
Dynamic Points Agglomeration for Hierarchical Point Sets Learning

Jinxian Liu1,2 Bingbing Ni1,2∗ Caiyuan Li1,2 Jiancheng Yang1,2 Qi Tian3

1Shanghai Jiao Tong University, Shanghai 200240, China
2MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China

3Huawei Noah’s Ark Lab

{liujinxian, nibingbing, 1161313414, jekyll4168}@sjtu.edu.cn

tian.qi1@huawei.com

Abstract

Many previous works on point sets learning achieve ex-

cellent performance with hierarchical architecture. Their

strategies towards points agglomeration, however, only per-

form points sampling and grouping in original Euclidean

space in a fixed way. These heuristic and task-irrelevant

strategies severely limit their ability to adapt to more var-

ied scenarios. To this end, we develop a novel hierarchical

point sets learning architecture, with dynamic points ag-

glomeration. By exploiting the relation of points in semantic

space, a module based on graph convolution network is de-

signed to learn a soft points cluster agglomeration. We con-

struct a hierarchical architecture that gradually agglomer-

ates points by stacking this learnable and lightweight mod-

ule. In contrast to fixed points agglomeration strategy, our

method can handle more diverse situations robustly and effi-

ciently. Moreover, we propose a parameter sharing scheme

for reducing memory usage and computational burden in-

duced by the agglomeration module. Extensive experimen-

tal results on several point cloud analytic tasks, including

classification and segmentation, well demonstrate the su-

perior performance of our dynamic hierarchical learning

framework over current state-of-the-art methods.

1. Introduction

3D vision analysis has attracted a lot of attention because

3D data contains richer spatial information compared with

2D image/video. 3D point cloud is the simplest 3D data for-

mat and consists of irregular and unordered points. With the

renaissance of convolution neural network (CNN) in 2D im-

age/video processing, there are many works that have tried

to make an adaptation of deep learning framework for point

cloud analyses [41, 24, 7, 16].

Recently, some works [26, 28, 22, 10, 32] focus on di-

∗Corresponding author: Bingbing Ni

Dynamic Points Agglomeration

A
g

g
lo

m
er

at
ed

 p
o

in
ts

(F
ro

m
 v

ar
io

u
s

p
ar

ts
)

A
g

g
lo

m
er

at
ed

 p
o

in
ts

(F
ro

m
 s

im
il

ar
 p

ar
ts

)

Fixed Sampling Fixed Grouping

Figure 1. The motivation of our proposed framework. Given a

plane, we would like to agglomerate these points into two repre-

sentative points. If the initial sampling point is from the wing,

existing methods are likely to sample two points from two wings

of the plane with FPS algorithm and group surrounding points with

KNN algorithm. Thereby, information of the fuselage is lost. Our

proposed dynamic agglomeration strategy samples, groups and

pools points in semantic space, hence points from various local

semantic filed will be agglomerated.

rectly consuming point cloud rather than transforming it

into multi-view images or voxel. A well-known pioneer-

ing work in this domain is PointNet [26], where point-wise

multi-layer perceptrons (MLPs) are used to extract point-

wise feature and a max-pooling layer is used to aggregate

features of all points. However, every point is treated indi-

vidually and local dependency structure is not considered.

To overcome this problem, PointNet++ [28] proposes a hi-

erarchical architecture for multi-level feature aggregation.

7546

As demonstrated in [28], hierarchical learning is an effec-

tive design principle, and beneficial for the network to grad-

ually enlarge the receptive field of every point and capture

features of multiple spatial levels.

PointNet++ achieves hierarchical representation learning

by proposed sampling layer, grouping layer and pooling

layer. In sampling layer, representative points are gener-

ated with iterative Farthest Point Sampling (FPS), where

the farthest point (in Euclidean space) from the sampled

point set with regard to the rest points is chosen in every

iteration. Then for each sampled point, the grouping layer

finds K nearest neighbor points within a radius to it (i.e.,

grouping). Finally, a pooling layer (i.e., PointNet) aggre-

gates features of K points that belong to the same group

as local representations. Bottom-up hierarchical learning

is performed by repeating the above steps. In short, we can

regard PointNet++ as a hierarchical structure where individ-

ual points are agglomerated layer by layer. The limitations

of PointNet++ are obvious: 1) the sampling and grouping

strategies are heuristic, task-irrelevant and extremely time-

consuming, 2) the pooling scheme still does not consider

the relation between points. It should be noted that the

sampling and grouping operation designed in PointNet++

are based on a hypothesis that points far apart in input 3D

space are the most representative (i.e, should be sampled)

and points near in input 3D space are semantic similar (i.e.,

should be grouped and pooled). This heuristic strategy is

not feasible for learning 3D representations in many scenar-

ios. For example, as shown in Figure 1, given a plane, we

want to sample two points and generate groups. The strat-

egy adopted in PointNet++ is likely to sample two points

from two wings of the plane respectively, and the gener-

ated groups may not contain points from the fuselage. The

most important part of the plane is missing. Hence, sam-

pling and grouping points in input Euclidean space with a

fixed way cannot be adaptive to various scenarios. How-

ever, to the best of our knowledge, most existing hierarchi-

cal frameworks take a similar hierarchical learning strat-

egy. PointSIFT [13] designs a SIFT-like module for en-

coding information of different orientations, yet its hierar-

chical learning strategy is the same as PointNet++. [22]

and [37] develop novel methods to pool features of points,

however, they take the same sampling and grouping strate-

gies as PointNet++. It is thus demanding to develop a way

that points agglomeration could be performed in semantic

space with an adaptive and learnable scheme.

To address this problem, we design a 3D point cloud

learning framework where the hierarchical structure of rep-

resentation processing can be learned instead of being fixed.

Namely, for every level of the network hierarchy, points will

be sampled, grouped and pooled according to the underly-

ing distribution of the training points and the points features

are aggregated with adaptive weights. The motivation of

our method is shown in Figure 1. Specifically, we endow

the backbone network several dynamic points agglomera-

tion modules. This module is based on graph neural net-

work (GCN) [17], and takes points similarity graph as in-

put and performs message passing among points to learn

an agglomeration matrix. The process of points agglomer-

ation (sampling, grouping and pooling) is achieved by only

one step, i.e., multiplication of the agglomeration matrix

and points feature matrix. Moreover, it is a lightweight and

flexible module that can be neatly inserted into most ex-

isting architectures. In the meantime, we propose a points

diversity object function to encourage the sampled points

to be more diverse and representative. To further reduce

computations and memory usage, we propose a parameter

sharing scheme: a whole 3D model is divided into several

parts, which are sent into the dynamic points agglomeration

module respectively with shared parameters. By these de-

signs, our method achieves state-of-the-art performance in

standard classification and segmentation benchmarks (i.e.,

ModelNet10/40 [41], ShapeNet [48], S3DIS [2], etc.) with

high inference speed.

For the classification task, we plug three points agglom-

eration module into a backbone, and multi-level features are

combined to improve representation capacity. For the seg-

mentation task, we construct an U-net architecture which

contains an encoder and a decoder. The encoder is similar to

the architecture designed for classification. The decoder uti-

lizes the transposed matrix of the sampling matrix learned

in encoder as the corresponding up-sampling matrix.

2. Related Work

Handcrafted Features of 3D data Many handcrafted 3D

descriptors are elaborately designed to capture fixed pat-

tern (i.e., geometry and shape information) that exists in 3D

data. These descriptors can be divided into two categories

that include extrinsic and intrinsic descriptors. Extrinsic de-

scriptors such as spin images [14], 3D shape context [8],

MeshHOG descriptor [49] are invariant under rigid eu-

clidean transformations, but not under deformations. To ad-

dress this problem, intrinsic descriptors based on geodesic

distances and spectral geometry are proposed, which in-

clude kernel signature [34], wave kernel signatures [4], in-

trinsic shape context [19], etc.

Deep Learning on 3D Data Convolution neural network

(CNN) has revolutionized the field of 2D image/video pro-

cessing. Motivated by this, many works have tried to make

an adaptation of deep learning to point cloud analysis.

On the one hand, some works explore to directly ap-

ply deep learning frameworks designed for 2D image/video

analysis on point cloud by transforming its data format.

There are two kinds of transformation methods that include

multi-view-based [33, 3, 9, 7] and voxel-based [24, 27, 18,

51, 50]. Multi-view-based methods project a 3D model

7547

into a collection of 2D images and standard CNN are used

for further processing. One great limitation of multi-view-

based methods is that spatial and structure information will

be lost through the transformation process. Voxel-based

methods convert an irregular 3D point cloud to a regular 3D

grid that is named as voxel and then 3D convolution can be

applied to process it. However, voxel-based methods waste

a large amount of memory and computation usage.

On the other hand, many works [21, 10, 32, 45] focus

on directly consuming point cloud by designing applica-

ble architectures. PointNet [26] is the pioneering work

in this domain, where point-wise multilayer perceptrons

(MLPs) and a max-pooling layer are used to learn global

representation. PointNet++ [28] develops a hierarchical

learning architecture, where multi-scale local features are

captured. However, the sampling and grouping layer de-

signed in PointNet++ take a fixed and time-consuming way.

PointCNN [22] proposes a generalization of typical CNNs

to learn features from the point cloud. A X transformation

is first operated on point set to transform it into a potentially

canonical order, and then perform typical convolution on

it. However, the task-irrelevant sampling method (i.e., FPS)

is utilized to generate sub-sets. In our work, a learnable

sampling and grouping operations are designed to overcome

these limitations. Moreover, based on these elaborately de-

signed architectures, there are many works [12, 46, 25, 1, 6]

proposed to apply to various applications (e.g., scene seg-

mentation, matching, generation,etc.).

Graph Convolution Neural Networks Different from

CNN that is performed on regular grid data (e.g., im-

age, video.), graph convolution networks (GCNs) [5] are a

class of frameworks designed for non-Euclidean structured

data. Many works [15, 23, 36, 39, 44] apply GCNs to im-

age/video processing, biomedical imaging processing, 3D

mesh processing, etc. Although no explicit graph structure

that exists in the point cloud, similarity graph of points can

be constructed to facilitate representation learning. There

are few works [20, 30, 38, 37] that explore to utilize implicit

graph that exists in the point cloud. In [40], geometric deep

learning is introduced into point cloud processing, where

a graph is constructed to performs message passing among

points. However, the scale of point set remains unchanged,

which is against the hierarchy principle. In our work, a dy-

namic points agglomeration module based on GCNs is de-

signed for hierarchical learning.

3. Method

3.1. Motivation and Overview

In this work, we propose a novel hierarchical learning

architecture for 3D point cloud analyses that include clas-

sification and segmentation. A dynamic points agglomera-

tion module is designed to perform flexible points sampling,

D
P
A

M

Agglomeration matrix3D point cloud

M
L

P

Figure 2. The process of points agglomeration. Taking point sim-

ilarity graph and points feature matrix as input, DPAM learns an

agglomeration matrix. The agglomeration process (i.e., sampling,

grouping and pooling) is integrated as a simple matrix multiply

operation (equation 3). Best viewed in color.

grouping and pooling. We name this module as DPAM for

clarity. In contrast to previous fixed agglomeration strat-

egy (sampling with FPS and grouping with KNN) that most

existing architecture takes, DPAM is a lightweight mod-

ule that agglomerates points in semantic space dynamically.

Based on graph convolution network, DPAM takes points

similarity matrix as well as feature matrix as input and per-

forms message passing among these points. Through this

way, an agglomeration matrix for points sampling, group-

ing and pooling is learned. Moreover, a parameter sharing

scheme is proposed in our work to reduce memory and com-

putation usage.

3.2. PointNet and GCNs Revisit

The backbone of our architecture is similar to PointNet,

and the DPAM inserted in our backbone is based on GCN-

like network prototype. Therefore, we revisit these two

methods in this section.

An unordered point cloud can be represented as {Pi|i =
1, 2, ..., n} with Pi ∈ R

d, where d is the channel of input

points and can be represented by coordinate, color, normal,

etc. PointNet learns a function that maps a set of points to

a feature vector, i.e., a few point-wise multi-layer percep-

trons (MLPs) are applied to every point individually before

a max-pooling layer that aggregates features of all points

to a global vector. It is proved that PointNet can arbitrar-

ily approximate any continuous set function and is order-

invariance. In this work, a hierarchical learning architecture

is constructed by inserting DPAMs into the backbone based

on PointNet. In addition to the proposed parameter sharing

scheme, our method captures multi-level representations in

an efficient way.

7548

x3

x1
2
8

DPAM

x1
2
8

x1
2
8

x1
2
8

x2
5
6

x2
5
6

output	scores

x5
1
2

x5
1
2

x2
5
6

x2
5
6

xk

x1
0
2
4

Max-pooling

Segmentation

Classification

MLP
(64,

128)

MLP
(128)

MLP
(256)

MLP
(1024)

MLP
(512)

MLP
(256)

MLP
(128)

MLP
(128)

MLP
(128,k)

FC

(512,256,k)

x2
5
6

x2
5
6

x1
2
8

x1
2
8

x1
2
8

x1
2
8

x	 x	 x	

N
X
C

NXN
! " !

#

N
X
C

N
X
1
2
8

N
X
1
2
8

N
X
2
5
6

N
X
2
5
6

MLP
(128)

MLP
(256)

MLP
(512)

MLP
(128,

M)
Softmax

D
P
A
M

NXM

O
u
tp
u
t	
sc
o
re
s

In
p
u
t	
p
o
in
ts

global			feature

Note:								represents	

matrix	multiplication

DPAM DPAM

A
g
g
lo
m
e
ra
ti
o
n

M
a
tr
ix

Figure 3. Architecture of our proposed method. For classification, three DPAMs are inserted in the backbone for points agglomeration, and

features of multi-levels are concatenated to perform classification. For segmentation, a u-net structure is constructed, where the encoder is

the same as the architecture of classification and decoder is symmetrical with the encoder. Note that the DPAMs for encoder and decoder

are shared and dot line denotes skip connection. The details of DPAM are also shown in the figure.

The agglomeration module in our proposed architecture

is based on graph convolutional networks (GCNs). Differ-

ent from standard convolutions that are operated on the reg-

ular grid (e.g., image, video.), graph convolution is a kind

of convolution that is operated on the graph. It computes the

response of each node in the graph by aggregating informa-

tion of its neighbors defined by graph relations (e.g., adja-

cent matrix, similarity matrix, etc.). We adopt the GCN pro-

posed in [17], which gets an adjacent matrix A ∈ R
N×N ,

as well as a nodes feature matrix X0 ∈ R
N×c0 as input, and

then perform message passing inside the graph. Note that

the adjacent matrix A ∈ R
N×N represents the relation of N

nodes that exists in the graph. Formally, one layer of graph

convolution can be represented as:

Xh = AXh−1Wh, (1)

where h denotes the hth layer of the GCN, Wh ∈
R

c(h−1)×c(h) is the weight matrix of layer h and c represents

feature channels. The GCN consisted of H graph convolu-

tion layers is represented as:

XH = GCN(A,X0) ∈ R
N×cH (2)

3.3. Dynamic Points Agglomeration Module

In this section, we introduce the dynamic points agglom-

eration module (DPAM) in detail, which is designed for dy-

namically agglomerating points. By inserting this module

into the backbone, we construct a novel hierarchical archi-

tecture for point cloud classification and segmentation.

DPAM can be inserted into most existing architectures.

For simplicity, we use a simple backbone that is similar to

PointNet in this work. Given a set of points P ∈ R
N×d,

we get a feature matrix F (l) ∈ R
N×c

(l)

at layer l of the

backbone. DPAM learns an agglomeration matrix S(l) ∈
R

N×M (M < N), with which the process of points sam-

pling, grouping and feature aggregating are integrated into

one simple step. It is represented as:

F (l)
s

= S(l)TF (l), (3)

where F
(l)
s ∈ R

M×c is the output feature matrix of points

agglomeration. This points agglomeration process is shown

in Figure 2. Note that the agglomerated M points are

not corresponding to the points in original input, and they

are dynamically sampled based on the underlying distribu-

tion of points. In the meantime, our method agglomerates

points with soft weights and incorporates relation of points

through this agglomeration scheme (i.e., representation of

every sampled point is related to all points before agglom-

eration.).

The key point is to generate the agglomeration matrix.

We design a module (i.e., DPAM) to learn this matrix with

a GCN. There is no explicit graph that exists in point clouds,

hence a similarity graph is constructed based on the embed-

ding of every point:

A(l) = softmax(F (l)F (l)T) ∈ R
N×N , (4)

which can be also regarded as a soft adjacent matrix. The

element (i, j) of A(l) represents distance between ith point

and jth point in semantic space. Our DPAM is built by

stacking multiple layers of graph convolutions. Taking

soft adjacent matrix A(l) and feature matrix F (l) as input,

7549

DPAM learns the agglomeration matrix S(l):

S(l) = softmax(GCN(A(l), F (l))) ∈ R
N×M , (5)

where softmax is performed in a row-wise fashion. By uti-

lizing the similarity relation of points and performing mes-

sage passing among points, the DPAM learns explicit ag-

glomeration weights of points. Namely, each row of matrix

S(l) represents the weight that each point before agglom-

erating assigns to the M sampled points, and each column

represents the weight that each sampled point agglomerated

by the points before agglomerating. With this learned ag-

glomeration matrix, points agglomeration can be performed

via a simple step mentioned above. The architecture of

DPAM is shown in Figure 3.

3.4. Parameter Sharing Scheme

Parameter sharing is an ingenious design in convolution

neural network (CNN), especially for image/video process-

ing. In CNN, a small convolution kernel is shared in the

whole feature map. Each kernel is served as a filter to detect

patterns of a particular type. Motivated by this, we design

a sharing scheme to reduce parameters usage and computa-

tional burden, as shown in Figure 4.

A 3D point cloud sample usually contains thousands to

tens of thousands of points. Hence, the similarity matrix,

the feature matrix and the parameter matrix in DPAM would

be extremely huge, which makes the agglomeration process

take up a lot of memory and computation. Moreover, the

huge agglomeration matrix is hard to learn and optimize. To

overcome this challenge, we propose to divide a point cloud

model into a few parts along an axis (i.e., x-axis, y-axis,

z-axis.) and then send them into the shared DPAM for ag-

glomerating representative points of every part respectively.

Specifically, we sort all input points from a 3D point cloud

along an axis and uniformly divide them into several parts

before being sent into shared DPAM.

As mentioned above, the relation of points is incorpo-

rated with the proposed DPAM. However, with our de-

signed parameter sharing scheme, every point in every di-

vided part is just related to the points in the same part and

do not communicate with the points in other parts. In other

words, the size of the receptive field of every point will re-

main small and unchanged. In general, we hope the recep-

tive field grows from small to large gradually, which is the

design philosophy that everyone will follow in CNN design-

ing. In our work, several DPAMs will be inserted into the

backbone. Hence, we propose to increase the size of re-

ceptive filed through merging parts gradually (i.e., reducing

the number of divided parts gradually). Although we merge

parts gradually, this design keeps the similarity matrix and

weight matrix small because the number of points in every

part is reduced after each DPAM.

S
h
ar

ed

D

A
G

M

S
h
ar

ed
 D

A
G

M

D
A

G
Mclip!"

!"

4

!$

4

!$

2

!&

2

!& !'

Figure 4. Illustration of our parameter sharing scheme. An or-

dered point cloud is uniformly divided into several parts and sent

into shared DPAM to perform points agglomeration respectively.

After each DPAM, the parts will be merged gradually for increas-

ing receptive filed of every point. N0, ..., N3 denote the number

of points, and N0 > N1 > N2 > N3.

3.5. Diversity of Sampled Points

Although we reduce the difficulty of optimizing DPAM

through parameter sharing scheme mentioned above, the

module still easily converges to local minima early in train-

ing. Therefore, the points sampled with learned agglomer-

ation matrix cannot effectively catch representative points

among semantic space, and the agglomerated points are

likely to be very close. To make the sampled points diverse

and representative, we propose to add a constraint to the ag-

glomeration matrix optimization problem. Note that each

column of agglomeration matrix S(l) represents the com-

bination weight of each sampled point. Therefore, making

sampled points diverse is equivalent to making the combi-

nation weight of every sampled point various as much as

possible, i.e., making the column vectors of S(l) mutually

orthogonal. Hence, we minimize:

L
(l)
d

= ||I − S(l)TS(l)||F , (6)

where every column of S(l) is normalized to a unit vector.

This diversity loss is added to the softmax classification loss

with weight 0.001 for optimizing.

3.6. Multi­Level Feature Aggregation

With the receptive filed growing gradually, the level of

feature learned by the network is also growing. We propose

to combine multi-level features for achieving better repre-

sentation ability. We use max-pooling to get a global feature

before every DPAM and then concatenate these multi-level

global features for final classification. This design is also

similar to the operator proposed in DenseNet [11], which

has been proved to facilitate optimizing.

3.7. Network Architecture

Architecture for classification. In our work, we plug

three DPAMs into the backbone and the number of divided

7550

parts is reduced with 8-4-1. The number of feature channels

and overall classification architecture are shown in Figure 3.

Architecture for segmentation. We construct a U-net

structure for segmentation, which contains an encoder and

a decoder. The encoder is the same as the architecture for

classification. We have tried to plug three new DPAMs in

the decoder for up-sampling, however, we find it is not only

time-consuming but also hard to optimize. Hence we pro-

pose a simple but effective method to perform points up-

sampling in the decoder. We directly utilize the transpose

matrix of the agglomeration matrix learned in the encoder

as the up-sampling matrix. Moreover, skip connection is

utilized to construct U-net structure. The whole architec-

ture for segmentation is shown in Figure 3.

4. Experiments

In this section, we evaluate our method on classification

and segmentation tasks. Experiments on two object classi-

fication benchmarks including ModelNet10, ModelNet40,

and 3D object part segmentation dataset ShapeNet, as well

as real scene segmentation dataset S3DIS, are carried out.

Our method achieves state-of-the-art or comparable perfor-

mance in these benchmarks. In the meantime, time and

space complexity analysis, as well as some important anal-

ysis experiments are performed.

4.1. Datasets and Data Pre­Processing

ModelNet10 and ModelNet40 are two standard 3D

object classification benchmarks collected from Model-

Net [41], which provides CAD models for every object. The

point cloud is sampled from CAD models, and we use the

ModelNet10 and ModelNet40 dataset generated from [28]

in our experiments for fair comparison. The ModelNet10

contains 10 categories and is split into 3,991 training sam-

ples and 909 testing samples. The ModelNet40 contains 40

categories, where 9,843 objects belong to the training set

and 2,468 samples for testing. Every point in each object is

represented with 3D coordinates.

ShapeNetPart is a 3D object part segmentation bench-

marks, and it is a subset of ShapeNet [48]. This dataset

contains 16681 samples from 16 categories and there are

50 parts in total (each category contains 2-6 parts). Note

that the object categories will be given when training and

testing for every object. The evaluation metric is mean IoU

(mIoU), where IoU is computed for every object and then

averaged within the category that the object belongs to.

Large-Scale 3D Indoor Spaces (S3DIS) is a real scene

point cloud semantic segmentation benchmark. This dataset

contains 3D RDB point clouds of 271 rooms from 6 indoor

areas. Each point is annotated with one of 13 semantic cate-

gories (e.g., ceiling, floor, chair). We use the mean per-class

IoU (mIoU, %) and overall accuracy (OA) as the evaluation

metrics.

Data Pre-Processing As mentioned in section 3.4, we di-

vide a point cloud model into several parts for sharing pa-

rameters, therefore, the input points are sorted along an axis

(x-axis is used in all our experiments) for easy dividing be-

fore being sent into DPAM. For object classification and

segmentation, we normalize input point clouds to be zero-

mean inside a unit sphere. Random jitter, rotation, shift and

scale are performed on training objects to improve perfor-

mance. A T-Net used in [26] is also applied to the input

object in our experiments. For scene segmentation, rotation

around the z-axis is utilized to augment data.

4.2. Point Cloud Classification

The results of experiments on 3D object dataset Model-

Net10 and ModelNet40 are shown in Table 1, where accu-

racy over class and instance are both displayed. It can be

seen that our method achieves state-of-the-art performance

except accuracy over instance on ModelNet40 (only 0.3%

lower than PointCNN) with all published methods based

on point cloud. Note that we only use 1024 points with

3D coordinates for every object as input. We down-sample

the points 3 times, and the number of points drops double

every time (i.e., 1024-512-256-128). In experiments per-

formed on ModelNet10/40, we use Adam optimizer with

initial learning rate 0.001, momentum 0.9 and batch size

16. The learning rate is divided by 2 every 20 epochs. Drop

out rate is set to 0.7 after last two layers in the classifier.

Methods
ModelNet10 ModelNet40

Class Instance Class Instance

3DShapeNets [41] 83.5 - 77.3 84.7

VoxNet [24] 92.0 - 83.0 85.9

OctNet [29] 90.1 90.9 83.8 86.5

ECC [31] 90.0 90.8 83.2 87.4

Subvolume [27] - - 86.0 89.2

Pointnet [26] - - 86.2 89.2

Pointnet++ [12] - - - 90.7

SO-Net [21] 93.9 94.1 87.3 90.9

KCNet [30] - 94.4 - 91.0

SpecGCN [37] - - - 91.5

Kd-Net [18] 93.5 94.0 88.5 91.8

PointCNN [22] - - 88.1 92.2

Ours 94.3 94.6 89.9 91.9

Table 1. Classification results on ModelNet10/40. Our method

achieves state-of-the-art performance on ModelNet10 and Model-

Net40 compared with methods based on point cloud.

4.3. Part Segmentation on ShapeNetPart

Segmentation on 3D point cloud is formulated as a per-

point classification task. The IoU of every category and the

overall IoU are shown in Table 2, from which we see that

our method achieves state-of-the-art performance. More-

over, our method has low computation cost and high infer-

7551

Mean Aero Bag Cap Car Chair Ear Guitar Knife Lamp Laptop Motor Mug Pistol Rocket Skate Table

phone board

KD-Net [18] 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3

Pointnet [26] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

A-SCN [42] 84.6 83.8 80.8 83.5 79.3 90.5 69.8 91.7 86.5 82.9 96.0 69.2 93.8 82.5 62.9 74.4 80.8

KCNet [30] 84.7 82.8 81.5 86.4 77.6 90.3 76.8 91.0 87.2 84.5 95.5 69.2 94.4 81.6 60.1 75.2 81.3

RSNet [12] 84.9 82.7 86.4 84.1 78.2 90.4 69.3 91.4 87.0 83.5 95.4 66.0 92.6 81.8 56.1 75.8 82.2

Pointnet++ [28] 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

DGCNN [40] 85.1 84.2 83.7 84.4 77.1 90.9 78.5 91.5 87.3 82.9 96.0 67.8 93.3 82.6 59.7 75.5 82.0

SpiderCNN [43] 85.3 83.5 81.0 87.2 77.5 90.7 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8

SGPN [38] 85.8 80.4 78.6 78.8 71.5 88.6 78.0 90.9 83.0 78.8 95.8 77.8 93.8 87.4 60.1 92.3 89.4

PointCNN [22] 86.1 84.1 86.5 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.3 84.2 64.2 80.0 83.0

Ours 86.1 84.3 81.6 89.1 79.5 90.9 77.5 91.8 87.0 84.5 96.2 68.7 94.5 81.4 64.2 76.2 84.3

Table 2. Segmentation results (part-wise IoU) on ShapeNetPart Dataset. Our method achieves state-of-the-art performance.

ence speed. Some segmentation results are visualized in

Figure 5. Our method segment the fine-grained details well.

Figure 5. The segmentation results on ShapeNetPart dataset.

Column 1 and 3: Segmented results. Column 2 and 4: Ground

truth. Best viewed in color.

The architecture for part segmentation is shown in Fig-

ure 3, which is a U-net structure. As mentioned in Sec-

tion 3.7 that the up-sampling matrix in the decoder is the

transpose of the down-sampling matrix learned in the en-

coder. 2048 points for every object are used as input. 3

times down-sampling and up-sampling are performed re-

spectively, and the number of points decrease in the encoder

and increase in decoder double every time (i.e., 2048-1024-

512-256-512-1024-2048.). Adam optimizer is used to op-

timize per-point cross-entropy loss in this experiment with

initial learning rate 0.006, momentum 0.9 and batch size 32.

The learning rate is divided by 2 every 20 epochs. Drop out

rate is set to 0.5 after the last layer in the classifier.

4.4. S3DIS Indoor Scene Segmentation

We follow the same setting as PointNet [26], where each

room is split into blocks of area 1m×1m. Each input point

is represented by a 9-dim vector of XYZ, RGB and nor-

malized location as to the room. 4096 points are randomly

sampled for each block when training and all points are used

for testing. Following the common evaluation setting, a 6-

fold cross validation over the 6 ares, with 5 area for training

and the left 1 area for validation each time. The test re-

sults on Area 5 are reported individually due to the fact that

there are overlaps between areas except Area 5. All results

on this dataset are shown in Table 3. For 6-fold cross vali-

dation, our method achieves superior performance over all

methods except PointCNN [22]. On Area 5, our method

outperforms all methods in terms of mIoU.

Methods
6-fold CV Area 5

mIoU OA mIoU OA

PointNet [26] 47.6 78.5 41.1 -

SegCloud [35] - - 48.9 -

RSNet [12] 56.5 - - -

3P-RNN [47] 56.3 86.9 53.4 85.7

SPGraph [20] 62.1 85.5 58.0 86.4

PointCNN [22] 65.4 88.1 57.3 85.9

Ours 64.5 87.6 60.0 86.1

Table 3. Segmentation results on S3DIS. Mean per-class IoU

(mIoU, %) and overall accuracy (OA, %) are shown in table. Our

method achieves comparable performance.

The architecture for scene segmentation is shown in Fig-

ure 3. The points are down-sampled and up-sampled with

4096-1024-256-32-256-1024-4096. We use Adam opti-

mizer to optimize per-point cross-entropy loss with initial

learning rate 0.003, momentum 0.9 and batch size 12. The

learning rate is divided by 2 every 20 epochs. Drop out rate

is set to 0.4 after the last layer in the classifier.

4.5. Time and Space Complexity Analysis

In this section, we show the time and space complex-

ity of our method in Table 4 to prove that our proposed

method does achieve state-of-the-art performance with ob-

viously higher inference speed. This experiment is per-

formed on ModelNet40 with a 1080X GPU. The batch size

is also set to 8 for fair comparison. Note that we do not

make a comparison with PointCNN [22] in this section due

to device limitation. Our method achieves excellent per-

formance with inference speed that is obviously faster than

7552

other methods except PointNet. To further reduce the model

size and inference time, we drop the T-net used in our model

(i.e., denoted with vanilla in the Table 4). Smaller model

size and faster inference time are achieved with only 0.5%

drop in accuracy. Although the model size of our method is

larger than PointNet++ [28] and SO-Net [21], we can make

a trade-off between accuracy and model size by adjusting

the number of sampled points and parameters of DPAMs.

Method Size/Mb Infer/ms Acc(%)

PointNet (vanilla) [26] 9.4 11.6 87.2

PointNet [26] 40 25.3 89.2

PointNet++ [28] 12 163.2 90.7

SO-Net [21] 11.5 59.6 90.9

Ours(vanilla) 21.3 18.4 91.4

Ours 29.5 36.6 91.9

Table 4. Time and Space Complexity Analysis on ModelNet40.

Our method achieves excellent performance with high inference

speed. Vanilla denotes that the model is trained without T-Net.

The model size (Mb), inference time (ms) and accuracy (%) over

instance is reported in table.

4.6. Ablation Study

In this section, we study the robustness of our method

to random noises and analyze some important hyper-

parameters including the number of divided parts in every

DPAM and the axis that the parts divided along. All exper-

iments in this section are performed on ModelNet40.

Robustness to random noises. We randomly replace in-

put points with Gaussian noise during testing, where mean

value µ is set to 0 and the standard deviation σ is set to

0.1 and 0.05 respectively. The standard deviation represents

noise intensity. Compared with Pointnet++, our method is

more robust to noises as shown in Figure 6. The horizon-

tal axis shows the number of replaced noise points and the

vertical axis shows the accuracy on Modelnet40.

Figure 6. Analysis of noises. Our method shows better robustness

compared with Pointnet++.

Effectiveness of our proposed parameter sharing

scheme. We have mentioned in Section 3.4 that we propose

to divide input point cloud into several parts for sharing pa-

rameters and merge divided parts gradually for increasing

receptive field of every point. In this part, we analyze the

effectiveness of this scheme, as well as the robustness to

various combinations of the number of divided parts. We

conduct classification experiments on ModelNet40 with 5

combinations (i.e., 1-1-1, 8-8-8, 4-2-1,16-4-1, 8-4-1). Note

that the combination 1-1-1 denotes that we train the model

without our proposed parameter sharing scheme. The re-

sults are shown in Table 5. Comparing the results of combi-

nation 1-1-1 with other combinations, we can conclude that

dividing an input object into several parts do bring signifi-

cant performance improvement. The effectiveness of merg-

ing parts gradually is also proved by comparing combina-

tions 8-8-8 with other decreasing combinations.

Combinations 1-1-1 8-8-8 4-2-1 16-4-1 8-4-1

Accuracy (%) 90.9 91.2 91.7 91.7 91.9

Table 5. Effectiveness of our proposed parameter sharing scheme.

The accuracy (%) over instance is reported in table.

Robustness to different axes which the point cloud is

divided along. Table 6 shows that our proposed parame-

ter sharing scheme is not sensitive to the axis, along which

input point cloud is divided. Our method achieves similar

performance when we divide input along the x-axis, y-axis,

z-axis respectively. However, the performance drops a little

when we divide the input randomly.

Random X-axis Y-axis Z-axis

Acc (%) 90.9 91.9 91.6 91.8

Table 6. Robustness to the different axis which point cloud is di-

vided along. The accuracy (%) over instance is reported in table.

5. Conclusion

In this work, a dynamic points agglomeration module

is proposed to construct an efficient hierarchical point sets

learning architecture. This GCN-based module is applied to

learning a points agglomeration matrix with points relation

and feature. In contrast to fixed agglomeration strategy that

samples and groups points in a fixed way, our proposed

dynamic agglomeration strategy can dynamically adapt to

various situations. Moreover, a parameter sharing scheme

is proposed to reduce memory and computation usage.

Our dynamic agglomeration architecture achieves better

performance on several benchmarks with high inference

speed compared with fixed points agglomeration strategy.

Acknowledgements This work was supported by Na-

tional Science Foundation of China U1611461 and China’s

Thousand Youth Talents Plan, STCSM 17511105401,

18DZ2270700 and MoE Key Lab of Artificial Intelligence,

AI Institute, Shanghai Jiao Tong University, China. This

work was sponsored by CCF-Tencent Open Fund. This

work was also jointly supported by SJTU-Minivision joint

research grant.

7553

References

[1] Mikaela Angelina Uy and Gim Hee Lee. Pointnetvlad: Deep

point cloud based retrieval for large-scale place recognition.

In CVPR, June 2018.

[2] Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, Ioan-

nis Brilakis, Martin Fischer, and Silvio Savarese. 3d seman-

tic parsing of large-scale indoor spaces. In CVPR, June 2016.

[3] Amir Arsalan Soltani, Haibin Huang, Jiajun Wu, Tejas D.

Kulkarni, and Joshua B. Tenenbaum. Synthesizing 3d shapes

via modeling multi-view depth maps and silhouettes with

deep generative networks. In CVPR, July 2017.

[4] Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers.

The wave kernel signature: A quantum mechanical approach

to shape analysis. In ICCV Workshops, pages 1626–1633,

2011.

[5] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Le-

Cun. Spectral networks and locally connected networks on

graphs. CoRR, abs/1312.6203, 2013.

[6] Haowen Deng, Tolga Birdal, and Slobodan Ilic. Ppfnet:

Global context aware local features for robust 3d point

matching. In CVPR, June 2018.

[7] Yifan Feng, Zizhao Zhang, Xibin Zhao, Rongrong Ji, and

Yue Gao. Gvcnn: Group-view convolutional neural networks

for 3d shape recognition. In CVPR, June 2018.

[8] Andrea Frome, Daniel Huber, Ravi Kolluri, Thomas Bülow,

and Jitendra Malik. Recognizing objects in range data using

regional point descriptors. In ECCV, pages 224–237, 2004.

[9] Xinwei He, Yang Zhou, Zhichao Zhou, Song Bai, and Xiang

Bai. Triplet-center loss for multi-view 3d object retrieval. In

CVPR, June 2018.

[10] Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. Point-

wise convolutional neural networks. In CVPR, June 2018.

[11] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-

ian Q. Weinberger. Densely connected convolutional net-

works. In CVPR, July 2017.

[12] Qiangui Huang, Weiyue Wang, and Ulrich Neumann. Recur-

rent slice networks for 3d segmentation of point clouds. In

CVPR, June 2018.

[13] Mingyang Jiang, Yiran Wu, and Cewu Lu. Pointsift: A sift-

like network module for 3d point cloud semantic segmenta-

tion. CoRR, abs/1807.00652, 2018.

[14] Andrew Edie Johnson and Martial Hebert. Using spin images

for efficient object recognition in cluttered 3d scenes. IEEE

Trans. Pattern Anal. Mach. Intell., 21(5):433–449, 1999.

[15] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image genera-

tion from scene graphs. In CVPR, June 2018.

[16] Asako Kanezaki, Yasuyuki Matsushita, and Yoshifumi

Nishida. Rotationnet: Joint object categorization and pose

estimation using multiviews from unsupervised viewpoints.

In CVPR, June 2018.

[17] Thomas N. Kipf and Max Welling. Semi-supervised classi-

fication with graph convolutional networks. In ICLR, 2017.

[18] Roman Klokov and Victor S. Lempitsky. Escape from cells:

Deep kd-networks for the recognition of 3d point cloud mod-

els. In ICCV, pages 863–872, 2017.

[19] Iasonas Kokkinos, Michael M Bronstein, Roee Litman, and

Alex M Bronstein. Intrinsic shape context descriptors for

deformable shapes. In CVPR, pages 159–166, 2012.

[20] Loic Landrieu and Martin Simonovsky. Large-scale point

cloud semantic segmentation with superpoint graphs. In

CVPR, June 2018.

[21] Jiaxin Li, Ben M. Chen, and Gim Hee Lee. So-net: Self-

organizing network for point cloud analysis. In CVPR, June

2018.

[22] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,

and Baoquan Chen. Pointcnn: Convolution on x-transformed

points. In NeurIPS, pages 828–838, 2018.

[23] Or Litany, Alex Bronstein, Michael Bronstein, and Ameesh

Makadia. Deformable shape completion with graph convo-

lutional autoencoders. In CVPR, June 2018.

[24] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d con-

volutional neural network for real-time object recognition. In

IROS, pages 922–928, 2015.

[25] Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, and

Leonidas J. Guibas. Frustum pointnets for 3d object detec-

tion from rgb-d data. In CVPR, June 2018.

[26] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In CVPR, July 2017.

[27] Charles Ruizhongtai Qi, Hao Su, Matthias Nießner, Angela

Dai, Mengyuan Yan, and Leonidas J. Guibas. Volumetric

and multi-view cnns for object classification on 3d data. In

CVPR, pages 5648–5656, 2016.

[28] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J.

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In NIPS, pages 5105–5114,

2017.

[29] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger.

Octnet: Learning deep 3d representations at high resolutions.

In CVPR, pages 6620–6629, 2017.

[30] Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. Min-

ing point cloud local structures by kernel correlation and

graph pooling. In CVPR, June 2018.

[31] Martin Simonovsky and Nikos Komodakis. Dynamic edge-

conditioned filters in convolutional neural networks on

graphs. In CVPR, July 2017.

[32] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,

Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.

Splatnet: Sparse lattice networks for point cloud processing.

In CVPR, June 2018.

[33] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and

Erik G. Learned-Miller. Multi-view convolutional neural

networks for 3d shape recognition. In ICCV, pages 945–953,

2015.

[34] Jian Sun, Maks Ovsjanikov, and Leonidas J. Guibas. A con-

cise and provably informative multi-scale signature based on

heat diffusion. Comput. Graph. Forum, 28(5):1383–1392,

2009.

[35] Lyne P. Tchapmi, Christopher Bongsoo Choy, Iro Armeni,

JunYoung Gwak, and Silvio Savarese. Segcloud: Semantic

segmentation of 3d point clouds. In 3DV, pages 537–547,

2017.

7554

[36] Nitika Verma, Edmond Boyer, and Jakob Verbeek. Feastnet:

Feature-steered graph convolutions for 3d shape analysis. In

CVPR, June 2018.

[37] Chu Wang, Babak Samari, and Kaleem Siddiqi. Local spec-

tral graph convolution for point set feature learning. In

ECCV, September 2018.

[38] Weiyue Wang, Ronald Yu, Qiangui Huang, and Ulrich Neu-

mann. Sgpn: Similarity group proposal network for 3d point

cloud instance segmentation. In CVPR, June 2018.

[39] Xiaolong Wang and Abhinav Gupta. Videos as space-time

region graphs. In ECCV, pages 413–431, 2018.

[40] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,

Michael M. Bronstein, and Justin M. Solomon. Dy-

namic graph CNN for learning on point clouds. CoRR,

abs/1801.07829, 2018.

[41] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d

shapenets: A deep representation for volumetric shapes. In

CVPR, pages 1912–1920, 2015.

[42] Saining Xie, Sainan Liu, Zeyu Chen, and Zhuowen Tu. At-

tentional shapecontextnet for point cloud recognition. In

CVPR, June 2018.

[43] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.

Spidercnn: Deep learning on point sets with parameterized

convolutional filters. In ECCV, September 2018.

[44] Yichao Yan, Qiang Zhang, Bingbing Ni, Wendong Zhang,

Minghao Xu, and Xiaokang Yang. Learning context graph

for person search. In CVPR, June 2019.

[45] Jiancheng Yang, Qiang Zhang, Bingbing Ni, Linguo Li,

Jinxian Liu, Mengdie Zhou, and Qi Tian. Modeling point

clouds with self-attention and gumbel subset sampling. In

CVPR, pages 3323–3332, 2019.

[46] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-

ingnet: Point cloud auto-encoder via deep grid deformation.

In CVPR, June 2018.

[47] Xiaoqing Ye, Jiamao Li, Hexiao Huang, Liang Du, and Xi-

aolin Zhang. 3d recurrent neural networks with context

fusion for point cloud semantic segmentation. In ECCV,

September 2018.

[48] Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen,

Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Shef-

fer, and Leonidas J. Guibas. A scalable active framework

for region annotation in 3d shape collections. ACM Trans.

Graph., 35(6):210:1–210:12, 2016.

[49] Andrei Zaharescu, Edmond Boyer, Kiran Varanasi, and Radu

Horaud. Surface feature detection and description with appli-

cations to mesh matching. In CVPR, pages 373–380, 2009.

[50] Wei Zhao, Jiancheng Yang, Bingbing Ni, Dexi Bi, Yingli

Sun, Mengdi Xu, Xiaoxia Zhu, Cheng Li, Liang Jin, Pan

Gao, Peijun Wang, Yanqing Hua, and Ming Li. Toward au-

tomatic prediction of egfr mutation status in pulmonary ade-

nocarcinoma with 3d deep learning. Cancer Medicine, 2019.

[51] Wei Zhao, Jiancheng Yang, Yingli Sun, Cheng Li, Weilan

Wu, Liang Jin, Zhiming Yang, Bingbing Ni, Pan Gao, Peijun

Wang, Yanqing Hua, and Ming Li. 3d deep learning from

ct scans predicts tumor invasiveness of subcentimeter pul-

monary adenocarcinomas. Cancer Research, 78(24):6881–

6889, 2018.

7555

