidean transformations, but not under deformations. To ad-
dress this problem, intrinsic descriptors based on geodesic
distances and spectral geometry are proposed, which in-
clude kernel signature [34], wave kernel signatures [4], in-
trinsic shape context [19], etc.

Deep Learning on 3D Data Convolution neural network
(CNN) has revolutionized the field of 2D image/video pro-
cessing. Motivated by this, many works have tried to make
an adaptation of deep learning to point cloud analysis.

On the one hand, some works explore to directly ap-
ply deep learning frameworks designed for 2D image/video
analysis on point cloud by transforming its data format.
There are two kinds of transformation methods that include
multi-view-based [33, 3, 9, 7] and voxel-based [24, 27, 18,
51, 50]. Multi-view-based methods project a 3D model
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into a collection of 2D images and standard CNN are used
for further processing. One great limitation of multi-view-
based methods is that spatial and structure information will
be lost through the transformation process. Voxel-based
methods convert an irregular 3D point cloud to a regular 3D
grid that is named as voxel and then 3D convolution can be
applied to process it. However, voxel-based methods waste
a large amount of memory and computation usage.

On the other hand, many works [21, 10, 32, 45] focus

on directly consuming point cloud by designing applica-
ble architectures. PointNet [26] is the pioneering work
in this domain, where point-wise multilayer perceptrons
(MLPs) and a max-pooling layer are used to learn global
representation. PointNet++ [28] develops a hierarchical
learning architecture, where multi-scale local features are
captured. However, the sampling and grouping layer de-
signed in PointNet++ take a fixed and time-consuming way.
PointCNN [22] proposes a generalization of typical CNNs
to learn features from the point cloud. A X transformation
is first operated on point set to transform it into a potentially
canonical order, and then perform typical convolution on
it. However, the task-irrelevant sampling method (i.e., FPS)
is utilized to generate sub-sets. In our work, a learnable
sampling and grouping operations are designed to overcome
these limitations. Moreover, based on these elaborately de-
signed architectures, there are many works [12, 46, 25, 1, 6]
proposed to apply to various applications (e.g., scene seg-
mentation, matching, generation,efc.).
Graph Convolution Neural Networks Different from
CNN that is performed on regular grid data (e.g., im-
age, video.), graph convolution networks (GCNs) [5] are a
class of frameworks designed for non-Euclidean structured
data. Many works [15, 23, 36, 39, 44] apply GCNs to im-
age/video processing, biomedical imaging processing, 3D
mesh processing, efc. Although no explicit graph structure
that exists in the point cloud, similarity graph of points can
be constructed to facilitate representation learning. There
are few works [20, 30, 38, 37] that explore to utilize implicit
graph that exists in the point cloud. In [40], geometric deep
learning is introduced into point cloud processing, where
a graph is constructed to performs message passing among
points. However, the scale of point set remains unchanged,
which is against the hierarchy principle. In our work, a dy-
namic points agglomeration module based on GCNs is de-
signed for hierarchical learning.

3. Method
3.1. Motivation and Overview

In this work, we propose a novel hierarchical learning
architecture for 3D point cloud analyses that include clas-
sification and segmentation. A dynamic points agglomera-
tion module is designed to perform flexible points sampling,

MLP
DPAM

3D point cloud \\\l}gglomeration matrix/,/'/

Figure 2. The process of points agglomeration. Taking point sim-
ilarity graph and points feature matrix as input, DPAM learns an
agglomeration matrix. The agglomeration process (i.e., sampling,
grouping and pooling) is integrated as a simple matrix multiply
operation (equation 3). Best viewed in color.

grouping and pooling. We name this module as DPAM for
clarity. In contrast to previous fixed agglomeration strat-
egy (sampling with FPS and grouping with KNN) that most
existing architecture takes, DPAM is a lightweight mod-
ule that agglomerates points in semantic space dynamically.
Based on graph convolution network, DPAM takes points
similarity matrix as well as feature matrix as input and per-
forms message passing among these points. Through this
way, an agglomeration matrix for points sampling, group-
ing and pooling is learned. Moreover, a parameter sharing
scheme is proposed in our work to reduce memory and com-
putation usage.

3.2. PointNet and GCNs Revisit

The backbone of our architecture is similar to PointNet,
and the DPAM inserted in our backbone is based on GCN-
like network prototype. Therefore, we revisit these two
methods in this section.

An unordered point cloud can be represented as { P;|i =
1,2,...,n} with P; € RY, where d is the channel of input
points and can be represented by coordinate, color, normal,
etc. PointNet learns a function that maps a set of points to
a feature vector, i.e., a few point-wise multi-layer percep-
trons (MLPs) are applied to every point individually before
a max-pooling layer that aggregates features of all points
to a global vector. It is proved that PointNet can arbitrar-
ily approximate any continuous set function and is order-
invariance. In this work, a hierarchical learning architecture
is constructed by inserting DPAMs into the backbone based
on PointNet. In addition to the proposed parameter sharing
scheme, our method captures multi-level representations in
an efficient way.
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Figure 3. Architecture of our proposed method. For classification, three DPAMs are inserted in the backbone for points agglomeration, and
features of multi-levels are concatenated to perform classification. For segmentation, a u-net structure is constructed, where the encoder is
the same as the architecture of classification and decoder is symmetrical with the encoder. Note that the DPAMs for encoder and decoder
are shared and dot line denotes skip connection. The details of DPAM are also shown in the figure.

The agglomeration module in our proposed architecture
is based on graph convolutional networks (GCNs). Differ-
ent from standard convolutions that are operated on the reg-
ular grid (e.g., image, video.), graph convolution is a kind
of convolution that is operated on the graph. It computes the
response of each node in the graph by aggregating informa-
tion of its neighbors defined by graph relations (e.g., adja-
cent matrix, similarity matrix, etc.). We adopt the GCN pro-
posed in [17], which gets an adjacent matrix A € RN*N,
as well as a nodes feature matrix X, € RV *¢0 a5 input, and
then perform message passing inside the graph. Note that
the adjacent matrix A € RV*¥ represents the relation of N
nodes that exists in the graph. Formally, one layer of graph
convolution can be represented as:

Xn=AXp_1Wh, (D

where h denotes the hth layer of the GCN, W, ¢
Rer-v > is the weight matrix of layer h and ¢ represents
feature channels. The GCN consisted of H graph convolu-
tion layers is represented as:

Xy =GCON(A, Xy) € RNxex 2)

3.3. Dynamic Points Agglomeration Module

In this section, we introduce the dynamic points agglom-
eration module (DPAM) in detail, which is designed for dy-
namically agglomerating points. By inserting this module
into the backbone, we construct a novel hierarchical archi-
tecture for point cloud classification and segmentation.

DPAM can be inserted into most existing architectures.
For simplicity, we use a simple backbone that is similar to

PointNet in this work. Given a set of points P € RV >4,
we get a feature matrix F() ¢ RN xet gt layer [ of the
backbone. DPAM learns an agglomeration matrix S¢) €
RVN>*M (DM < N), with which the process of points sam-
pling, grouping and feature aggregating are integrated into
one simple step. It is represented as:

Fs(l) = 5T RO, 3)

where Fs(l) € RM>¢ js the output feature matrix of points
agglomeration. This points agglomeration process is shown
in Figure 2. Note that the agglomerated M points are
not corresponding to the points in original input, and they
are dynamically sampled based on the underlying distribu-
tion of points. In the meantime, our method agglomerates
points with soft weights and incorporates relation of points
through this agglomeration scheme (i.e., representation of
every sampled point is related to all points before agglom-
eration.).

The key point is to generate the agglomeration matrix.
We design a module (i.e., DPAM) to learn this matrix with
a GCN. There is no explicit graph that exists in point clouds,
hence a similarity graph is constructed based on the embed-
ding of every point:

AW = softmax(FWFOTY ¢ RN*N, 4)

which can be also regarded as a soft adjacent matrix. The
element (7, j) of A() represents distance between ith point
and jth point in semantic space. Our DPAM is built by
stacking multiple layers of graph convolutions. Taking
soft adjacent matrix A) and feature matrix F(") as input,
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DPAM learns the agglomeration matrix S):
SW = softmaz(GCN(AD, FO)) e RN*M  (5)

where softmax is performed in a row-wise fashion. By uti-
lizing the similarity relation of points and performing mes-
sage passing among points, the DPAM learns explicit ag-
glomeration weights of points. Namely, each row of matrix
SO represents the weight that each point before agglom-
erating assigns to the M sampled points, and each column
represents the weight that each sampled point agglomerated
by the points before agglomerating. With this learned ag-
glomeration matrix, points agglomeration can be performed
via a simple step mentioned above. The architecture of
DPAM is shown in Figure 3.

3.4. Parameter Sharing Scheme

Parameter sharing is an ingenious design in convolution
neural network (CNN), especially for image/video process-
ing. In CNN, a small convolution kernel is shared in the
whole feature map. Each kernel is served as a filter to detect
patterns of a particular type. Motivated by this, we design
a sharing scheme to reduce parameters usage and computa-
tional burden, as shown in Figure 4.

A 3D point cloud sample usually contains thousands to
tens of thousands of points. Hence, the similarity matrix,
the feature matrix and the parameter matrix in DPAM would
be extremely huge, which makes the agglomeration process
take up a lot of memory and computation. Moreover, the
huge agglomeration matrix is hard to learn and optimize. To
overcome this challenge, we propose to divide a point cloud
model into a few parts along an axis (i.e., x-axis, y-axis,
z-axis.) and then send them into the shared DPAM for ag-
glomerating representative points of every part respectively.
Specifically, we sort all input points from a 3D point cloud
along an axis and uniformly divide them into several parts
before being sent into shared DPAM.

As mentioned above, the relation of points is incorpo-
rated with the proposed DPAM. However, with our de-
signed parameter sharing scheme, every point in every di-
vided part is just related to the points in the same part and
do not communicate with the points in other parts. In other
words, the size of the receptive field of every point will re-
main small and unchanged. In general, we hope the recep-
tive field grows from small to large gradually, which is the
design philosophy that everyone will follow in CNN design-
ing. In our work, several DPAMs will be inserted into the
backbone. Hence, we propose to increase the size of re-
ceptive filed through merging parts gradually (i.e., reducing
the number of divided parts gradually). Although we merge
parts gradually, this design keeps the similarity matrix and
weight matrix small because the number of points in every
part is reduced after each DPAM.
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Figure 4. Illustration of our parameter sharing scheme. An or-
dered point cloud is uniformly divided into several parts and sent
into shared DPAM to perform points agglomeration respectively.
After each DPAM, the parts will be merged gradually for increas-
ing receptive filed of every point. Ny, ..., N3 denote the number
of points, and No > N1 > N2 > Ns.

3.5. Diversity of Sampled Points

Although we reduce the difficulty of optimizing DPAM
through parameter sharing scheme mentioned above, the
module still easily converges to local minima early in train-
ing. Therefore, the points sampled with learned agglomer-
ation matrix cannot effectively catch representative points
among semantic space, and the agglomerated points are
likely to be very close. To make the sampled points diverse
and representative, we propose to add a constraint to the ag-
glomeration matrix optimization problem. Note that each
column of agglomeration matrix S) represents the com-
bination weight of each sampled point. Therefore, making
sampled points diverse is equivalent to making the combi-
nation weight of every sampled point various as much as
possible, i.e., making the column vectors of S(") mutually
orthogonal. Hence, we minimize:

L = (|1 = $OTSO||p, (©)

where every column of S(*) is normalized to a unit vector.
This diversity loss is added to the softmax classification loss
with weight 0.001 for optimizing.

3.6. Multi-Level Feature Aggregation

With the receptive filed growing gradually, the level of
feature learned by the network is also growing. We propose
to combine multi-level features for achieving better repre-
sentation ability. We use max-pooling to get a global feature
before every DPAM and then concatenate these multi-level
global features for final classification. This design is also
similar to the operator proposed in DenseNet [11], which
has been proved to facilitate optimizing.

3.7. Network Architecture

Architecture for classification. In our work, we plug
three DPAMs into the backbone and the number of divided
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parts is reduced with 8-4-1. The number of feature channels
and overall classification architecture are shown in Figure 3.

Architecture for segmentation. We construct a U-net
structure for segmentation, which contains an encoder and
a decoder. The encoder is the same as the architecture for
classification. We have tried to plug three new DPAMs in
the decoder for up-sampling, however, we find it is not only
time-consuming but also hard to optimize. Hence we pro-
pose a simple but effective method to perform points up-
sampling in the decoder. We directly utilize the transpose
matrix of the agglomeration matrix learned in the encoder
as the up-sampling matrix. Moreover, skip connection is
utilized to construct U-net structure. The whole architec-
ture for segmentation is shown in Figure 3.

4. Experiments

In this section, we evaluate our method on classification
and segmentation tasks. Experiments on two object classi-
fication benchmarks including ModelNet10, ModelNet40,
and 3D object part segmentation dataset ShapeNet, as well
as real scene segmentation dataset S3DIS, are carried out.
Our method achieves state-of-the-art or comparable perfor-
mance in these benchmarks. In the meantime, time and
space complexity analysis, as well as some important anal-
ysis experiments are performed.

4.1. Datasets and Data Pre-Processing

ModelNet10 and ModelNet40 are two standard 3D
object classification benchmarks collected from Model-
Net [41], which provides CAD models for every object. The
point cloud is sampled from CAD models, and we use the
ModelNet10 and ModelNet40 dataset generated from [28]
in our experiments for fair comparison. The ModelNet10
contains 10 categories and is split into 3,991 training sam-
ples and 909 testing samples. The ModelNet40 contains 40
categories, where 9,843 objects belong to the training set
and 2,468 samples for testing. Every point in each object is
represented with 3D coordinates.

ShapeNetPart is a 3D object part segmentation bench-
marks, and it is a subset of ShapeNet [48]. This dataset
contains 16681 samples from 16 categories and there are
50 parts in total (each category contains 2-6 parts). Note
that the object categories will be given when training and
testing for every object. The evaluation metric is mean IoU
(mlIoU), where IoU is computed for every object and then
averaged within the category that the object belongs to.

Large-Scale 3D Indoor Spaces (S3DIS) is a real scene
point cloud semantic segmentation benchmark. This dataset
contains 3D RDB point clouds of 271 rooms from 6 indoor
areas. Each point is annotated with one of 13 semantic cate-
gories (e.g., ceiling, floor, chair). We use the mean per-class
IoU (mloU, %) and overall accuracy (OA) as the evaluation
metrics.

Data Pre-Processing As mentioned in section 3.4, we di-
vide a point cloud model into several parts for sharing pa-
rameters, therefore, the input points are sorted along an axis
(x-axis is used in all our experiments) for easy dividing be-
fore being sent into DPAM. For object classification and
segmentation, we normalize input point clouds to be zero-
mean inside a unit sphere. Random jitter, rotation, shift and
scale are performed on training objects to improve perfor-
mance. A T-Net used in [26] is also applied to the input
object in our experiments. For scene segmentation, rotation
around the z-axis is utilized to augment data.

4.2. Point Cloud Classification

The results of experiments on 3D object dataset Model-
Netl10 and ModelNet40 are shown in Table 1, where accu-
racy over class and instance are both displayed. It can be
seen that our method achieves state-of-the-art performance
except accuracy over instance on ModelNet40 (only 0.3%
lower than PointCNN) with all published methods based
on point cloud. Note that we only use 1024 points with
3D coordinates for every object as input. We down-sample
the points 3 times, and the number of points drops double
every time (i.e., 1024-512-256-128). In experiments per-
formed on ModelNet10/40, we use Adam optimizer with
initial learning rate 0.001, momentum 0.9 and batch size
16. The learning rate is divided by 2 every 20 epochs. Drop
out rate is set to 0.7 after last two layers in the classifier.

Methods ModelNet10 ModelNet40
Class Instance | Class Instance
3DShapeNets [41] | 83.5 - 77.3 84.7
VoxNet [24] 92.0 - 83.0 85.9
OctNet [29] 90.1 90.9 83.8 86.5
ECC [31] 90.0 90.8 83.2 87.4
Subvolume [27] - - 86.0 89.2
Pointnet [26] - - 86.2 89.2
Pointnet++ [12] - - - 90.7
SO-Net [21] 93.9 94.1 87.3 90.9
KCNet [30] - 94.4 - 91.0
SpecGCN [37] - - - 91.5
Kd-Net [18] 93.5 94.0 88.5 91.8
PointCNN [22] - - 88.1 92.2
Ours 94.3 94.6 89.9 91.9

Table 1. Classification results on ModelNet10/40. Our method
achieves state-of-the-art performance on ModelNet10 and Model-
Net40 compared with methods based on point cloud.

4.3. Part Segmentation on ShapeNetPart

Segmentation on 3D point cloud is formulated as a per-
point classification task. The IoU of every category and the
overall IoU are shown in Table 2, from which we see that
our method achieves state-of-the-art performance. More-
over, our method has low computation cost and high infer-
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Mean | Aero Bag Cap Car Chair Ear Guitar Knife Lamp Laptop Motor Mug Pistol Rocket Skate Table
phone board
KD-Net [18] 823 | 80.1 746 743 703 88.6 735 902 872 810 949 57.4 86.7 78.1 518 69.9 80.3
Pointnet [26] 83.7 | 834 787 825 749 89.6 73.0 91.5 859 80.8 953 65.2 93.0 81.2 579 72.8 80.6
A-SCN [42] 84.6 | 83.8 80.8 835 793 905 69.8 91.7 865 829 96.0 69.2 938 825 629 74.4 80.8
KCNet [30] 847 | 82.8 815 864 776 903 768 91.0 872 845 955 69.2 94.4 81.6 60.1 75.2 81.3
RSNet [12] 849 | 827 864 841 782 904 693 914 87.0 835 954 66.0 926 81.8 56.1 75.8 82.2
Pointnet++ [28] 85.1 824 790 877 773 908 71.8 91.0 859 837 953 71.6 94.1 813 587 76.4 82.6
DGCNN [40] 85.1 842 837 844 77.1 909 785 915 873 829 96.0 67.8 933 82.6 59.7 75.5 82.0
SpiderCNN [43] 853 | 835 810 872 775 90.7 768 91.1 873 833 958 70.2 935 827 59.7 75.8 82.8
SGPN [38] 858 | 804 786 788 715 88.6 78.0 909 83.0 788 958 77.8 938 874 60.1 92.3 89.4
PointCNN [22] 86.1 | 84.1 86.5 86.0 80.8 90.6 79.7 92.3 884 853 96.1 77.2 953 842 64.2 80.0 83.0
Ours 86.1 | 843 81.6 891 795 909 775 91.8 87.0 845 96.2 68.7 945 814 64.2 76.2 84.3

Table 2. Segmentation results (part-wise IoU) on ShapeNetPart Dataset. Our method achieves state-of-the-art performance.

ence speed. Some segmentation results are visualized in
Figure 5. Our method segment the fine-grained details well.

Figl;re 5. The seginentation results on ShapeNetPart dataset.
Column 1 and 3: Segmented results. Column 2 and 4: Ground
truth. Best viewed in color.

The architecture for part segmentation is shown in Fig-
ure 3, which is a U-net structure. As mentioned in Sec-
tion 3.7 that the up-sampling matrix in the decoder is the
transpose of the down-sampling matrix learned in the en-
coder. 2048 points for every object are used as input. 3
times down-sampling and up-sampling are performed re-
spectively, and the number of points decrease in the encoder
and increase in decoder double every time (i.e., 2048-1024-
512-256-512-1024-2048.). Adam optimizer is used to op-
timize per-point cross-entropy loss in this experiment with
initial learning rate 0.006, momentum 0.9 and batch size 32.
The learning rate is divided by 2 every 20 epochs. Drop out
rate is set to 0.5 after the last layer in the classifier.

4.4. S3DIS Indoor Scene Segmentation

We follow the same setting as PointNet [26], where each
room is split into blocks of area 1m x 1m. Each input point
is represented by a 9-dim vector of XYZ, RGB and nor-
malized location as to the room. 4096 points are randomly

sampled for each block when training and all points are used
for testing. Following the common evaluation setting, a 6-
fold cross validation over the 6 ares, with 5 area for training
and the left 1 area for validation each time. The test re-
sults on Area 5 are reported individually due to the fact that
there are overlaps between areas except Area 5. All results
on this dataset are shown in Table 3. For 6-fold cross vali-
dation, our method achieves superior performance over all
methods except PointCNN [22]. On Area 5, our method
outperforms all methods in terms of mloU.

6-fold CV Area 5
Methods mloU _OA | mloU  OA
PointNet [26] 47.6 785 | 41.1 -
SegCloud [35] - - 48.9 -
RSNet [12] 56.5 - - -
3P-RNN [47] 56.3 869 | 534 85.7
SPGraph [20] 62.1 85.5 58.0 86.4
PointCNN [22] | 654 88.1 | 57.3 859
Ours 64.5 87.6 | 60.0 86.1

Table 3. Segmentation results on S3DIS. Mean per-class IoU
(mloU, %) and overall accuracy (OA, %) are shown in table. Our
method achieves comparable performance.

The architecture for scene segmentation is shown in Fig-
ure 3. The points are down-sampled and up-sampled with
4096-1024-256-32-256-1024-4096. We use Adam opti-
mizer to optimize per-point cross-entropy loss with initial
learning rate 0.003, momentum 0.9 and batch size 12. The
learning rate is divided by 2 every 20 epochs. Drop out rate
is set to 0.4 after the last layer in the classifier.

4.5. Time and Space Complexity Analysis

In this section, we show the time and space complex-
ity of our method in Table 4 to prove that our proposed
method does achieve state-of-the-art performance with ob-
viously higher inference speed. This experiment is per-
formed on ModelNet40 with a 1080X GPU. The batch size
is also set to 8 for fair comparison. Note that we do not
make a comparison with PointCNN [22] in this section due
to device limitation. Our method achieves excellent per-
formance with inference speed that is obviously faster than
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other methods except PointNet. To further reduce the model
size and inference time, we drop the T-net used in our model
(i.e., denoted with vanilla in the Table 4). Smaller model
size and faster inference time are achieved with only 0.5%
drop in accuracy. Although the model size of our method is
larger than PointNet++ [28] and SO-Net [21], we can make
a trade-off between accuracy and model size by adjusting
the number of sampled points and parameters of DPAM:s.

Method \ Size/Mb \ Infer/ms \ Acc(%)
PointNet (vanilla) [26] 94 11.6 87.2
PointNet [26] 40 25.3 89.2
PointNet++ [28] 12 163.2 90.7
SO-Net [21] 11.5 59.6 90.9
Ours(vanilla) 21.3 184 914
Ours 29.5 36.6 91.9

Table 4. Time and Space Complexity Analysis on ModelNet40.
Our method achieves excellent performance with high inference
speed. Vanilla denotes that the model is trained without T-Net.
The model size (Mb), inference time (ms) and accuracy (%) over
instance is reported in table.

4.6. Ablation Study

In this section, we study the robustness of our method
to random noises and analyze some important hyper-
parameters including the number of divided parts in every
DPAM and the axis that the parts divided along. All exper-
iments in this section are performed on ModelNet40.

Robustness to random noises. We randomly replace in-
put points with Gaussian noise during testing, where mean
value 4 is set to O and the standard deviation o is set to
0.1 and 0.05 respectively. The standard deviation represents
noise intensity. Compared with Pointnet++, our method is
more robust to noises as shown in Figure 6. The horizon-
tal axis shows the number of replaced noise points and the
vertical axis shows the accuracy on Modelnet40.

95
85
75
65
55

45

=@ Ours (sigma=0.1) Sso 35
—— o ~

Ours (sigma=0.05) S o - 25
=B Pointnet++ (sigma=0.1) ~ o

<
—+—Pointnet++ (sigma=0.05) =< i 15
5
0 100 200 300 400 500

Figure 6. Analysis of noises. Our method shows better robustness
compared with Pointnet++.

Effectiveness of our proposed parameter sharing
scheme. We have mentioned in Section 3.4 that we propose
to divide input point cloud into several parts for sharing pa-
rameters and merge divided parts gradually for increasing

receptive field of every point. In this part, we analyze the
effectiveness of this scheme, as well as the robustness to
various combinations of the number of divided parts. We
conduct classification experiments on ModelNet40 with 5
combinations (i.e., 1-1-1, 8-8-8, 4-2-1,16-4-1, 8-4-1). Note
that the combination 1-1-1 denotes that we train the model
without our proposed parameter sharing scheme. The re-
sults are shown in Table 5. Comparing the results of combi-
nation 1-1-1 with other combinations, we can conclude that
dividing an input object into several parts do bring signifi-
cant performance improvement. The effectiveness of merg-
ing parts gradually is also proved by comparing combina-
tions 8-8-8 with other decreasing combinations.

Combinations \ 1-1-1 \ 8-8-8 \ 4-2-1 \ 16-4-1 \ 8-4-1

Accuracy (%) | 909 [ 912 [ 91.7 | 91.7 [ 91.9

Table 5. Effectiveness of our proposed parameter sharing scheme.
The accuracy (%) over instance is reported in table.

Robustness to different axes which the point cloud is
divided along. Table 6 shows that our proposed parame-
ter sharing scheme is not sensitive to the axis, along which
input point cloud is divided. Our method achieves similar
performance when we divide input along the x-axis, y-axis,
z-axis respectively. However, the performance drops a little
when we divide the input randomly.

\ Random \ X-axis \ Y-axis \ Z-axis
Acc (%) | 909 [ 919 [ 916 | 91.8

Table 6. Robustness to the different axis which point cloud is di-
vided along. The accuracy (%) over instance is reported in table.

5. Conclusion

In this work, a dynamic points agglomeration module
is proposed to construct an efficient hierarchical point sets
learning architecture. This GCN-based module is applied to
learning a points agglomeration matrix with points relation
and feature. In contrast to fixed agglomeration strategy that
samples and groups points in a fixed way, our proposed
dynamic agglomeration strategy can dynamically adapt to
various situations. Moreover, a parameter sharing scheme
is proposed to reduce memory and computation usage.
Our dynamic agglomeration architecture achieves better
performance on several benchmarks with high inference
speed compared with fixed points agglomeration strategy.
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