
Learning Propagation for Arbitrarily-structured Data

Sifei Liu1, Xueting Li1,2, Varun Jampani1∗, Shalini De Mello1, Jan Kautz1

1NVIDIA, 2University of California, Merced

Abstract

Processing an input signal that contains arbitrary struc-

tures, e.g., superpixels and point clouds, remains a big chal-

lenge in computer vision. Linear diffusion, an effective

model for image processing, has been recently integrated

with deep learning algorithms. In this paper, we propose

to learn pairwise relations among data points in a global

fashion to improve semantic segmentation with arbitrarily-

structured data, through spatial generalized propagation

networks (SGPN). The network propagates information

on a group of graphs, which represent the arbitrarily-

structured data, through a learned, linear diffusion process.

The module is flexible to be embedded and jointly trained

with many types of networks, e.g., CNNs. We experiment

with semantic segmentation networks, where we use our

propagation module to jointly train on different data – im-

ages, superpixels and point clouds. We show that SGPN

consistently improves the performance of both pixel and

point cloud segmentation, compared to networks that do

not contain this module. Our method suggests an effective

way to model the global pairwise relations for arbitrarily-

structured data.

1. Introduction

The individual visual elements of spatially distributed

data, e.g., pixels/superpixels in an image or points in a point

cloud, exhibit strong pairwise relations. Capturing these re-

lations is important for understanding and processing such

data. For example, in semantic segmentation, where each

pixel/point is assigned a semantic label, it is very likely that

the points that are spatially and photometrically close, or

structurally connected to each other have the same seman-

tic label, compared to those that are farther away. We can

make use of such similarity cues to infer the relationships

among points and improve the propagation of information

(e.g., semantic labels, color etc.) between them. This pair-

wise relationship modeling is often called “affinity” mod-

eling. Evidence from psychological [5, 42] and empirical

studies in computer vision [37, 17, 27] suggests that general

∗The current affiliation is Google Research.

Figure 1. Groupings of different objects v and u in (a) with differ-

ent strategies: (b) performing convolution on grids; explicit pair-

wise modeling via (c) fully-connected graphs, and (d) our path-

aware propagation. Since v and u have the same color, we model

the similarity (κ) using spatial closeness between two points.

classification or regression problems can immensely benefit

from the explicit modeling of pairwise affinities.

With a dramatic rise in adoption for computer vision

tasks, CNNs implicitly model pairwise relationships, as

convolution filters learn to capture correlations across image

pixels. Several extensions of CNNs to process arbitrarily-

structured data (such as point clouds) have been proposed

(e.g., permutohedral lattice [1, 24, 43]) that go beyond pro-

cessing regular grid-like structured images. They transform

the data to some regular structures, such that convolutional

filters can be learned for them. However, convolutions can

only capture short-range pairwise relations and the filters

are also content-agnostic as their weights are fixed once

they are trained. As a result, we usually resort to using

very deep network architectures to model all possible pair-

wise relations, and long-range pixel dependencies. As an

alternative, several recent works [54, 10, 8, 24, 31, 7, 19,

34, 47, 36] propose neural network modules that can ex-

plicitly model pairwise relations, resulting in considerable

improvements in CNN performance for a variety of com-

puter vision tasks. However, most of them are designed on

regularly-structured data, such as images and videos.

Despite the existence of these methods, several impor-

tant challenges remain for processing arbitrarily-structured

data such as point clouds: First, we hope such data can

be represented with a more flexible structure, instead of

regular-grids (such as voxel grids or permutohedral lattice),

such that the original structure of the input data can be faith-

fully preserved. Second, as mentioned above, we hope to

explicitly model the pairwise relations among their data el-

652



ements. Third, we hope to model the pairwise relations

globally, but still adhere to the structures of the input data.

Fig. 1 illustrates the above challenges, where the aim is to

decide for the point v1, which belongs to the curved ob-

ject, whether vn and u belong to the same object as v1. As

shown in Fig. 1(b), placing a curve on a grid and conducting

convolution on top of it does not effectively correlate the el-

ements. On the other hand, with explicit pairwise modeling

as shown in Fig. 1(c), if we relate v1 with the other points

globally by independently computing their Euclidean dis-

tances, we will incorrectly model v1 and vn as “not similar”,

but v1 and u as “similar”, since they are spatially closer.

Fig. 1(c) also belongs to the non-local propagation methods

[27, 47, 54, 7, 24], which explicitly model pairwise relations

via a fully-connected graph.

In this work, we aim to address all the above mentioned

challenges by proposing a spatial generalized propagation

network (SGPN), as illustrated in Fig. 1(d). Instead of trans-

forming input points into a regular grid structure, we retain

the original spatial structure of the data, but establish several

directed acyclic graphs (DAGs) to connect adjacent points,

where Fig. 1(d) shows a top-to-bottom DAG that faithfully

adheres to the curved object v’s structure. With our prop-

agation operator, the distance between v1 and vn is deter-

mined by the accumulated connections of the adjacent ele-

ments between them. When the multiplication of the inter-

mediate distances is small, we can correctly model v1 and

vn as belonging to the same object, even though they are

spatially far away.

We show that, theoretically, our propagation mecha-

nism is equivalent to linear diffusion. More importantly,

we propose a differentiable kernel operator such that even

for DAGs, the strength of an edge between two connected

nodes is learnable. Moreover, our entire framework is a

flexible deep learning building block, where the SGPN can

be embedded in, and jointly optimized with any type of net-

work, e.g., any baseline CNN for semantic segmentation.

For the same reason our propagation module, which oper-

ates on arbitrarily-structured data, e.g., point clouds, can

also be easily combined with 2D CNNs that process im-

ages associated with the points, e.g., the multi-view images

corresponding to point clouds. We demonstrate the effec-

tiveness of SGPN by applying it to different types of data,

including image pixels, superpixels and point clouds, for the

task of semantic segmentation. Experimental results show

that our SGPN outperforms state-of-the-art methods on se-

mantic segmentation with all types of data and consistently

improves all the baseline models by reliable margins.

2. Related Work

Modeling irregularly-structured data. Irregular data

domains refer to those that do not contain regularly or-

dered elements, e.g., superpixels or point clouds. Deep

learning methods that support processing irregular domains

are far less than those that exist for regular domains, e.g.,

images and videos. For modeling superpixels, the work

of [22] uses superpixels inside CNNs by re-arranging them

by their features. The work of [24] uses a superpixel con-

volution module inside a neural network, which results in

some performance improvement [46, 25]. In comparison,

quite a few networks have been designed for point clouds

[29, 39, 40, 44, 43], where most target adapting CNN mod-

ules to unstructured data, instead of explicitly modeling the

pairwise relationships between the points. On the other

hand, while some propagation modules [27, 26, 51, 24] ad-

dress affinity modeling for irregularly-structured data, they

cannot address the challenge of preserving internal struc-

tures due to the non-local nature of their propagation.

Modeling pairwise affinity. Pairwise relations are mod-

eled in a broad range of low- to high-level vision prob-

lems. Image filtering techniques including edge-preserving

smoothing and image denoising [2, 45, 6, 21] are some of

the most intuitive examples of applying pairwise model-

ing to real-world applications. The task of structured pre-

diction [27, 28, 18], on the other hand, seeks to explic-

itly model relations in more general problems. Recently,

many methods for modeling affinity have been proposed

as deep learning building blocks [34, 48, 49, 47, 54, 31, 7,

24, 51], and several of them also propose to “learn” affini-

ties [34, 47, 24, 51]. Besides these methods, diffusion the-

ory [38] provides a fundamental framework that relates the

task of explicit modeling of pairwise relations to physical

processes in the real world, where many popular affinity

building blocks [47, 51, 34] can be described by it.

Propagation networks. Our work is related to the recent

spatial propagation networks (SPNs) [34, 12] for images,

which learn affinities between pixels to refine pixel-level

classification [34] or regression [52, 33, 12] tasks. SPNs

model affinity via a differentiable propagation layer, where

the propagation itself is guided by learnable, spatially-

varying weights that are conditioned on the input image pix-

els. SPNs have the advantage of faithfully preserving com-

plex image structures in image segmentation [34], depth es-

timation [52] and temporal propagation [33]. We show in

the following section, that our work generalizes SPNs to ar-

bitrary graphs, such that SPN can be viewed as a special

case of our work on regular grids. Our work is also related

to recurrent neural networks (RNN) on graphs [23, 15, 30].

However, unlike our work RNNs are not designed for linear

diffusion on graphs, but instead target more general prob-

lems represented as graphs.

3. Spatial Generalized Propagation Network

Unlike images where pixels are placed on regular 2D

grids, data such as superpixels or point clouds encountered

653



Figure 2. A general architecture of SGPN for point cloud segmentation. See Section 3 for details of individual modules.

in vision tasks have an undefined structure. In order to pro-

cess such data with deep neural networks, they must be con-

verted into some structures such as a high-dimensional lat-

tice [43] or fully connected graphs [39, 47], on which the

operations of convolution, pooling, etc, can be carried out.

We take point cloud segmentation as an example in Fig. 2

to explain our method. We build a group of DAGs on the

raw points, as shown in Fig. 2(e), by connecting the spa-

tially adjacent points. In contrast with transforming the un-

structured points to a rigid lattice, where the topologies of

the raw points may be changed, and many unused vertices

may exist (e.g., see Fig. 1(b) where many grid cells are un-

occupied), DAGs neither change the input topologies, nor

consume any extra memory in order to enforce a regular

structure. Such a DAG structure is highly flexible since the

input points of different objects can have different DAGs

exactly adhering to their own shapes.

In terms of explicit pairwise modeling, in contrast to

fully connected graphs [47] where points are densely con-

nected (see Fig. 1(c)), the structure of DAGs also enables

the propagation along different directions to be carried out,

and “paths” along complex shapes of the input data (e.g.

Fig. 1(d)) are modeled. We establish different directions

with DAGs, e.g., along the x, y and z axis for a point cloud

in 3D (6 directions in total with positive and negative di-

rections along each axis), where we show the left-to-right

DAG in Fig. 2(e). The DAGs can be built on a global scope,

e.g., for a point cloud with millions of points, to support

long-range propagation.

Once the DAG is constructed, we learn pairwise affini-

ties between the DAG vertices and we use our SGPN propa-

gation module for structured information propagation along

the edges. SGPN can be attached on top of any CNN that

provides initial (unary) features at DAG vertices. In the case

of point clouds, the CNN can be an existing 3D network.

To demonstrate the flexibility of SGPN and to leverage the

potential of 2D CNNs, we obtain vertex features using a

2D CNN on the corresponding multi-view 2D images. We

use a differentiable aggregation module 2(c) that transforms

the pixel features into vertex features on the DAG. In the

following part, we first describe the formulation of linear

propagation on a DAG, assuming that the DAGs are given.

Then, we show that it exactly performs linear diffusion on

the DAGs. We emphasize the role of our SGPN – to implic-

itly learn to relate the vertices globally and to refine the em-

bedded representations, by learning the representation for

vertices (unary) and edges (pairwise), in (Section 3.2).

3.1. Formulation

Propagation on DAGs. Given a set of vertices V =
{v1, ..., vN} of a DAG, we denote the set of indices of the
connected neighbors of vi as Ki. For example, if a DAG
is built along a direction from left to right, and V is a set
of points in a point cloud, the vertices in Ki would be the
points that are adjacent to vi and are located spatially to
the left of it (see Fig. 2(e)). We denote the feature of each
vertex, before and after propagation, as u ∈ R

N×c and
h ∈ R

N×c, respectively, where u can be a c-channel fea-
ture map obtained from an intermediate layer of a segmenta-
tion CNN before propagation, and h would be its value after
propagation. We call u and h as the unary and propagated
features, respectively. The propagation operator updates the
value of h for the various vertices of the graph recurrently
(e.g., from left-to-right) as:

h(i) = (1−
∑

k∈Ki

gik)u(i) +
∑

k∈Ki

gikh(k), (1)

where {gik} is a set of learnable affinity values between vi
and vk, which we denote as the edge representations.

A parallel formulation. In DAGs, since vertices are up-
dated sequentially, propagating features from one vertex
to another using linear diffusion in Eq. (1) results in poor
parallel efficiency. Here we show that the propagation on
DAGs can be re-formulated in a “time-step” manner, which
can be implemented in a highly parallel manner. This is
achieved via a slight modification of the topological sorting
algorithm (see Alg. 1 in the supplementary material) used to
construct the DAGs: we re-order the vertices into groups to
ensure that (a) vertices in the same group are not linked to
each other and can be updated simultaneously, and (b) each
group has incoming edges only from its preceding groups.
Taking an image as an example, we can construct a left-
to-right DAG by connecting all pixels in the tth column to
those in the (t + 1)th column (see Fig. 3(a)). That is, col-
umn in an image is equivalent to a group in a DAG, where
in Eq. (1), pixels from the same column can be computed
simultaneously. We denote the corresponding “unary” and

654



Figure 3. Comparisons of local connections of DAGs between (a) image

pixels and (b) (c) irregularity-structured points.

“propagated” features for the vertices in the pth group, be-
fore and after propagation as up and hp, respectively. We
perform propagation for each group as a linear combination
of all its previous groups:

hp = (I − dp)up +

p−1∑

q=1

wpqhq, (2)

where q is a group that precedes the group p along the direc-
tion of propagation. Suppose the pth and qth groups con-
tain mp and mq vertices, respectively, wpq is a mp × mq

matrix that contains all the corresponding weights {g} be-
tween vertices in hp and hq . Specifically, dp ∈ R

mp×mp

is a diagonal degree matrix with a non-zero entry at i that
aggregates the information from all the {wpq} as:

dp(i, i) =

p−1∑

q=1

mq∑

j=1

wpq(i, j). (3)

Re-ordering vertices into groups results in the “time-

step” form of Eq. (2), where the update for all vertices in

the same group is computed simultaneously. For one di-

rection with the number of groups as T , the computational

complexity for propagating on the DAG is O(T ). Given

Eq. (2), we need to explicitly maintain stability of propaga-

tion, which is described in the supplementary material.

Diffusion on Graphs Linear diffusion theory states that

the filtering of signals can equivalently be viewed as the so-

lution of a heat conduction or diffusion, where the change

of the signal over time can be described as spatial differen-

tiation of the signal at the current state [38]. The theory can

be generalized to many other processing, such as refinement

of segmentation, where the spatial differentiation needs to

be replaced with a task-specific Laplacian matrix.

When fitting diffusion theory into deep neural network,

we hope the Laplacian to be learnable and flexibly condi-

tioned on the input signal, through a differentiable linear

diffusion module – we achieve this goal on DAGs. We first

introduce the notations, where U = [u1, ..., uT ] ∈ R
N×c

and H = [h1, ..., hT ] ∈ R
N×c are the features of all the

N ordered groups (U and H are re-ordered u and h in

Eq. (1)) concatenated together. We re-write Eq. (2) as re-

fining the features U through a global linear transformation

H − U = −LU . We can derive from both Eq. (2) and

Eq. (1) that L meets the requirement of being a Laplacian

matrix, whose each row sums to zero. It leads to a standard

Figure 4. Learning the unary (green) features and the pairwise (orange)

features for the edge representations of the DAG from a CNN.

diffusion process on graphs. Details of proof can be found

in the supplementary material.

We note that being linear diffusion process on DAGs is

an important property showing that the proposed algorithm

is closely related to real physical processes widely used in

many image processing techniques [38, 20, 4]. This con-

nection also makes our model more interpretable, for exam-

ple, the edge representations {gik} in Eq. (1) then explicitly

describe the strengths of diffusion in a local region.

3.2. Learning representations on DAGs.

Learnable edge representations. An edge representation

{gik} dictates whether the value of a vertex is passed along

to its neighbor or not. For the task of semantic segmenta-

tion, a desired {gik} should represent a semantic edge (i.e.,

gik = 0 stops propagation across different categories and

gik > 0 allows for propagation within a category) [8, 9, 35].

This implies that the edge representations should be learned

and conditioned on the input pixel values instead of being

fixed or manually defined. The work of [34] uses the values

produced by a CNN as edge representations, i.e., for left-

to-right propagation, a 3-channel output is utilized to rep-

resent the edges connecting a pixel to its top-left, left, and

bottom-left neighbors (Fig. 3(a)), respectively. However,

such a method cannot generalize to arbitrarily-structured

data since: (a) all vertices must have a fixed number of con-

nected neighbors, and (b) all the connections of all pixels

should have the same fixed topology or spatial layout. In

contrast, here we are dealing with DAGs constructed from

unstructured points (e.g., point clouds) that do not follow

either of these assumptions, see Fig. 3(b)(c).

To overcome this limitation, in our work each edge rep-

resentation gik used in linear propagation in Eq. (1) is di-

rectly computed via a differentiable symmetric kernel func-

tion κ (e.g., inner-product), such that gij = κ(xi, xj), j ∈
Ki, which is applied to the feature vectors xi and xj that

are specifically computed to relate vertices vi and vj . We

denote x ∈ R
N×c as feature from a pairwise branch of the

CNN. Encoding the graph’s edge weights in this manner,

allows for each vertex to have a different number and spa-

tial distribution of connected neighbors. It also reduces the

task of learning edge representations gik in Fig. 4 to that

of learning common feature representations {xi} that relate

the individual vertices. In detail, we use two types of local

655



similarity kernels:

Inner product (-prod). κ can be defined as an inner-
product similarity:

κ(xi, xj) = x̄i
⊤
x̄j (4)

Here x̄ denotes a normalized feature vector, which can be

computed in CNNs via Layer Normalization [3].

Embedded Gaussian (-embed). We compute the similar-
ity in an embedding space via a Gaussian function.

κ(xi, xj) = e
−‖xi−xj‖

2

F (5)

Since gik is allowed to have negative values, we add a learn-

able bias term to the embedded Gaussian and initialize it

with a value of −0.5.

Learning Unary and Pairwise Features. Our network

contains three blocks – a CNN block (Fig. 2(b)), that learns

features from 2D images that correspond to the unstructured

data (e.g., multi-view images for a point cloud, Fig. 2(a)),

an aggregation block (Fig. 2(c)) to aggregate features from

pixels to points, and a propagation (Fig. 2(d)) block that

propagates information across the vertices of different types

of unstructured data.

We use a CNN block to learn the unary u and pairwise

x features jointly. The CNN block can be any image seg-

mentation network (e.g. DRN [53]), where the unary term

can be the feature maps before the output, or the previous

upsampling layer (Fig. 4). Then, both features from image

domain are aggregated by averaging the individual feature

vectors from one local area corresponding to the same point,

to the specific vertex or edge, as shown in Fig. 4.

Since we show that the edge representations {gik} can

be computed by applying a similarity kernel to pairs of fea-

tures xi and xj , one could reuse the unary features (i.e.,

ui = xi) for computing pairwise affinities as well [47].

However, we find that for semantic segmentation, features

from lower levels are of critical importance for computing

pairwise affinities because they contain rich object edge or

boundary information. Hence, we integrate features from

all levels of the CNN, with simple convolutional blocks

(e.g., one CONV layer for a block) to align the feature di-

mensions of {x} and {u}. We further use a weighed-sum

to integrate the feature maps from each block, where the

weights are scalar, learnable parameters, and are initialized

with 1 (see the dashed box in Fig. 4).

4. Semantic Segmentation via SGPNs

In this section, we introduce how to build DAGs and em-

bed the learned representations, for refinement of semantic

segmentation w.r.t different type of unstructured data.

4.1. Propagation on Pixels and Superpixels

Image. We use the 3-way connection proposed in [34] to

build the DAGs for images, i.e. each pixel is connected to

3 of its adjacent neighbors in each direction, and propaga-

tion is performed in all 4 directions. Different from [34]

where the graph edge representations are directly produced

by a guidance network that is separate from the segmenta-

tion network, in this work we train a single segmentation

network to jointly compute both the unary features and the

edge representations as the similarity between pairwise fea-

tures (xi). Through this task, we demonstrate the effective-

ness of our strategy for learning the edge representations,

compared with [34] as presented in Section 5.

Superpixel. Superpixel is an effective representation to

group large irregularly-shaped semantically similar regions

of an image (see Fig 5), and thus reduce the number of input

elements for subsequent processing tasks. However, it is not

easy to utilize superpixels directly as image pixels as they

are not arranged on regular grids. Our method can perform

propagation on superpixels as an intermediate block by ag-

gregating pixel-level features, performing propagation, and

then projecting features from superpixels back to image pix-

els (we copy the single value of the superpixel to all the

image-pixel locations that the superpixel covers).

To perform propagation, we preprocess each superpixel

image by constructing a group of DAGs, where superpix-

els are the vertices, and the connections to their neigh-

bors are the edges. Specifically, we search for the spa-

tially adjacent neighbors of each superpixel, and group them

into 4 groups along the 4 directions of the original image

(i.e.,→,←, ↑, ↓). To determine whether a superpixel is the

neighbor of another superpixel along a specific direction,

we compare the locations of their centroids (see an exam-

ple in Fig. 5). For a 1024×2048 image from the Cityscapes

dataset [14] with 15000 superpixels, T is around 100 ∼ 200
and 200 ∼ 400 for vertical and horizontal directions, re-

spectively. This is far more efficient than performing prop-

agation on the original pixels of high-resolution images.

4.2. Propagation on Point Clouds

Unlike many prior methods [39, 29] which learn fea-

tures from raw points, our method flexibly maps image

features to points, for which numerous off-the-shelf net-

work architectures and pretrained weights can be utilized

directly by point clouds. The joint 2D-3D training is con-

ducted by establishing the correspondences between pix-

els and points via camera parameters (not the focus of this

work), and aggregating features from CNNs to DAGs ac-

cording to the correspondences. Note that the same point

may correspond to pixels from multiple images (Fig. 5(b)

dashed box), where we simply average the features across

them. The construction of DAGs is similar to that of su-

perpixels, except that the neighborhoods can be determined

directly according to spatial distances between points.

Constructing DAGs Along Surfaces. We observe that

constructing the graphs according to local object/scene sur-

656



Figure 5. Different diagrams are shown for aggregation and propagation along superpixels and point clouds. See details in Section 4.

faces, instead of XYZ Euclidean space, yields better perfor-

mance (Section 5). This is consistent with the intuition that

local regions belonging to the same smooth and continuous

surface are more likely to come from the same object. Sim-

ilar observations have been made in [13, 44, 40]. In detail,

consider a set of neighboring points k ∈ Ki in a spherical

range of i, such that ‖P(i) − P(k)‖ < R. The distance

between i and k is computed as (P(i)−P(k)) ·n(i), where

P(i) denotes the world coordinates of i, and n(i) is the sur-

face normal. A subset of neighbors with the smallest dis-

tances are selected, which are equivalent to a neighborhood

in the Tangent space [44].

Geometric-aware Edge Representations. Aside from

learning image pixel features, we found that incorporating

geometry hints for each point is equally important [43]. The

geometry information is the concatenation of point XYZ,

surface normal and point color RGB in our work. We

map this vector from point to pixels according to the cor-

respondence indices to form a 9-channel input map with the

same resolution as the input image, and apply one single

Conv+ReLU unit before integrating them with the affinity

block. To avoid absolute coordinates (e.g., X are around 50

in the training set, but 90 in the validation set), we replace

(X,Y, Z) with the coordinate-gradient (dX, dY, dZ).

5. Experimental Results

We evaluate the performance of the proposed approach

on the task of image semantic segmentation, in Sections 5.2

and 5.3, and point cloud segmentation in Section 5.4.

5.1. Datasets and Backbone Networks
Cityscapes [14]. This dataset contains 5000 high qual-

ity, high-resolution images finely annotated with street

scenes, stuff and objects, in total with 19 categories. We

use the standard training and validation sets. For all experi-

ments, we apply random cropping, re-scaling (between the

ratio of 0.8 to 1.3), rotation (±10 degrees) and mirroring

for training. We do not adopt any other data augmentation,

coarse annotations and hard-mining strategies, in order to

analyze the utility of the propagation module itself.

RueMonge2014 [41]. This dataset provides a bench-

mark for 2D and 3D facade segmentation, which contains

428 multi-view, high-resolution images, and a point cloud

with approximately 1M 3D points that correspond to these

images. The undetected regions are masked out and ignored

in processing. Semantic segmentation labels for both image

pixels and points are provided for a total of 7 categories.

Our experiments use standard training and validation splits

and the same data augmentation methods as the Cityscapes

dataset.

Our experiments use two type of backbone networks. To

compare against the baseline methods, mean Intersection

over Union (IoU) is used as the evaluation metric.

Dilated Residual Networks (DRN). We use DRN-22-

D, a simplified version of the DRN-C framework [53] as

our primary backbone architecture. This network contains a

series of residual blocks, except in the last two levels, each

of which is equipped with dilated convolutions. The net-

work is light-weight and divided into 8 consecutive levels

and the last layer outputs a feature map that is 8× smaller

than the input image. One 1× 1 convolution and a bilinear

upsampling layer is used after it to produce the final seg-

mentation probability map. We use the network pretrianed

on ImageNet [16]. To make the settings consistent between

the different experiments, we append our SGPN module to

the output of level-8 of the DRN model.

Deeplab Network. We adopt the Deeplab [11] frame-

work by replacing the original encoder with the architecture

of a wider ResNets-38 [50] that is more suitable for the task

of semantic segmentation. The encoder is divided into 8

levels and we append the SGPN to level-8.

5.2. Image Segmentation: SGPN on Pixels

Propagation with DRN. We perform pixel-wise propa-

gation of the output of the DRN network, and compare it

to its baseline performance. We re-train the baseline DRN

model with the published default settings provided by the

authors [53] and obtain the mean IoUs of 68.34 and 69.17,

for single and multi-scale inference, respectively, on the val-

idation set. For SGPN, in the pairwise block, we use fea-

tures for each level except the last one, and the features from

the first convolution layer. We call the features from levels

1 to 3 as lower level features, and 5 to 7 as higher level ones.

For the lower level features, the pairwise block contains a

combination of CONV+ReLU+CONV, while for the higher

level features, we use a single CONV layer since they have

the same resolution as the output of the encoder. The lower

657



In
p
u
t	
im

a
g
e

D
e
e
p
la
b

+
S
G
P
N

G
ro
u
n
d
	t
ru
th

Figure 6. Semantic segmentation results on the Cityscapes dataset via the Deeplab network. Regions are circled for ease of comparison.

Table 1. Results for DRN-related networks for semantic segmentation on Cityscapes val set. We show the results of multi-scale testing,

except for the +SPN, which shows better performance via single scale setting. embed and prod denote the embedded Gaussian and inner

product kernels.

categories

ro
ad

si
d

ew
al

k

b
u

il
d

in
g

w
al

l

fe
n

ce

p
o

le

tr
af

fi
cl

ig
h

t

tr
af

fi
cs

ig
n

v
eg

et
at

io
n

te
rr

ai
n

sk
y

p
er

so
n

ri
d

er

ca
r

tr
u

ck

b
u

s

tr
ai

n

m
o

to
rc

y
cl

e

b
ic

y
cl

e

mIoU

Baseline (DRN) [53] 97.4 80.9 91.1 32.9 54.9 60.6 65.6 75.9 92.1 59.1 93.4 79.2 57.8 92.0 42.9 65.2 55.2 49.4 75.2 69.5

+SPN (single) [34] 97.7 82.7 91.3 34.4 54.6 61.8 65.9 76.4 92.2 62.2 94.4 78.5 56.8 92.7 47.8 70.2 63.6 52.0 75.3 71.1

+NLNN [47] 97.4 81.1 91.2 43.0 52.9 60.3 66.1 74.9 91.7 60.6 93.4 79.2 57.7 93.3 54.4 73.5 54.7 54.2 74.4 71.3

+SGPN-embed 98.0 83.8 92.2 48.5 59.7 64.1 70.1 79.4 92.6 63.8 94.7 82.0 60.7 94.9 62.5 77.7 51.1 62.8 77.6 74.5

+SGPN-prod 98.1 84.4 92.2 51.8 56.5 65.8 71.2 79.4 92.7 63.2 94.3 82.7 65.1 94.9 73.8 78.0 43.2 59.7 77.4 75.0

+SGPN-superpixels 97.6 82.4 91.0 52.7 52.9 58.4 66.1 75.9 91.8 62.2 93.6 79.4 58.2 93.3 62.4 79.7 57.1 60.2 75.1 73.2

and higher level features are added together to form the final

pairwise features, with 128 channels. In addition, we use

two deconvolution layers on the unary and pairwise feature

maps to upsample them with a stride of 2, and convert them

into 32 channels. Propagation is conducted on the 2× up-

sampled unary features with compressed (32) channels. As

mentioned before, we use the same connections between

pixels as [34] in the propagation layer. The feature maps

produced by the propagation layer are further bilinearly up-

sampled to the desired resolution. To better understand the

capability of the SGPN module, we adopt the same loss

function (i.e., Softmax cross-entropy), optimization solver

and hyper-parameters in both the baseline and our model.

Comparison with SPN [34]. We produce a coarse seg-

mentation map for each training image using the baseline

network mentioned above. We then re-implement the SPN

model in [34] and train it to refine these coarse segmen-

tation maps. The SPN shows obvious improvements over

the baseline model with mIoUs of 71.1 and 70.8 for sin-

gle and multi-scale implementations, respectively. How-

ever, the SPN may not equally improve different models,

because the edge representation is not jointly trained with

the segmentation network, e.g., the multi-scale implemen-

tation does not consistently outperform the single-scale one.

Comparison with NLNN [47]. We compare with the

NLNN – one of the most effective existing modules for

learning affinity (Fig 1(c)). We implement this method to

make it comparable to ours, by using the same pairwise-

blocks as ours for computing affinities, but by replacing

the propagation layer with the non-local layer (see details

in [47]). This method achieves reasonably higher perfor-

mance (mIoU: 71.3) versus the baseline method and is also

comparable to the SPN method.

Among all the others, our SGPN method, with differ-

ent kernels (Section 3.2) produces significantly better re-

sults with the final mIoU of 75, with most categories been

obviously improved, as shown in Table 1.

Propagation with Deeplab Network. We embed the

SGPN into a Deeplab-based network to show that it also

improves the performance of a superior base network. We

demonstrate the significant improvement achieved by our

models, as measured by the mIoU as in Table 3. The com-

plete table of results can be found in the supplementary ma-

terial. Note that SPN does not show any gain on Deeplab,

and NLNN consumes a large amount of GPU memory since

a fully-connected graph needs to be constructed (i.e., an

N ×N matrix), and thus cannot be directly applied to large

networks such as Deeplab.

5.3. Image Segmentation: SGPN on Superpixels

We implement SGPN with superpixels (15000 per im-

age) created by the entropy rate superpixel method [32].

658



Table 2. Results for point cloud segmentation on the RueMonge2014 [41] val set. “image to points” is the direct mapping of 2D segmen-

tation results to 3D points; “+method” is short for ours+method; “PF” denotes the pairwise features from 2D image; “PG” is the pairwise

features with geometry-aware input; “TG” is short for tangent and “EU” is short for Euclidean.
image segmentation image to points point-cloud segmentation

method SplatNet2D ours DRN SplatNet2D ours DRN SplatNet2D3D +CONV-1D +PF/TG +PG/TG +PF+PG/EU +PF+PG/TG

mean IoU (%) 69.30 68.17 68.26 69.16 69.80 70.35 72.19 72.43 72.16 73.66

Table 3. Results for Deeplab based networks for Cityscapes image

semantic segmentation on the val set.
mean IoU (%) Baseline [11] +SGPN-embed +SGPN-prod

single-scale 78.20 80.12 80.09

multi-scale 78.97 80.42 80.90

(a) input (b) DRN (c) SGPN (d) GT
Figure 7. Qualitative comparison visualized by points to image

mapping. “DRN” is for the direct mapping of results from the

DRN image segmentation to points, “SGPN” is for our method.

For this experiment, we use the same design as the SGPN

network for pixels with the DRN backbone, but replace

the pixel propagation layer with the superpixel propagation

layer. Since the model still performs pixel-wise labeling,

we can directly compare it with the other DRN-related net-

works, as shown in Table 1. Our SGPN with superpixel

propagation shows considerable performance boost over the

baseline model. The results demonstrate that SGPN intro-

duces an effective way of utilizing superpixels, which are

generally difficult for deep learning methods to process.

5.4. Semantic Segmentation on Point Clouds

Implementation. Processing of point clouds for fa-

cade segmentation is different from that of superpixels:

while each image corresponds to one superpixel image, in

this task, many images correspond to a single point could.

Therefore, we do not need different DAGs for different im-

ages, instead, a single group of DAGs for the point is con-

structed. During training, each mini-batch contains a group

of sampled patches from the multi-view images, where both

the unary and pairwise feature maps across samples are ag-

gregated and mapped on to the globally constructed DAGs.

During testing, we perform propagation on the entire vali-

dation set, by obtaining the unary and pairwise feature maps

from the CNN blocks of all images, and aggregate them on

the entire point cloud. We use both 2D and 3D ground-truth

semantic labels as the supervision signals.

Comparison with Baselines and SOTA. We use the

DRN-22-D as the CNN block. To make fair comparisons

against state-of-the-art work [43], we evaluate the perfor-

mance of the DRN for the task of multi-view image segmen-

tation. One direct way is to aggregate the results of image

segmentation and map them on to 3D points (image to point

in Table 2 ). In addition, we jointly train the CNN block and

the propagation module by adding a single 1×1 1D CONV

layer before the output. Table 2 shows the performance of

the baseline models. Our DRN model shows comparable

performance to [43] on both image labeling and point la-

beling with direct aggregation of features from multiple im-

ages (see column 1 and 2 in Table 2). The baseline model

with the joint training strategy, denoted as “+CONV-1D”,

obtains the best results and outperforms the state-of-the-art

method [43] (the SplatNet2D3D in Table 2), which is not

jointly trained with 2D and 3D blocks.

Ablation Study. We show the performance of our pro-

posed approach with (a) geometric information as an addi-

tional input stream for edge representation learning, and (b)

using the Tangent space to construct the DAGs (PF+PG/TG

in Table 2) shows the best results compared to the baseline

and state-of-the-art methods [43]. To understand the contri-

butions of individual factors, we carry out two ablation stud-

ies. First, we compare various input streams for learning

the edge representation, by removing either the geometry

information (Section 5.4), or the image pairwise features,

from the CNN block (See +PF and +PG in Table 2). When

removing the image stream, we use an independent CNN

block using the geometry input to produce the pairwise fea-

ture maps. Second, we compare models with the same input

settings for learning the edge representation, but using dif-

ferent ways to construct the DAGs, i.e., constructing neigh-

borhoods via the Euclidean or Tangent spaces (Section 5.4)

(See +PF+PG/EU and +PF+PG/TG in Table 2). The results

demonstrate that, by solely applying the semantic feature

representation learned from 2D images, or the geometry in-

formation, we can still obtain much higher mIoU compared

to all of the baseline models. However, utilizing both of

them yields the best performance. It indicates that both

factors are essential for guiding the propagation on point

clouds. On the other hand, constructing the DAGs for point

clouds along the Tangent space shows a significant advan-

tage over the Euclidean space.

6. Conclusion
In this work, we propose SGPN that models the global

affinity for data with arbitrary structures, including but not

limited to superpixels and point clouds. The SGPN con-

ducts learnable linear diffusion on DAGs, with significant

advantage of representing the underlying structure of the

data. With the module, our method constantly outper-

forms state-of-the-art methods on semantic segmentation

tasks with different types of input data.

659



References

[1] Andrew Adams, Jongmin Baek, and Myers Abraham Davis.

Fast high-dimensional filtering using the permutohedral lat-

tice. In Computer Graphics Forum, volume 29, pages 753–

762, 2010.

[2] Volker Aurich and Jörg Weule. Non-linear gaussian filters

performing edge preserving diffusion. In Mustererkennung

1995, pages 538–545. Springer, 1995.

[3] Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton. Layer nor-

malization. CoRR, abs/1607.06450, 2016.

[4] Christos George Bampis, Petros Maragos, and Alan C.

Bovik. Graph-driven diffusion and random walk schemes for

image segmentation. IEEE transactions on image processing

: a publication of the IEEE Signal Processing Society, 2016.

[5] Moshe Bar. Visual objects in context. Nature Reviews Neu-

roscience, 5:617–629, 2004.

[6] Antoni Buades, Bartomeu Coll, and J-M Morel. A non-local

algorithm for image denoising. In CVPR, 2005.

[7] Siddhartha Chandra and Iasonas Kokkinos. Fast, exact and

multi-scale inference for semantic image segmentation with

deep gaussian crfs. In European Conference on Computer

Vision, pages 402–418. Springer, 2016.

[8] Liang-Chieh Chen, Jonathan T Barron, George Papandreou,

Kevin Murphy, and Alan L Yuille. Semantic image seg-

mentation with task-specific edge detection using cnns and

a discriminatively trained domain transform. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 4545–4554, 2016.

[9] Liang-Chieh Chen, Jonathan T Barron, George Papandreou,

Kevin Murphy, and Alan L Yuille. Semantic image segmen-

tation with task-specific edge detection using cnns and a dis-

criminatively trained domain transform. In CVPR, 2016.

[10] Liang-Chieh Chen, Alexander Schwing, Alan Yuille, and

Raquel Urtasun. Learning deep structured models. In In-

ternational Conference on Machine Learning, pages 1785–

1794, 2015.

[11] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian

Schroff, and Hartwig Adam. Encoder-decoder with atrous

separable convolution for semantic image segmentation. In

ECCV, 2018.

[12] Xinjing Cheng, Peng Wang, and Ruigang Yang. Depth esti-

mation via affinity learned with convolutional spatial propa-

gation network. In ECCV, 2018.

[13] Hang Chu, Wei-Chiu Ma, Kaustav Kundu, Raquel Urtasun,

and Sanja Fidler. Surfconv: Bridging 3d and 2d convolu-

tion for rgbd images. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2018.

[14] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In CVPR,

2016.

[15] Nathan de Lara and Edouard Pineau. A simple base-

line algorithm for graph classification. arXiv preprint

arXiv:1810.09155, 2018.

[16] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. CVPR, 2009.

[17] Santosh K Divvala, Derek Hoiem, James H Hays, Alexei A

Efros, and Martial Hebert. An empirical study of context in

object detection. In CVPR, 2009.

[18] Pedro F Felzenszwalb, Ross B Girshick, David McAllester,

and Deva Ramanan. Object detection with discriminatively

trained part-based models. IEEE transactions on pattern

analysis and machine intelligence, 32(9):1627–1645, 2010.

[19] Raghudeep Gadde, Varun Jampani, Martin Kiefel, Daniel

Kappler, and Peter V Gehler. Superpixel convolutional net-

works using bilateral inceptions. In European Conference on

Computer Vision, pages 597–613. Springer, 2016.

[20] Leo Grady. Random walks for image segmentation. IEEE

Transactions on Pattern Analysis & Machine Intelligence,

(11):1768–1783, 2006.

[21] Kaiming He, Jian Sun, and Xiaoou Tang. Guided image fil-

tering. In ECCV, 2010.

[22] Shengfeng He, Rynson WH Lau, Wenxi Liu, Zhe Huang,

and Qingxiong Yang. Supercnn: A superpixelwise convolu-

tional neural network for salient object detection. Interna-

tional journal of computer vision, 115(3):330–344, 2015.

[23] Ashesh Jain, Amir R Zamir, Silvio Savarese, and Ashutosh

Saxena. Structural-rnn: Deep learning on spatio-temporal

graphs. In CVPR, 2016.

[24] Varun Jampani, Martin Kiefel, and Peter V Gehler. Learn-

ing sparse high dimensional filters: Image filtering, dense

crfs and bilateral neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 4452–4461, 2016.

[25] Varun Jampani, Deqing Sun, Ming-Yu Liu, Ming-Hsuan

Yang, and Jan Kautz. Superpixel sampling networks. In

European Conference on Computer Vision, pages 363–380.

Springer, 2018.

[26] Evangelos Kalogerakis, Melinos Averkiou, Subhransu Maji,

and Siddhartha Chaudhuri. 3D shape segmentation with pro-

jective convolutional networks. In CVPR, 2017.

[27] Philipp Krähenbühl and Vladlen Koltun. Efficient inference

in fully connected crfs with gaussian edge potentials. In

NIPS, 2011.

[28] John D. Lafferty, Andrew McCallum, and Fernando C. N.

Pereira. Conditional random fields: Probabilistic models

for segmenting and labeling sequence data. pages 282–289,

2001.

[29] Yangyan Li, Rui Bu, Mingchao Sun, and Baoquan Chen.

Pointcnn: Convolution on x-transformed points. In NIPS,

2018.

[30] Xiaodan Liang, Xiaohui Shen, Jiashi Feng, Liang Lin, and

Shuicheng Yan. Semantic object parsing with graph lstm. In

ECCV, 2016.

[31] Guosheng Lin, Chunhua Shen, Anton Van Den Hengel, and

Ian Reid. Efficient piecewise training of deep structured

models for semantic segmentation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 3194–3203, 2016.

660



[32] Ming-Yu Liu, Oncel Tuzel, Srikumar Ramalingam, and

Rama Chellappa. Entropy rate superpixel segmentation.

CVPR, pages 2097–2104, 2011.

[33] Sifei Liu, Shalini De Mello, Jinwei Gu, Guangyu Zhong,

Varun Jampani, Ming-Hsuan Yang, and Jan Kautz. Switch-

able temporal propagation network. ECCV, 2018.

[34] Sifei Liu, Shalini De Mello, Jinwei Gu, Guangyu Zhong,

Ming-Hsuan Yang, and Jan Kautz. Learning affinity via spa-

tial propagation networks. In NIPS, 2017.

[35] Sifei Liu, Jinshan Pan, and Ming-Hsuan Yang. Learning re-

cursive filters for low-level vision via a hybrid neural net-

work. In European Conference on Computer Vision, 2016.

[36] Michael Maire, Takuya Narihira, and Stella X. Yu. Affin-

ity cnn: Learning pixel-centric pairwise relations for fig-

ure/ground embedding. 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2016.

[37] Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu

Cho, Seong-Whan Lee, Sanja Fidler, Raquel Urtasun, and

Alan Yuille. The role of context for object detection and se-

mantic segmentation in the wild. In CVPR, 2014.

[38] Pietro Perona and Jitendra Malik. Scale-space and edge de-

tection using anisotropic diffusion. IEEE Transactions on

pattern analysis and machine intelligence, 12(7):629–639,

1990.

[39] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. arXiv preprint arXiv:1612.00593, 2016.

[40] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-

net++: Deep hierarchical feature learning on point sets in a

metric space. arXiv preprint arXiv:1706.02413, 2017.

[41] Hayko Riemenschneider, Andras Bodis-Szomoru, Julien

Weissenberg, and Luc Van Gool. Learning where to classify

in multi-view semantic segmentation. In ECCV, 2014.

[42] Gergo Sastyin, Ryosuke Niimi, and Kazuhiko Yokosawa.

Does object view influence the scene consistency effect? At-

tention, Perception, & Psychophysics, 77(3):856–866, 2015.

[43] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,

Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.

Splatnet: Sparse lattice networks for point cloud processing.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2530–2539, 2018.

[44] Maxim Tatarchenko*, Jaesik Park*, Vladlen Koltun, and

Qian-Yi Zhou. Tangent convolutions for dense prediction

in 3D. CVPR, 2018.

[45] Carlo Tomasi and Roberto Manduchi. Bilateral filtering for

gray and color images. In ICCV, pages 839–846, 1998.

[46] Wei-Chih Tu, Ming-Yu Liu, Varun Jampani, Deqing Sun,

Shao-Yi Chien, Ming-Hsuan Yang, and Jan Kautz. Learn-

ing superpixels with segmentation-aware affinity loss. In

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2018.

[47] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. In CVPR, 2018.

[48] Xiaolong Wang and Abhinav Gupta. Videos as space-time

region graphs. In ECCV, 2018.

[49] Huikai Wu, Shuai Zheng, Junge Zhang, and Kaiqi Huang.

Fast end-to-end trainable guided filter. In CVPR, 2018.

[50] Zifeng Wu, Chunhua Shen, and Anton van den Hengel.

Wider or deeper: Revisiting the resnet model for visual

recognition. arXiv:1611.10080, 2016.

[51] Saining Xie, Sainan Liu, Zeyu Chen, and Zhuowen Tu. At-

tentional shapecontextnet for point cloud recognition. In

CVPR, pages 4606–4615, 2018.

[52] Xiangyu Xu, Deqing Sun, Sifei Liu, Wenqi Ren, Yu-Jin

Zhang, Ming-Hsuan Yang, and Jian Sun. Rendering portrai-

tures from monocular camera and beyond. In ECCV, 2018.

[53] Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated

residual networks. In CVPR, 2017.

[54] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-

Paredes, Vibhav Vineet, Zhizhong Su, Dalong Du, Chang

Huang, and Philip HS Torr. Conditional random fields as re-

current neural networks. In CVPR, pages 1529–1537, 2015.

661


