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Abstract

Recently, large-margin softmax loss methods, such as

angular softmax loss (SphereFace), large margin cosine

loss (CosFace), and additive angular margin loss (Arc-

Face), have demonstrated impressive performance on deep

face recognition. These methods incorporate a fixed ad-

ditive margin to all the classes, ignoring the class imbal-

ance problem. However, imbalanced problem widely exists

in various real-world face datasets, in which samples from

some classes are in a higher number than others. We ar-

gue that the number of a class would influence its demand

for the additive margin. In this paper, we introduce a new

margin-aware reinforcement learning based loss function,

namely fair loss, in which each class will learn an appropri-

ate adaptive margin by Deep Q-learning. Specifically, we

train an agent to learn a margin adaptive strategy for each

class, and make the additive margins for different classes

more reasonable. Our method has better performance than

present large-margin loss functions on three benchmarks,

Labeled Face in the Wild (LFW), Youtube Faces (YTF) and

MegaFace, which demonstrates that our method could learn

better face representation on imbalanced face datasets.

1. Introduction

Deep convolutional neural networks (DCNNs) [28, 17,

10, 31, 43, 11, 37, 18] have become the mainstream tech-

nique for deep face recognition, which made remarkable

progress on both recognition accuracy and robustness. Deep

face models are usually learned in a supervised manner

by various loss functions. Classical softmax loss func-

tion is the most widely used for generic objects, but it is

not discriminative enough for face recognition due to the

fine-grained property [40, 21, 20]. To address this limi-
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tation, several large-margin loss functions have been pro-

posed to improve the generalization ability of softmax loss,

such as SphereFace [20], CosFace [36], and ArcFace [5].

These losses successfully improve the generalization ability

of DCNN by incorporating a fixed margin to softmax, and

achieve state-of-the-art performance on major face bench-

marks, such as LFW [13], YTF [41] and MegaFace [14, 24].

However, as illustrated in Fig. 1, previous large mar-

gin methods ignore the class imbalance of the training da-

ta, which refers to that the samples of majority classes are

much more than those of minority classes. Deep face mod-

els are inevitably affected by the class imbalance problem.

Owing to the lack of intra-class variance, the minority class-

es often fail to describe the real feature space. In this situ-

ation, the fixed additive margin for both majority and mi-

nority classes will aggravate the biased decision boundary.

Fig. 1(b) shows that the model tends to make mistakes on

new test samples of minority classes, which reflects the bad

generalization ability of deep representation. As a result, a

fixed margin may be misleading for unbalanced classes.

To improve the large-margin loss, we dedicate to ex-

plore adaptive boundaries between various classes, consid-

ering their representativeness to characterize the actual dis-

tribution. Majority classes would not converge with an ex-

cessively large margin, while a minority class would be

squeezed toward majority classes given a relatively small

margin. We propose to balance the additive margins be-

tween various classes. As shown in Fig. 1(c), a majority

class requires a relatively smaller margin, while a minority

class needs a relatively larger margin. By the adaptive mar-

gin, the test accuracy is significantly boosted. Meanwhile,

we assume that the demand for the margin of a particular

class may be different in the training progress following the

change of training state, such as the intra-class variance.

Inspired by this observation, we propose a new fair loss

with a margin adaptive strategy by reinforcement learning.

Specifically, we simulate all kinds of changes of additive
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(a) Fixed margins between majority classes (b) Fixed margins between majority class and

minority class

(c) Adaptive margins between majority class

and minority class

Figure 1. Effects of class imbalance. (a) A fixed additive margin is quite appropriate for two majority classes. (b) The model tends to make

mistakes on new test samples of a minority class with the fixed additive margin. (c) We propose that the demands for additive margins

should be different: a majority class needs a relatively smaller margin while a minority class needs a relatively larger margin.

margins for classes in the training process and collect the

influence on the training model, from which we conclude

a universal strategy of the adaptive margin by using Deep

Q-learning [23]. Eventually this strategy is generalized in

other models training progress, guiding a class to adapt its

additive margin according to a specific training state.

Our contributions can be summarized as follows:

(1) We propose a new fair loss function that takes the

prevalent class imbalance problem into consideration to

learn adaptive margins. By fully considering the distribu-

tional property of neighbor classes, fair loss displays more

comprehensive margin setting for the recognition problem.

(2) We successfully apply reinforcement learning to op-

timize the fair loss by training an agent to learn a margin

adaptive strategy. We empirically demonstrate that the s-

trategy can be applied to various models with large margin,

which confirms the generalization ability of our method.

(3) Extensive experiments on LFW [13], YTF [41], and

MegaFace [14, 24] show that our method achieves state-

of-the-art performance on face recognition. Compared with

other large-margin methods, it has expressive superiority on

learning discriminative features from imbalanced datasets.

2. Related Work

Large-margin loss functions. Deep face recognition

has become a hot spot thanks to the advancement of DC-

NNs. Loss function plays a major role in CNN models. The

softmax loss function is commonly used as the supervision

signal in face recognition. However, softmax loss is not ef-

fective to learn discriminative representation as training on

million level identities so that intra-class variations could be

larger than inter-class distances. Recently, the mainstream

method is to use a large-margin loss function [20, 36, 5]

(based on traditional softmax loss function) to train a fea-

ture extractor to make features more discriminative. Liu et

al. [20] propose A-softmax (SphereFace) by introducing a

multiplicative angular margin to softmax loss and make the

decision regions become more separated. Wang et al. [36]

propose large margin cosine loss (CosFace) to further max-

imize the decision margin in the cosine space. CosFace

overcomes the optimization difficulty of SphereFace and is

much easier to reproduce. Deng et al. [5] directly add an

angular margin in the angular space and have a more clear

geometric interpretation. These large-margin loss functions

all improve the softmax loss by incorporating a fixed mar-

gin. However, they ignore the class imbalance problem.

Deep imbalanced learning. To tackle the class imbal-

ance problem, the original efforts can be mainly classified

into two groups: data re-sampling [9, 2, 6, 7, 8] and cost-

sensitive learning [16, 33, 35, 50]. In the last few years,

several works [49, 38, 15, 39] have addressed imbalanced

learning via deep models. However, as for the task of face

recognition, few methods focus on class imbalance prob-

lem. Yin et al. [45] adapt the distribution of learned features

from minority classes to mimic that of majority classes by

augmenting the minority classes in feature space. Wu et

al. [42] propose a center invariant loss which aligns the fea-

ture centers of the minority classes to the majority. Zhang

et al. [48] propose a range loss minimizing the ranges (the

largest intra-class distances) to enhance the model’s learn-

ing ability towards minority classes. Unfortunately, al-

l these methods cannot guarantee the high discriminative

power between all classes. Our method complements them

by providing a fair loss with adaptive margins that enable

imbalanced classes to have appropriate margins, which can-

not only avoid minority classes being submerged but also

increase the discrimination of features.

Reinforcement learning (RL). RL trains an agent to

learn policies based on trial and error in a dynamic envi-

ronment by maximizing the accumulated reward. Deep RL
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Figure 2. An illustration of our proposed method. Firstly, we train a series of sample networks by manually changing the margin in loss

to collect samples for the agent, represented by {(si, ai, ri, s
′

i)}. Details of {(si, ai, ri, s
′

i)} refer to section 3.2 and Fig. 3. Then we use

the samples to train the agent for a margin adaptive strategy, which will give action outputs for state inputs. Finally, we train our fair loss

network with changes of margins by the action outputs from the agent.

with CNNs has achieved human-level performance in Atari

Games. In addition to its traditional applications in robotics

and control, recently RL has been successfully applied to

a few visual recognition tasks. RL is employed to object

tracking, researched in [12]. An agent is trained to learn

when to stop advancing the features to the next layer and

make prediction, which achieves a remarkable balance be-

tween tracking speed and accuracy. To deal with multi-shot

pedestrian re-identification problem, Zhang et al. [46] train

an agent to stop the comparison after receiving sufficient

pairs, which obtain competitive performance with the state-

of-the-art methods while using much fewer images. In our

work, RL is used to learn a margin adaptive strategy for di-

verse training identities.

3. Proposed Approach

The overview of our method is depicted in Fig. 2. First,

we train a CNN by manually changing the margin in the

loss to collect a series of samples we define. Then we use

the samples to train an agent for margin adaptive strategy,

which will give action output for state input. Finally, we

train our fair loss network with margins changing by the

action outputs from the agent. In this section, we will in-

troduce the details of our approach. We first start with the

proposed fair loss function. Then we introduce the adaptive

margin in the fair loss via reinforcement learning, includ-

ing the formulation of our sample space, the training of the

agent and the application of the margin adaptive strategy.

3.1. Fair Loss

We define the proposed fair loss function as follows:

L = −
1

N

N
∑

i=1

log
P ∗
yi
(mi(t), xi)

P ∗
yi
(mi(t), xi) +

∑n

j=1,j 6=yi
Pj(xi)

,

(1)

where xi ∈ R
d denotes the deep feature of the i-th sample,

belonging to the yi-th class. The batch size and the class

number is N and n, respectively.

In the function P ∗, we have an adaptive margin mi(t).
Compared to other large-margin loss functions, we make m

vary during the training instead of remaining unchanged. In

fact, different classes have different demands for the mar-

gins, and the demands may change during the training. Our

adaptive margin mi(t) depends on i and is a function of t,

where t represents the stage of the training.

The formulation of P can be represented as follows:

Pj(xi) = es cos θj , (2)

subject to

Wj =
Wj

‖Wj‖
, xi =

xi

‖xi‖
, cos θj = WT

j xi. (3)

Wj ∈ R
d denotes the j-th column of the weight W ∈ R

d×n

in the last fully connected layer.

Considering the formulation of the function P ∗, ours is

based on other large-margin loss functions, e.g. CosFace

(LMCL) [36] and ArcFace [5]. Specifically, based on Cos-

Face, the function P ∗ can be formulated as follows:

P ∗
yi
(mi(t), xi) = es(cos(θyi )−mi(t)), (4)

and based on ArcFace, P ∗ can be formulated as follows:

P ∗
yi
(mi(t), xi) = es(cos(θyi+mi(t))), (5)

where cos(θyi
) can be computed similarly to cos θj .

We fix ‖xi‖ by L2 normalization and re-scale ‖xi‖ to s,

following [20, 36, 5]. In this paper, we use s = 64 for face

recognition experiments.

3.2. Margin Adaptive Strategy Learning

We formulate the problem of finding an appropriate mar-

gin adaptive strategy as a Markov Decision Process (MDP),

described by (S,A, T ,R) as the states, actions, transitions

and rewards. We will train an agent to adjust the margin in

every state. The agent will be fed with a series of samples,
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which can be represented as {(si, ai, ri, s
′
i)}. Here, si ∈ S ,

ai ∈ A, ri ∈ R, and s′i ∈ S means the next state which the

agent turns to through the action ai. After that, the trained

agent will give us the margin adaptive strategy during the

training of our fair loss network.

States: We consider that each class’s demand for the

margin can be affected by the number of images and the

intra-class variance. Therefore, the state si includes three

parts. The first part is equivalent of the adaptive margin

m. In the second part, we divide all the classes into several

groups according to the number of images and the intra-

class variance. Here, the intra-class variance is obtained

by using a trained neural network, which has a fixed mar-

gin loss function. We make g(nyi
, V ∗

yi
) ∈ G represent the

group, where G = {g1, · · · , gkG
}. nyi

denotes the number

of images belonging to the yi-th class. V ∗
yi

represents the

intra-class variance, which can be formulated as follows:

V ∗
yi

=
1

nyi

nyi
∑

j=1

∥

∥x∗
j − x̄∗

∥

∥

2
, (6)

where

x̄∗ =
1

nyi

nyi
∑

j=1

x∗
j . (7)

x∗
j is the feature extracted by a pre-trained neural network

and L2 normalized.

We also augment the current intra-class variance Vi as

the third part. For each class in the group g(nyi
, V ∗

yi
), we

calculate the intra-class variance by using the current neural

network with our fair loss function and get the mean as Vi.

The formulation can be represented as follows:

Vi =
1

Ni

Ni
∑

k=1

V ′
k, (8)

where Ni denotes the number of classes in the group

g(nyi
, V ∗

yi
), and

V ′
k =

1

nyk

nyk
∑

j=1

‖xj − x̄‖
2
, (9)

x̄ =
1

nyk

nyk
∑

j=1

xj . (10)

Here, xj is the feature extracted by our current neural net-

work and L2 normalized. In order to make the space of

states discrete, we let mi(t) ∈ M and define a function

f(Vi) ∈ F to quantify Vi, where M = {m1, · · · ,mkM
},

F = {f1, · · · , fkF
}. Therefore, si can be represented as

{

mi(t), g(nyi
, V ∗

yi
), f(Vi)

}

.

Actions and Transitions: In every state, we have three

actions for the agent: make m stay unchanged, make m add

Figure 3. The training process of the agent. We use the samples

collected by the sample networks to train the agent. Each sample

includes four parts: current state, next state, action and reward,

which can be represented by (si, ai, ri, s
′

i). The Q-Net outputs Q-

value of the three actions with a state input and the agent chooses

the action with the largest Q-value as the output.

a fixed step and make m minus a fixed step. Our samples

will include all of the actions and rewards associated with

each action to train the agent for better decisions.

Rewards: We define the rewards for smaller intra-class

variance and larger inter-class distance. Before that, we first

define a function Ri, which is related to the state si and can

be formulated as follows:

Ri = Di − Vi. (11)

Di can be used to evaluate the inter-class distance, which

can be formulated as follows:

Di =
∥

∥Wyi
−W ∗

yi

∥

∥

2
, (12)

where W ∗
yi

denotes the weight vector of the class, which has

the shortest distance from the yi-th class. Vi is the same as

defined by Eq. 8. Furthermore, reward ri can be formulated

as follows:

ri = R′
i −Ri, (13)

where R′
i is similar to Ri and related to the state s′i.

Deep Q-learning: We use Deep Q-Learning [23] to

make the agent find an optimal policy, since we do not have

a priori knowledge about the correct action to choose. For

each state and action (si, ai), Q(si, ai) represents the dis-

counted accumulated rewards for the state and action. Dur-

ing the training, we iteratively update the Q function by:

Q(si, ai) = ri + γmax
a′

i

Q(s′i, a
′
i). (14)

The structure of the Q-network is illustrated in Fig. 3.

We simply use a two-layer fully connected network as the

Q function, with a hidden layer of 10 units. Each fully con-

nected layer is followed by a ReLU activation function. De-

tails of training the agent are summarized in Algorithm 2.

Finally, the agent will output an action at using a policy

at = argmaxaQ(st, a), where st is the state representa-

tion above.
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Algorithm 1 Collect samples for the agent

Preparation:

Pre-train a neural network with a stable margin loss func-

tion. Divide all the classes into several groups accord-

ing to the number of images and the intra-class variance,

which is calculated by the pre-trained network.

Collect Samples:

for g in all groups do

1: Calculate the current state si from the last network

(initialized with the pre-trained network).

2: Do every action in the action space to modify the

margin for group g.

3: For each action ai, train the last network for another

epoch by the adapted margin.

4: Calculate the state s′i, which group g turned to from

the one-epoch training.

5: Calculate the reward ri through the last network and

the current one by Eq. 13.

6: Record the (si, ai, ri, s
′
i) as a sample.

if s′i is a new state which hasn’t appeared before then

7: return to step 1.

end if

end for

Algorithm 2 Train the agent for margin adaptive strategy

Data:

Collect samples {(si, ai, ri, s
′
i)} from the original neural

network by Algorithm 1.

Input:

A series of samples {(si, ai, ri, s
′
i)}.

Output:

The Q-Net parameters Ω.

Train:

while not reach the maximum iteration do

1: Forward pass the data (si, ai).
2: Get the Q-Net output Q(si, ai).
3: For each action a′i in the action space, forward pass

(s′i, a
′
i).

4: Calculate the target output

yi = ri + γmax
a′

i

Q(s′i, a
′
i).

5: Ω← Ω− α
∑

i

dQ(si,ai)
dΩ (Q(si, ai)− yi).

end while

Samples Collecting: In order to train the agent, we need

to collect samples to feed the agent. We first divide all the

classes into several groups according to the number of im-

ages and the intra-class variance calculated by a pre-trained

network with a stable large-margin loss function. Then we

manually change the margin to train a series of sample net-

Algorithm 3 Train fair loss network

Preparation:

The trained agent.

Train:

1: Do the training as normal deep CNNs.

At the end of every epoch:

for g in all groups do

2: Calculate the current state sg of group g.

3: Input the state sg into the trained agent and get the

output action ag .

4: Do the action ag to modify the margin for group g.

end for

5: Enter the next epoch of training.

works and extract samples represented by {(si, ai, ri, s
′
i)}.

The details are presented in Algorithm 1.

Application of Margin Adaptive Strategy: The margin

adaptive strategy generated by the trained agent will be used

to conduct the training of our fair loss network by Algorith-

m 3. During the training, the agent will make decisions to

modify the margins in fair loss for every group.

4. Experiments

In this section, we will first introduce the implementa-

tion details in following experiments, and then describe the

process of training the agent. After that, we design sever-

al validity experiments for our approach. Finally, we will

present the results of our method on three open benchmark-

s, and compare them with other state-of-the-art methods.

4.1. Implementation Details

Preprocessing. We only use standard preprocessing.

Face landmarks in all images for training and testing are de-

tected by MTCNN [47]. Then, we adopt the 5 facial points

to perform a similarity transformation. After that, the faces

are cropped to 112×112. Following [20, 36], each pixel (in

[0, 255]) in RGB images is normalized by subtracting 127.5

then being divided by 128.

Training. We use two datasets to train our models.

One is a publicly available web-collected training dataset

CASIA-WebFace [44], which contains 494,414 face im-

ages belonging to 10,575 different individuals. The scale of

CASIA-WebFace is small (less than 0.5M images and 20K

subjects) [14] so that we can use it to compare with the ex-

isting results of small training datasets. The other dataset is

in large-scale, which is MF2 training dataset [24] provided

by MegaFace. MF2 training dataset is used for MegaFace

Challenge 2, containing 4.7 million faces and 672K unique

identities. As shown in Fig. 4, both of the two datasets have

imbalanced distribution.

As for the CNN architecture, we use two of the advanced

networks. One is the same 64-layer CNN architecture as
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(a) CASIA-WebFace dataset

(b) MF2 training dataset

Figure 4. Imbalanced data distribution of two training datasets.

described in [20] for Q-Net training samples collecting.

The other is ResNet50 [10] with a modified structure, pro-

posed in [5], after the last convolutional layer. It is used

to conduct the experiments on several benchmarks. We use

MxNet [4] to implement fair loss and the CNNs and Ten-

sorFlow [1] for Deep Q-learning. For the loss function,

we make our fair loss use margin adaptive strategy based

on CosFace (LMCL) [36] as an example. In fact, the pro-

posed approach can also be used in other softmax-based loss

functions which have margin parameters. CNN models are

trained on two GPUs (NVIDIA GeForce 1080TI), setting

the batch size as 256 for the small dataset and 200 for the

large. On the small dataset, the learning rate begins with 0.1

and is divided by 10 at 100K, 140K iterations. The training

process is finished at 180K iterations. On the large dataset,

we divide the learning rate at 256K, 358K, 410K iterations

and finish at 440K iterations. We set momentum at 0.9 and

weight decay at 0.0005.

Testing. During testing, the score is computed by the

cosine distance of two feature vectors, which are obtained

by concatenating the original face features and the horizon-

tally flipped features. At last, we use the nearest neighbor

classifier and threshold comparison for face identification

and verification, respectively. Our models are assessed on

several popular public face datasets, including LFW [13],

YTF [41], and MegaFace [14, 24].

4.2. Agent Training Process

In order to use fair loss to train our models, we train an a-

gent to generate margin adaptive strategy. We first pre-train

a 64-layer CNN on CASIA-WebFace [44], using CosFace

(LMCL) [36] with the margin set to 0.35. Depending on the

number of images and the intra-class variance calculated by

the pre-trained network, we divide the identities in CASIA-

WebFace into 9 groups represented by a number from 0.1 to

0.9. We choose 50 and 150 as the thresholds of the number

of images. As for the intra-class variance, we also deter-

mine two thresholds so that the number of identities in the

three segments is similar to each other.

Then we collect samples for the agent by training a se-

ries of networks. In detail, for each group, we manually

modify the margin by all the actions we define and train an

epoch from the pre-trained network. The one-epoch train-

ing leads the group to another state, in which the group has

a new margin. We keep modifying the margin from the cur-

rent state by all the actions and training another epoch from

the current network until the margin has traversed the entire

margin space. In this study, we set the margins varying from

0.15 to 0.45 (0.15, 0.25, 0.35 and 0.45). We can obtain the

intra-class variance and inter-class distance of each group

from the trained networks. Further, we calculate the rewards

of the network transfers and record the vectors, which rep-

resent the current state, next state, action and reward of each

network, as our agent training samples. After that, we feed

the samples to train the agent by Deep Q-learning [23].

The trained agent can output the Q-value of the three ac-

tions with a state input. We will choose the action with the

largest Q-value to conduct the adjustment of the margin in

fair loss during the training. Fig. 5 shows part of the mar-

gin adaptive strategy from the trained agent, from which we

have three findings. First, the group with smaller classes

has a greater tendency to raise the margin. Second, larger

intra-class variance is more likely to lead to increasing the

margin, and vice versa. Large intra-class variance usually

reflects that a class is not trained sufficiently, so this phe-

nomenon can be interpreted that larger margins are need-

ed to optimize the class trained insufficiently. Third, for a

specific group with specific intra-class variance, there may

exist an optimal range of margins. The first finding is con-

sistent with our theoretical analysis, while the second and

third ones further promote understanding and increase the

reasonability of our margin adaptive strategy.

4.3. Generalization and Validation Experiments

To show the generalization ability of our approach,

we perform numerous validity experiments. Our agent is

trained based on CosFace [36]. Nevertheless, we use the

strategy generated by the agent to modify the margins on

not only CosFace [36] but also ArcFace [5]. Meanwhile,

we use different network architectures from the sample net-

works, including 34-layer and 18-layer CNN based on the

residual unit proposed in [5]. As shown in Table 1, our

margin adaptive strategy can be applied to various models

with large margin, which confirms the generalization ability

of our method.

We also design three baselines with rule-based margin s-

trategies. The MIP baseline simply uses margins inversely

proportional to the number of images of the classes. The

VDM baseline makes the margins decided by their accord-
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Figure 5. Part of the margin adaptive strategy from the trained agent. Each grid indicates an action on a state. “V1”, “V2” and “V3” refer to

small, medium and large intra-class variance, respectively. We have three findings from the strategy. First, the group with smaller classes

has a greater tendency to raise the margin. Second, larger intra-class variance is more likely to lead to increasing the margin, and vice

versa. Third, for a specific group with specific intra-class variance, there may exist an optimal range of margins.

Method #layers LFW YTF MF1 Rank1 MF1 Veri.

CosFace (LMCL) [36] 34 99.32 93.98 75.38 89.15

FairLoss Cos 34 99.52 95.82 76.95 90.82

ArcFace [5] 34 99.42 94.54 75.93 91.06

FairLoss Arc 34 99.57 94.66 78.15 92.89

CosFace (LMCL) [36] 18 99.23 93.58 73.56 86.80

FairLoss Cos 18 99.35 94.58 75.40 89.14

ArcFace [5] 18 99.28 93.36 75.72 88.98

FairLoss Arc 18 99.37 93.76 75.98 90.32

Table 1. Validation of our strategy with different loss functions and

different network architectures on LFW [13], YTF [41] and the

MegaFace Challenge 1 [14]. “Rank1” refers to rank-1 identifica-

tion accuracy with 1M distractors, and “Veri.” refers to verification

TAR for 10−6 FAR. FairLoss Cos and FairLoss Arc represent the

methods with our margin adaptive strategy used in CosFace [36]

and ArcFace [5], respectively.

Method LFW YTF MF1 Rank1 MF1 Veri.

CosFace (LMCL) [36] 99.33 96.1 77.11 89.88

CosFace MIP 99.43 95.4 76.77 91.21

CosFace VDM 99.37 95.8 76.78 91.43

CosFace RM 99.33 95.6 76.09 91.36

FairLoss Cos 99.57 96.2 77.45 92.87

Table 2. Comparisons with several baselines with rule-based mar-

gins. MIP simply uses margins inversely proportional to the num-

ber of images of the classes. VDM refers to variance deciding

margins. RM uses random margins.

ing intra-class variances and inter-class variances during

training. Smaller intra-class variance and larger inter-class

variance lead to larger margin, and vice versa. The decision

function is similar to our reward function in Eq. 13. The

RM baseline uses random margins. For fair comparisons,

we make the margins vary from 0.15 to 0.45 (0.15, 0.25,

0.35 and 0.45) both in our margin adaptive strategy and all

the baselines. The results are given in Table 2. Our method

outperforms all the three unfixed margin strategies, which

verifies the effectiveness of our strategy.

In Fig. 6, we illustrate the distributions of average cosine

distances between the weight of a class and that of other

classes from the last fully connected layer. The classes are

divided into three parts by the number of images with 50

and 150 as the thresholds. As can be observed, the dis-

Figure 6. Distributions of average cosine distances between class

weights. The classes in the three graphs have different number of

images. Left: less than 50. Middle: between 50 and 150. Right:

more than 150.

tances of minority classes with our method are larger than

the original CosFace [36] while smaller in majority classes.

Note that the weight distance can reflect the margin for a

same class in the two methods, so the distributions in Fig. 6

completely confirm our assumptions in Fig. 1(c). Further,

the weights in our method are more orthogonal.

4.4. Experiments on LFW and YTF

Labeled Face in the Wild (LFW) dataset [13] contains

13,233 web-collected face images from 5,749 different i-

dentities. Youtube Faces (YTF) dataset [41] contains 3,425

videos of 1,595 different people, with 181.3 frames for the

average length of a video clip. The faces in both datasets

have huge variations in pose, expression and illuminations.

Following the unrestricted with labeled outside data proto-

col on both datasets, we test on 6,000 face pairs from LFW

and 5,000 video pairs from YTF.

As illustrated in Table 3, the proposed fair loss achieves

99.57% on LFW and 96.2% on YTF with single network

trained on small dataset CAISA-WebFace [44]. It shows

the best performance trained on WebFace, better than other

models trained on the same dataset, including the original

CosFace [36]. Further, compared with the recent imbal-

anced learning methods trained on WebFace or larger data

(second cell in Table 3), fair loss is shown to achieve consis-

tent gains due to the stronger discriminating power between

imbalanced classes.
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Method #Nets #Layers Data LFW YTF

DeepFace [32] 3 6 4M 97.35 91.4

FaceNet [27] 1 14 200M 99.63 95.1

VGG Face [26] 1 16 2.6M 98.95 97.3

DeepID2+ [30] 25 - 0.3M 99.47 93.2

Baidu [19] 1 10 1.3M 99.13 -

Center Face [40] 1 7 0.7M 99.28 94.9

Noisy Softmax [3] 1 8 WebFace+ 99.18 94.88

Range loss [48] 1 28 1.5M 99.52 93.7

Augumentation [22] 1 19 1.5M 98.06 -

Center invariant loss [42] 1 22 WebFace 99.12 93.88

Feature transfer [45] 1 - 4.8M 99.37 -

Softmax Loss 1 64 WebFace 97.88 93.1

Softmax+Contrastive [29] 1 64 WebFace 98.78 93.5

Triplet Loss [27] 1 64 WebFace 98.70 93.4

L-Softmax Loss [21] 1 64 WebFace 99.10 94.0

Softmax+Center Loss [40] 1 64 WebFace 99.05 94.4

SphereFace (A-Softmax) [20] 1 64 WebFace 99.42 95.0

CosFace (LMCL) [36] 1 64 WebFace 99.33 96.1

Ours (Fair Loss) 1 50 WebFace 99.57 96.2

Table 3. Face verification accuracy (%) on LFW and YTF. “#Nets”

represents the number of networks for ensemble and “#Layers”

represents the number of layers in a network.

4.5. Experiments on MegaFace Challenge

MegaFace [14, 24] is a testing benchmark with very

challenging tasks, for the purpose of evaluating face recog-

nition methods at the million scale of distractors. The

MegaFace datasets include a gallery set with more than 1

million face images collected from Yahoo’s 100M Flickr

set [34] and a probe set with 100K photos of 530 celebrities

from FaceScrub [25]. In addition, MegaFace has two sep-

arate testing scenarios including identification and verifica-

tion under two protocols (small or large training dataset).

The training dataset is viewed as small if it has less than

0.5M images, large for other cases. For verification, we

compare the performance on TAR under 10−6 FAR, where

TAR and FAR denote True Accept Rate and False Accep-

t Rate, respectively. We evaluate the performance of our

method on both MegaFace Challenge 1 and Challenge 2.

MegaFace Challenge 1 (MF1). On MegaFace Chal-

lenge 1 [14], the gallery set includes 1 million photos that

capture more than 690K different persons. We evaluate fair

loss under the small training set protocol by training on

CASIA-WebFace [44]. The results are shown in Table 4.

Our method wins the first place of the verification test. For

rank-1 identification, fair loss outperforms all the classical

metric learning loss and large-margin loss with the same

training dataset. Fair loss shows its superiority on learning

discriminative features from imbalanced dataset.

MegaFace Challenge 2 (MF2). As for MegaFace Chal-

lenge 2 [24], all the algorithms are required to train on the

dataset provided by MegaFace. The MF2 training dataset

contains 4.7 million faces and 672K unique identities,

which is a large-scale imbalanced dataset. The gallery set

is different from MF1, incorporating 1M distractor images

that are disjoint from MF2 training dataset. We compare our

method with other advanced models in Table 5. Our fair loss

Method Protocol MF1 Rank1 MF1 Veri.

SIAT MMLAB [40] Small 65.23 76.72

DeepSense - Small Small 70.98 82.85

Beijing FaceALL V2 Small 76.66 77.60

GRCCV Small 77.67 74.88

Softmax Loss Small 54.85 65.92

Softmax+Contrastive [29] Small 65.21 78.86

Triplet Loss [27] Small 64.79 78.32

L-Softmax Loss [21] Small 67.12 80.42

Softmax+Center Loss [40] Small 65.49 80.14

SphereFace (A-Softmax) [20] Small 72.72 85.56

CosFace (LMCL) [36] Small 77.11 89.88

Ours (Fair Loss) Small 77.45 92.87

Table 4. Face identification and verification evaluation on MF1.

“Rank1” refers to rank-1 identification accuracy with 1M distrac-

tors, and “Veri.” refers to verification TAR for 10−6 FAR. The

methods in the second cell and ours in the last cell use the same

training dataset (CASIA-WebFace [44]).

Method Protocol MF2 Rank1 MF2 Veri.

3DiVi Large 57.04 66.45

Team 2009 Large 58.93 71.12

NEC Large 62.12 66.84

GRCCV Large 75.77 74.84

SphereFace (A-Softmax) [20] Large 71.17 84.22

CosFace (LMCL) [36] Large 74.11 86.77

Ours (Fair Loss) Large 79.41 89.62

Table 5. Face identification and verification evaluation on MF2.

“Rank1” refers to rank-1 identification accuracy with 1M distrac-

tors. “Veri.” refers to verification TAR for 10−6 FAR.

makes considerably better performance than the other mod-

els, which confirms the effectiveness of fair loss on large-

scale imbalanced dataset. According to the leaderboard of

MegaFace Challenge 2 [24], our method sets a new state-of-

the-art on rank-1 identification and achieves runner-up per-

formance on verification, with a single model to be tested.

Note that most of the previous high performance models,

including the existing state-of-the-art method, used model

ensemble technique.

5. Conclusions

In this paper, we contribute to the improvement of deep

face recognition with class imbalance problem by propos-

ing a new loss function, namely fair loss, with adaptive

margins. We use reinforcement learning to learn the mar-

gin adaptive strategy. Our approach by strategy based on

CosFace obtains competitive results on several popular face

benchmarks, which shows significant superiority on learn-

ing discriminative features from imbalanced datasets. Fur-

thermore, we empirically demonstrate that the way to learn

margin adaptive strategy by reinforcement learning can be

used in various large-margin loss functions to make better

performance in the case of class imbalance.
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