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Abstract

This paper explores object detection in the small data

regime, where only a limited number of annotated bound-

ing boxes are available due to data rarity and annotation

expense. This is a common challenge today with machine

learning being applied to many new tasks where obtain-

ing training data is more challenging, e.g. in medical im-

ages with rare diseases that doctors sometimes only see

once in their life-time. In this work we explore this prob-

lem from a generative modeling perspective by learning to

generate new images with associated bounding boxes, and

using these for training an object detector. We show that

simply training previously proposed generative models does

not yield satisfactory performance due to them optimizing

for image realism rather than object detection accuracy. To

this end we develop a new model with a novel unrolling

mechanism that jointly optimizes the generative model and

a detector such that the generated images improve the per-

formance of the detector. We show this method outperforms

the state of the art on two challenging datasets, disease de-

tection and small data pedestrian detection, improving the

average precision on NIH Chest X-ray by a relative 20%

and localization accuracy by a relative 50%.

1. Introduction

Generative Adversarial Networks (GANs) [6] have re-

cently advanced significantly, with the latest models [3, 12]

being able to generate high quality photo-realistic images

that are almost indistinguishable from real images. A natu-

ral question that has recently started being explored [17, 24,

26] is whether these generated images are useful in some

other ways; for example, could they be useful training data

for downstream tasks?

One common computer vision task that could benefit

from generated data is object detection [21, 25] which cur-

rently requires a large amount of training data to obtain

good performance. But for many object detection tasks,
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Figure 1. DetectorGAN generates object-inserted images as syn-

thesized data to improve the detection performance. DetectorGAN

integrates a detector into the generator-discriminator loop.

large datasets are difficult to obtain due to rare objects and

difficulties in obtaining object location annotations. One

common example is with medical images – disease detec-

tion has very little labeled object bounding box data be-

cause the diseases by nature are rare, and annotations can

only be done by professionals, and thus are costly. Solv-

ing such rare data object detection problems is valuable: for

example, for disease localization, a good disease detector

can help provide assistance to radiologists to accelerate the

analysis process and reduce the chance of missing tumors,

or even provide a medical report directly if a radiologist is

not available.

In this paper we explore using generative models to im-

prove the performance in small-data object detection. Di-

rectly applying existing generative models is problematic.

First, previous work on object insertion for generative mod-

els often needs segmentation masks, which are often not

available e.g. in disease detection tasks. Second, GANs

are designed to produce realistic images (indistinguishable

from real images), but realism does not guarantee that it

can help with the downstream object detection task. In par-

ticular, there is no direct feedback from the detector to the

generator; which means the generator cannot be trained ex-

plicitly to improve the detector.
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To address this, we propose a new DetectorGAN model

(shown in Fig. 1) that connects the detector and the GAN

together. This joint model integrates a detector into the

generator-discriminator pipeline and trains the generator to

explicitly improve the detection performance.

DetectorGAN has two branches after the generator: one

with discriminators to improve realism and interpretability

of the generated images, and another with a detector to give

feedback on how well the generated images improve the de-

tector. We jointly optimize the adversarial losses and detec-

tion losses. To generate images that are beneficial for the

detector, the loss formulation is non-trivial. One difficulty

is that our goal is for the generated images to improve the

detector performance of real images, but the generator can-

not receive gradients from the detection loss on real images

because the real images are not generated. To address this,

the proposed method bridges this link between the genera-

tor and the detection loss on real images by unrolling one

forward-backward pass of the detector training.

We demonstrate the effectiveness of using DetectorGAN

to improve small-data object detection in two datasets for

disease detection and pedestrian detection. The detector-

integrated GAN model achieves state of the art performance

on the NIH chest X-ray disease localization task, benefit-

ing from the additional generated training data. In partic-

ular, DetectorGAN improves the Average Precision of the

nodule detector by a relative 20% by adding 1000 synthetic

images, and outperform the state of the art on localization

accuracy by a relative 50%. We also show that the pro-

posed framework significantly improves the quality of the

generated images: a radiologist prefers generated images

by DetectorGAN over alternative methods in 96% of cases.

The detector model can be integrated into almost any exist-

ing GAN models to force them to generate images that are

both realistic and useful for downstream tasks. We give the

pedestrian detection task and the associated PS-GAN [24]

as an example, demonstrating a significant quantitative and

qualitative improvement in the generated images.

Our contributions are:

1. To the best of our knowledge, this work is first to in-

tegrate a detector into the GAN pipeline so that the

detector gives direct feedback to the generator to help

generate images that are beneficial for detection.

2. We propose a novel unrolling method to bridge the gap

between the generator and the detection performance

on real images.

3. The proposed model outperforms GAN baselines on

two challenging tasks including disease detection and

pedestrian detection, and achieves the state-of-the-art

performance on NIH chest X-ray disease localization.

4. We are the first few works to explore GANs with

downstream vision tasks such as small-data object de-

tection.

2. Related Work

Image-to-image Translation. Based on a conditional

version of Generative Adversarial Networks (GANs) [6],

Isola et al [10] pioneered the general image-to-image trans-

lation task. Afterwards multiple other works have also ex-

ploited pixel-level reconstruction constraints to transfer be-

tween source and target domains [30, 27]. These image-

to-image translation frameworks are powerful, but require

training data with paired source/target images, which are

often difficult to obtain. Unpaired image-to-image trans-

lation frameworks [31, 22, 26, 13, 16] remove this require-

ment of paired-image supervision; in CycleGAN [31] this is

achieved by enforcing a bi-directional prediction between

source and target. The proposed DetectorGAN falls in

the category of unpaired image-to-image translation frame-

works. Its novelty is that it integrates a detector into GAN

to generate images as training data for object detection.

Object Insertion with GANs. The idea of manipulating

images by GANs has been explored recently [14, 9, 4, 20,

24, 15, 20]. These works use generative models to edit

objects in the scene. In contrast, (1) our method doesn’t

require any segmentation information; and (2) our goal is

to gain quantitative improvement on object detection task

while prior works focus on qualitative improvement such as

realism.

Integration of GANs and Classifiers. Beyond the ba-

sic idea of using adversarial losses to generate realistic im-

ages, some GAN models integrate auxiliary classifiers into

the generative model pipeline, such as Auxiliary Classifier

GAN (ACGAN) and related works [23, 1, 5, 2, 8]. At a

first glance, these models bear some similarity with our in-

tegration with detector. However, we differ from them both

conceptually and technically. Conceptually, these methods

only improve the realism of the generated images and have

no intention to improve the integrated classifier; in contrast,

the purpose of our integration is to improve the detection

performance. Technically, our loss formulation is different:

ACGAN minimizes classification losses only on synthetic

images and has no guarantee for improving performance

on real images, whereas ours optimizes losses on both syn-

thetic and real by adding unrolling step. Nevertheless, we

construct a baseline with ACGAN-like losses, which only

minimizing detection losses on synthetic images, and show

that our proposed method outperforms it.

Data Augmentation for Object Detection There are

some works using data augmentation to improve object de-
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tection. A-Fast-RCNN [29] uses adversarial learning to

generate hard data augmentation transformations, specifi-

cally for occlusions and deformations. It differs from the

method in this paper in two major ways: (1) It is not a GAN

model – it does not generate images but instead adds ad-

versarial data augmentation into the detector network. In

contrast, our model has a discriminator and detector that

work together to generate synthetic images. (2) Its goal is to

‘learn an object detector that is invariant to occlusions and

deformations’. In contrast, this paper focuses on generating

synthetic data for the problem setting where the amount of

training data is limited.

Perceptual GAN [17] generates synthetic images to im-

prove the detection. However, it is designed specifically for

small-sized object detection by super-resolving the small-

sized objects into better representations. Their method does

not generalize to general object detection.

Concurrent unpublished work PS-GAN [24] is most

closely related: synthetic images are generated to improve

pedestrian detection. They generate synthetic images using

a traditional generator-discriminator architecture. In con-

trast, we add a detector in the generator-discriminator loop

and have direct feedback from the detector to the generator.

3. DetectorGAN

Our DetectorGAN method generates synthetic training

images to directly improve the detection performance. It

has three components: a generator, (multiple) discrimina-

tors, and a detector. The detector gives feedback to the gen-

erator about whether the generated images are improving

the detection performance. The discriminators improve the

realism and interpretablity of the generated images; that is,

the discriminators help to produce realistic and understand-

able synthetic images.

3.1. Model Architecture

We implement our architecture based on Cycle-

GAN [31]. The generator in DetectorGAN generates syn-

thetic labelled (object-inserted) images that are fed into two

branches later: the discriminator branch and the detector

branch. We consider clean images without objects belong

to domain X, and labelled images with objects belong to

domain Y.

Generators. We use a ResNet generator with 9 blocks as

our generators GX and GY following [31, 7]. The forward

generator GX takes two inputs: one is a real clean image,

which is used as the background image to insert objects.

The other one is a mask where the pixels inside the bound-

ing box of the object to insert are filled with ones while the

rest are zeros. The output of the generator is a synthetic

image with the input background and an object inserted at

the marked location. Inversely, the backward generator GY

takes a real labelled image and a mask showing the object

location, and outputs an image with the indicated object re-

moved.

Plausible inserting locations of objects are difficult to ob-

tain. In this paper, for the NIH disease task, we obtain these

locations by pre-processing and random sampling. In the-

ory, the location could be in any position in the lung area,

but since in practice we do not have segmentation mask for

the lung area, we first match each clean image to the most

similar labelled image with bounding box and then ran-

domly shift the location around to get the sampled ground-

truth box location. For the pedestrian detection task, we

follow the setup in the previous work [24]. It is notable that

the selection of mask locations does not change our method

– as an alternative one could use trainable methods to pre-

dict plausible locations.

Discriminators. Our method contains two global dis-

criminators DISglobalX and DISglobalY as in Cycle-

GAN[31], and a local discriminator DISlocalX for local

area realism [15, 18]. The global discriminator DISglobalX

and the local discriminator DISlocalX discriminates be-

tween real labelled images and synthetic labelled images

(generated by GX ), globally on the whole images or lo-

cally on the bounding box crops. DISglobalY discriminates

what GY generates (synthetic clean images by removing

objects from real labelled images) and real clean images.

DISlocalY is not needed because conceptually we do not

care much about the local realism after removing an object.

We use 70× 70 PatchGAN following [11, 10, 31] for all of

our discriminators.

Detector. The detector DET takes both real and synthetic

labelled images with objects as input and outputs bounding

boxes. In our implementation we use the RetinaNet detec-

tor [21]. But we are not only limited to RetinaNet: as long

as the detector is trainable, we can integrate it into the loop.

3.2. Train Generator with Detection Losses

The objective of the generator GX is to generate images

with objects inserted that are both realistic and beneficial

to improve object detection performance. One of our main

contributions is that we propose a way to backpropagate the

gradients derived from detection losses back to the gener-

ator to help the generator to generate images that can bet-

ter help improve the detector. In other words, the detection

losses give the generator feedback to generate useful images

for the detector.

We note the detection loss (regression and classification

losses) as Ld(·), where · is a labelled image, either real or

synthetic. The detection loss on real images and synthetic
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Figure 2. The illustration for Eqn. 3 – unrolling one forward-

backward pass for training DET to bridge the link between GX

and L
real

Det (detection loss on real images). Detection loss on real

images has no direct link to the generator GX . Last step of train-

ing old DET (noted as DET
′ in the figure, refers to same DET

module but in the previous training step) is unrolled as in the dot-

ted rectangle. The red arrow represents the fact that there is a

differentiable link between GX and L
real

Det after the unrolling.

images are:

Lreal
Det (DET ) = Ey∼pdata(Y )[Ld(DET (y))]

(1)

L
syn
Det(GX , DET ) = Ex∼pdata(X)[Ld(DET (GX(x)))]

(2)

Unroll to Optimize Detection Loss on Real Images. In-

tuitively, given a real image y, the goal of GX is to use gen-

erated images to help minimize the detection loss on real

images. That is, GX should be trained to minimize the loss

Lreal
Det in Eqn. 1. However, there is no GX involved at the

first glance – the loss Lreal
Det does not depend on the weights

of the GX so GX cannot be trained. But we observe that

even though there is no direct link in one forward-backward

loop from GX to real images, the detector is trained by syn-

thetic images generated by GX in the previous step. We

propose to bridge the link between GX and the real image

detection loss Lreal
Det by unrolling a single forward-backward

pass of the detector as shown in Eqn. 3. A visualization of

this unrolling process is shown in Fig. 2. This allows us to

train GX with respect to the loss Lreal
Det .

L̃real
Det (GX , DET ) = Ey∼pdata(Y )[Ld(DET (y))]

where weights of DET , WDET , is updated with

∂(Lreal
Det (DET ) + L

syn
Det(GX , DET )))

∂WDET

(3)

Specifically, we train the weights DET with synthetic

images and real images for one iteration and obtain the gra-

dients on DET . These gradients are linked to the generated

synthetic images and thus to the weights in the generator

GX . Then we use the updated DET to get the Lreal
Det loss

and gradients. In this way, we obtain a link from GX to

DET and then to Lreal
Det .

Intuitively, this Eqn. 3 can be seen as a simple estima-

tion of how the change in GX will change detection perfor-

mance on real images in Eqn. 1.

Detection Loss on Synthetic Images. The generator

aims to make the synthetic images helpful for the detector.

It maximizes the detection loss on synthetic images (Eqn. 2)

to generate images that the detector has not seen before and

cannot predict well. In this case the generated images can

help improve the performance.

One might think the generator should instead minimize

the detection loss on synthetic images. This shares some

similar ideas with ACGAN-like losses, where the auxiliary

classification loss on synthetic images is minimized to im-

prove realism. But for our goal to improve the detection

performance on real images, minimizing detection losses

on synthetic images may not help, or may even hurt the de-

tection performance on real images. The intuition behind

this is that synthetic objects may distract away from the op-

timization goal of the detector. In our experiments, we show

that minimizing synthetic image losses like ACGAN harms

detection performance on real images.

3.3. Overall Losses and Training

Overall Losses. The objective of the generator GX is to

generate images with an object inserted at the indicated lo-

cation in background images. The generated images should

be both realistic and beneficial to improve object detec-

tion performance. In other words, the DetectorGAN model

should generate images that: (1) can help to train a better

detector; (2) have an object inserted; and (3) are indistin-

guishable from real images, globally and locally.

We have introduced losses to help the detector above.

For inserting an object, we use an L1 loss to minimize the

loss between the synthetic object crop and the real object

crop (refered as BboxLoss):

To generate realistic images, we have adversar-

ial losses for the global discriminators and the lo-

cal discriminator. For DISglobalX , the adversar-

ial loss is LGAN (GX , DISglobalX) as in Eqn. 4.

LGAN (GY , DISglobalY ) and LGAN (GX , DISlocalX) are

similar.

LGAN (GX , DISglobalX) = Ey∼pdata(Y )[logDISglobalX(y)]

+Ex∼pdata(X)[log(1−DISglobalX(GX(x)))]

(4)
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Table 1. Nodule AP on expanded annotation setting on the test set with IoU = 0.1 for NIH. Baseline is using only real training data. We

add 1000 synthetic images from CycleGAN and GAN-D for training.

Training data Nodule AP Nodule Recall

Real data only 0.124 0.184

Real + syn from ACGAN-like losses 0.154 0.607

Real + syn from CycleGAN + BboxLoss 0.196 0.541

Real + syn from DetectorGAN - unrolling 0.203 0.544

Real + syn from DetectorGAN 0.236 0.649

Table 2. Localization accuracy with different TIOU on “old annotations” test set for NIH.

TIOU 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Avg

Wang et al. [28] 0.14 0.05 0.04 0.01 0.01 0.01 0.00 0.04

Zhe et al. [19] 0.40 0.29 0.17 0.11 0.07 0.03 0.01 0.15

RetinaNet: real 0.15 0.15 0.15 0.08 0.08 0.00 0.00 0.09

RetinaNet: real + syn from CycleGAN + BboxLoss 0.31 0.31 0.23 0.23 0.00 0.00 0.00 0.15

RetinaNet: real + syn from DetectorGAN 0.31 0.31 0.31 0.23 0.23 0.15 0.08 0.23

In addition, we use cycle consistency losses and identity

losses to help preserve information from the whole image.

Here GX and GY aim to fool the discriminators while

the discriminators aim to discriminate between fake

and real images. The generator and discriminators thus

optimize minGX ,GY
maxDISglobalX ,DISlocalX ,DISglobalY

[LGAN (GX , DISglobalX) + LGAN (GY , DISglobalY ) +
LGAN (GX , DISlocalX)].

We update the weights of the detector DET by minimiz-

ing the detection losses for both real images and synthetic

images: it minimizes Eqn. 1 and Eqn. 2.

Training. In summary, when updating the discriminators,

the goal is to maximize the discriminator losses on gener-

ated images and minimize the losses on real nodule images.

When updating the detector, the goal is to minimize the de-

tection losses for both real and generated nodule images.

When updating the generator, the goal is to: (1) minimize

the discriminator losses on generated images; (2) minimize

detection loss on real object images, (3) maximize detection

loss on generated images.

We use a history of synthetic images [26], and for faster

convergence we pretrain the discriminator-generator pair

and the detector separately and then train them jointly.

When we have a labelled image without bounding box an-

notations, we still update the discriminator DISglobalX to

improve global realism.

4. Experiments

In this section we demonstrate the effectiveness of De-

tectorGAN on two tasks: nodule detection task with the

NIH Chest X-ray dataset and pedestrian detection with the

Cityscapes dataset. We obtain significant improvements

over baselines and achieve state of the art results on the nod-

ule detection task.

4.1. Disease Localization

4.1.1 Dataset

We use the NIH Chest X-ray dataset [28] and focus on

the nodule detection task. The NIH Chest X-ray dataset

contains 112,120 X-ray images – 60,412 clean images and

51,708 disease images, 880 of which have bounding boxes.

For the nodule class, there are 6,323 nodule images, 78 of

which have bounding boxes.

Improved and Extended Annotations. The bounding

box annotation for this dataset is however not satisfying due

to the following issues: (1) In the original paper and previ-

ous work [28, 19], there is no standard train/test/validation

split. (2) The bounding box annotations are not complete;

that is, for each image there is only at most one bound-

ing box for each class annotated, while there are actually

many nodules present in the image. (3) Even with a stan-

dard train/test/validation split, the test and validation sets

are too small to obtain stable and meaningful results.

To address these problems, we make the following ef-

forts to make the disease detection task more standard and

easy to conduct research on: (1) Generating a no-patient-

overlap train/test/validation split with 0.7/0.2/0.1 portion of

the data, yielding 57/13/9 images with 57/13/9 object in-

stances. (2) Asking radiologists to re-annotate the current

validation and test images using additional images from la-

beled images in the test/validation sets. These efforts result

in 36 images and 80 images in validation and test sets ac-
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Bbox MaskClean Image CycleGANDetectorGAN Bbox MaskClean Image CycleGANDetectorGAN

Figure 3. Example generated images from CycleGAN and DetectorGAN for NIH. The details are high-lighted in green boxes (added for

visualization). Both methods generate synthetic images from clean images and bounding box masks. DetectorGAN generates nodule

inserted images with better local and global quality.

PS-GAN PS-GANNoise BoxReal Image DetectorGAN Noise BoxReal Image DetectorGAN

Figure 4. Examples of generated synthetic images from PS-GAN and DetectorGAN. The details are high-lighted in green boxes (added for

visualization). We see qualitative improvement for pedestrian task as well.

cordingly, with 159 and 309 object instances. These splits

and extended annotations will be published online to facil-

itate future research into this topic. We did not re-annotate

or expand the training set as we want to demonstrate the ef-

fectiveness of the proposed method in learning small-data

object detection tasks.

We refer to the 9/13 validation/test settings as “old an-

notations” and the 36/80 validation/test settings as the “new

annotations”. We obtain the detection AP on the “new anno-

tations” and localization accuracy on the “old annotations”

for fair comparison with previously published results.

Baselines and Previous Work. The baselines are: train-

ing with only real images, with additional synthetic images

generated from CycleGAN and BboxLoss, and with addi-

tional synthetic images generated from ACGAN-like losses.

The ACGAN-like losses refers to that in addition to discrim-

inator losses, we also minimize the detection loss on syn-
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Table 3. Localization accuracy with different TIOBB on the “old annotations” test set on NIH.

TIOBB 0.1 0.25 0.5 0.75 Avg

Wang et al. [28] 0.15 0.05 0.00 0.00 0.04

Zhe et al. [19] 0.40 0.25 0.11 0.07 0.18

RetinaNet: real 0.15 0.15 0.08 0.08 0.09

RetinaNet: real + syn from CycleGAN + BboxLoss 0.31 0.31 0.00 0.00 0.12

RetinaNet: real + syn from DetectorGAN 0.31 0.31 0.23 0.23 0.22

Table 4. User study on the NIH Chest X-ray dataset.

Method
Prefer [%] ↑ Mean Likert ↑ Std Likert

Object Whole Object Whole Object Whole

CycleGAN + BboxLoss 20 4 1.31 1.18 0.68 0.53

DetectorGAN 80 96 2.69 3.88 0.85 0.73

thetic images, similar to what ACGAN does for a classifier.

We compare these methods on the new high quality annota-

tions. In addition, we compare to two previously published

best-performing works [28, 19] using their evaluation split

and their annotations (the “old annotations”).

Evaluation Metrics. We use the standard object detec-

tion metric, average precision (AP), as the evaluation mea-

sure for the detection task. For comparisons to previous

work, we also use their metric: localization accuracy, which

is defined as the percentage of images that obtain correct

predictions. An image is considered having correct pre-

dictions if the intersection over union (IOU ) ratio between

the predicted regions (can be non-rectangle) and the ground

truth box is above threshold TIOU . Another metric that is

used by these works is to replace the IOU with intersec-

tion over bounding boxes IOBB. However, we encourage

researchers to use the proposed new annotations and evalu-

ation metric in the future for standard comparisons.

4.1.2 Quantitative Comparison

New Annotation with Average Precision. In Table 1, we

compare the results of using only real data, using synthetic

data from the proposed method as well as from other base-

line GAN models. We observe that DetectorGAN signifi-

cantly improves the average precision. Compared to train-

ing on real data only, the AP nearly doubles from 0.124 to

0.236, and recall over triples from 0.184 to 0.649. Com-

pared to ACGAN-like losses and CycleGAN + BboxLoss,

we obtain relatively 50% and 20% improvement.

We notice that ACGAN-like losses performs more

poorly than using discriminator losses only, even though it

has an additional loss to improve the detection performance

on synthetic images. One explanation is that the generator

and the detector learn only to detect synthetic objects, which

is different from the goal of detecting real objects, leading

to poor performance.

To further demonstrate the benefits of using the unrolling

step to bridge the gap between the generator and the detec-

tion performance on real images, we also experiment with a

‘DetectorGAN - unrolling’ network without unrolling. We

observe a significant boost for adding the unrolling step,

from 0.203 to 0.236 AP.

Old Annotation with Localization Accuracy. For com-

parison with previous work, we evaluate detection results

using the localization accuracy metric with different IOU

and IOBB thresholds. Results are shown in Table 2 and

Table 3. We significantly outperform competing methods

by relative 50% and 22%.

4.1.3 Qualitative Analysis

Generated Image Quality. We show DetectorGAN’s

generated images, along with CycleGAN-generated images

in Fig. 3. We observe that images are much better in terms

of realism and blend-in.

Detected Nodules. We show that the detector helps to de-

tect undetectable nodules in Fig. 5. We observe that ev-

ery nodule captured by the baseline (trained on real images

only) is also captured by the model trained using synthetic

images. Meanwhile, adding synthetic images helps capture

more nodules that baseline cannot capture. Moreover, the

box locations are generally more accurate.

4.1.4 User Study

We also conduct user study with a radiologist to evaluate the

quality of the generated images. We ask the radiologists to

rate the realism of the inserted nodule and the global image
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DetectorGANBaseline DetectorGANBaseline DetectorGANBaseline

Figure 5. Comparison showing that adding synthetic images can help detect nodules in NIH Chest X-ray more accurately. Here, green

boxes are ground truth and red are predictions.

on a Likert scale (scale 1–5, with 5 indicating highest qual-

ity). As shown in Table 4, the images from DetectorGAN

are better than those from CycleGAN + BboxLoss in 96%

of cases, with generated objects (nodules) better in 80% of

cases. Moreover, the average Likert scores are significantly

higher: 2.69 vs 1.31 for the objects, and 3.88 vs 1.18 for the

whole image, demonstrating the benefits of our method.

Table 5. Pedestrian detection AP trained with real data, synthetic

data generated by PS-GAN, pix2pix and DetectorGAN.

Data Real +DetectorGAN +PS-GAN +pix2pix

AP 0.593 0.613 0.602 0.574

4.2. Pedestrian Detection

As a demonstration of the applicability of DetectorGAN

to other datasets and problems, we apply it to pedestrian

detection with a different base architecture. We follow PS-

GAN [24] to synthesize images with pedestrians inserted

and improve pedestrian detection. We demonstrate a quanti-

tative and qualitative improvement in the generated images

by adding the detector into the loop.

Dataset. We use the Cityscapes dataset, which contains

5,000 urban scene images with high-quality annotations.

We follow the instructions in the PS-GAN paper to filter im-

ages with small or occluded pedestrians obtain about 2,000

images with about 9,000 labeled instances.

Baseline and Architecture. We use PS-GAN[24] as the

backbone architecture and add the detector into the model.

The PS-GAN uses the standard pix2pix framework with lo-

cal discriminators. This also shows that the DetectorGAN

idea is versatile — it can be integrated with different GAN

models. We fine-tune the model from the pretrained PS-

GAN model.

Quantitative Results. Table 5 shows that we improve

the detection performance for pedestrian detection as well.

We observe that DetectorGAN further improves the perfor-

mance over PS-GAN.

All models here are trained using the same setting. The

real-images-only baseline performance is slightly different

from what is reported in the PS-GAN paper because we do

not have access to the exact details of the detector setting

used in the PS-GAN paper.

Qualitative Results. Qualitative results are shown in

Fig. 4. We observe that DetectorGAN can generate qual-

itatively better images with less artifacts.

5. Conclusion

In this work we explored the object detection problem

in the small data regime from a generative modeling per-

spective by learning to generate new images with associ-

ated bounding boxes. We have shown that simply training

an existing generative model does not yield satisfactory per-

formance due to it optimizing for image realism instead of

object detection accuracy. To this end we developed a new

model with a novel unrolling step that jointly optimizes a

generative model and a detector such that the generated im-

ages improve the performance of the detector. We show that

this method significantly outperforms the state of the art on

two challenging datasets.
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