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Abstract

With excellent representation power for complex data,

deep neural networks (DNNs) based approaches are state-

of-the-art for ordinal regression problem which aims to

classify instances into ordinal categories. However, DNNs

are not able to capture uncertainties and produce prob-

abilistic interpretations. As a probabilistic model, Gaus-

sian Processes (GPs) on the other hand offers uncertainty

information, which is nonetheless lack of scalability for

large datasets. This paper adapts traditional GPs for or-

dinal regression problem by using both conjugate and non-

conjugate ordinal likelihood. Based on that, it proposes a

deep neural network with a GPs layer on the top, which

is trained end-to-end by the stochastic gradient descent

method for both neural network parameters and GPs pa-

rameters. The parameters in the ordinal likelihood function

are learned as neural network parameters so that the pro-

posed framework is able to produce fitted likelihood func-

tions for training sets and make probabilistic predictions for

test points. Experimental results on three real-world bench-

marks – image aesthetics rating, historical image grading

and age group estimation – demonstrate that in terms of

mean absolute error, the proposed approach outperforms

state-of-the-art ordinal regression approaches and provides

the confidence for predictions.

1. Introduction

Ordinal regression is a supervised learning problem aim-

ing to predict discrete labels with a natural order. An ex-

ample is apparent age group estimation, which grades face

images based on an ordinal scale such as “Infants”, “Chil-

dren”, “Teenagers”, “Youth”, “Young adults”, “Adults”,

“Middle aged ” and “Aged”. Ordinal regression can be

viewed as a special case of metric regression, where the re-

gression targets are discrete and finite, and the differences

between adjacent labels are not necessary to be equal. If the

ordinal relationship of labels is ignored, the problem be-

comes to multi-class classification.

Deep neural networks (DNNs) have attracted great at-

tention in these several years and performed well on many

classification problems. There are a few works [16] [12]

[1] [13] employing DNNs to ordinal regression problems.

All of them transformed ordinal regression problems to cer-

tain classification problems by taking ordinal relationship

between categories into consideration. If ordinal regres-

sion is viewed as a bridge between multi-class classification

and metric regression, existing DNNs based ordinal regres-

sion approaches look it from the classification side. There-

fore, they focused more on whether an instance belongs to

a category or not rather than how close to its ground truth

category. Taking advantages of representation power and

scalability of deep learning, DNNs based ordinal regression

approaches are state-of-the-art. However, they also inherit

standard DNNs’ limitations: being not able to tell whether

a model is certain about its output like probabilistic models.

Gaussian Process, as a probabilistic model, learns the

distributions over functions and is able to offer confidence

bounds for prediction. To benefit from both representa-

tive power and calibrated probabilistic modelling, efforts

have been invested to combine DNNs and GPs recently

([5][6][3]). However, most of existing attempts worked

as a separated fashion: DNNs are used to extract features

and then traditional GPs are trained on the deep features

[24]. An end-to-end model was proposed by Hinton &

Salakhutdinov[8], but they used a large set of unlabelled

data to pretrain deep belief networks (DBN) unsupervis-

edly, then fine-tuned the DBN + GP model with the lim-

ited labelled data. The main barrier blocking the com-

bined model to be trained end-to-end for large dataset is

that the performance of GPs cannot be guaranteed if it is

optimized in stochastic mini-batch manner, especially for

non-Gaussian likelihood. Hensman et al. [7] proposed a

variational approach to allow stochastic optimization to GPs

classification, [23] and [2] integrated DNNs to GPs for

multi-class classification. To the best of our knowledge,

there is no existing work to model ordinal data by DNNs

and GPs hybrid networks.

This paper adapts GPs regression to ordinal regression
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by involving a double sigmoid likelihood function, which is

a non-conjugate likelihood. Chu et al. [4] used a Gaussian

function as the ordinal likelihood mainly because it is con-

venient to calculate MAP or Expectation Propagation op-

timization, but losing the precise estimation to ideal ordi-

nal likelihood. Following the variational approach in [7],

the proposed GPs for ordinal regression, as a network layer

embedded in a Convolutional neural network, is trained

in stochastic mini-batch manner. The parameters in the

likelihood function are also trained as network parameters.

Therefore, the proposed approach produces fitted likelihood

and uncertainty for predictions. The contributions of this

paper are highlighted as follows:

1. To the best of our knowledge, the proposed approach is

the first attempt of deep probabilistic model for ordinal

regression applicable to large datasets.

2. It extends DNN and GPs hybrid network with stochas-

tic optimization to both conjugate and non-conjugate

ordinal likelihood.

3. The parameters in the ordinal likelihood function are

learned as neural network parameters so that the pro-

posed framework is able to produce fitted likelihood

functions for training sets.

The rest of this paper is organized as follows. Section 2

reviews the literature of ordinal regression. Section 3 and 4

describe the proposed likelihood function and the network

architecture. Section 5 reports the experimental results, and

section 6 gives conclusive remarks.

2. Related Work

Niu et al. claimed that the adapted DNN in [16] is the

first deep learning model for ordinal regression. For a m-

rank ordinal regression problem, they constructed m − 1
binary classifiers with the k-th one answering the ques-

tion “Is the rank of an instance greater than k”? And a

single CNN is used to combine all classifiers and output

the k − 1 predictions for an instance. The final prediction

is decoded from these k − 1 outputs. Liu et al. [12] fo-

cused more on small dataset ordinal regression, and they

proposed to explore ordinal data relationship from triplets

of instances through DNNs. An m-rank ordinal regression

problem was transformed to m binary classification prob-

lems with triplets whose elements are from different ranks

as inputs. The k-th classifier answered the question “Is the

rank of an instance greater than k − 1 and smaller than

k + 1?” m separate CNNs were used and the prediction

for an instance was made by majority voting. In both ap-

proaches, a decoder was needed to recover the rank predic-

tion from the outputs of ordinal classifiers. [13] proposed

a constrained DNN for the ordinal regression (CNNPOR)

which minimized multi-class classification loss with regres-

sion constraints keeping instances from different ranks in

order. CNNPOR obtained predictions for instances without

decoding and achieved state-of-the-art performance for or-

dinal regression in terms of zero-one error. All the above

approaches tackle ordinal regression problem from classifi-

cation perspective. They do not capture that how close the

rank of an instance is to the ground truth. In other words, if

an instance belongs to rank k, the probability that it is pre-

dicted as k − 1 is not necessarily higher than that as k − 2.

In the literature, there are handcrafted feature-based ap-

proaches solving ordinal regression problems from regres-

sion perspective. For an m-rank ordinal regression prob-

lem, it is assumed that there is a latent function mapping

the instances to a real line. And there exists m − 1 bound-

aries dividing the real line into m continuous intervals cor-

responding to the m categories of the problem. The targets

of this type of ordinal regression approaches are to learn

the mapping function and the boundaries. [4] (GPOR) pro-

posed to extend GPs regression for ordinal regression. They

used a Gaussian likelihood as an approximation to the ideal

ordinal likelihood because the inference can be performed

in closed form. Because of the expensive computation of

solving GPs, GPOR was performed on small handcrafted

feature datasets only.

To reduce the computational cost of inference in GPs,

numerous variational approaches have been proposed for

GPs regression. Hensman et al. [7] showed a variational

approach enabling GPs to be optimized in stochastic mini-

batch manner if the likelihood is Gaussian. In [7], Hensman

et al. extended the approach for multi-class classification,

which has a non-conjugate likelihood (see section 3). This

paper extends it further for ordinal regression with a non-

conjugate likelihood.

3. Scalable Variational Gaussian Processes for

Ordinal Regression

An ordinal regression problem with m ordinal ranks is

considered. A training set with labeled instances D =
{(xi, yi)|xi ∈ X , yi ∈ Y} is given, where X is the in-

put space, and Y = {1, 2, · · · ,m} is the label space and the

natural order of the numbers in Y indicates the order of the

ranks. The target is to predict the rank label yt ∈ Y for any

new input xt ∈ X .

3.1. Gaussian Processes Regression

Gaussian Process is a stochastic process that any fi-

nite sub-collection of random variables has a multivari-

ate Gaussian distribution. It defines a distribution p(f)
over latent function f . A zero-mean multivariate Gaus-

sian distribution is assumed for the prior distribution of f ,

p(f) = N (f |0,Knn), where Knn is the covariance matrix

5302



(a) Gaussian likelihood function for one rank (b) Logistic likelihood function for one rank (c) Logistic likelihood functions learned for a

5-rank ordinal regression problem

Figure 1: Likelihood function examples

that Knn = K(x,x) and K(·, ·) is a kernel function. The

likelihood function for Gaussian Process Regression is de-

fined by p(y|f) = f + ε with ε ∼ N (0, σ2I). With the

Gaussian likelihood function, the marginal likelihood and

predictive distribution given a new input vector x∗ can be

analytically derived as:

p(y) = N (y|0,Knn + σ2I) (1)

and

p(y∗|x∗,D) =N (y∗|K
⊤

n∗(Knn + σ2I)−1y,

K∗∗ −K⊤

n∗(Knn + σ2I)−1Kn∗) (2)

respectively, where Kn∗ and K∗∗ are covariance matrices

Kn∗ = K(x∗,x) and K∗∗ = K(x∗,x∗).

3.2. Ordinal Likelihood

In ordinal regression, the noise-free likelihood is defined

by:

p(yi = k|fi) =

{

1, if bk−1 < fi ≤ bk

0, otherwise
(3)

where −∞ = b0 < b1 < · · · < bm−2 = ∞. We use

fi to denote f(xi). We then define b1 ∈ R, and for all

k ∈ {2, . . . ,m − 2}, bk = b1 +
∑k−1

i=1 ∆2
i where ∆i 6= 0.

Those b′ks specify m intervals which map the real-valued

f(xi) into m categories in set Y .

However, the noise-free likelihood is hardly used since it

is not differentiable. With noise being considered, Chu and

Ghahramani [4] proposed a likelihood function for ordinal

regression by introducing a noise variable δ ∼ N (0, σ2),
which follows a Gaussian distribution with mean zero and

variance σ2. Hence the likelihood can be derived as:

p(yi = k|fi) =

∫

p(yi = k|fi + δi)N (δi; 0, σ
2) dδi

= Φ(
bk − fi

σ
)− Φ(

bk−1 − fi
σ

) (4)

where Φ(x) =
∫ x

−∞
N (θ; 0, 1) dθ is the cumulative density

function of standard Gaussian distribution.

3.2.1 A Non-Conjugate Ordinal Likelihood

Besides Gaussian noise introduced above, we extend the

likelihood for ordinal regression to the difference of any

cumulative-density-like functions. In this paper, we only

discuss logistic likelihood, which is closer to the noise-free

likelihood, comparing with the Gaussian one (Figure 1).

The method can be naturally extended to other likelihood

functions. More specifically, the logistic likelihood can be

written as:

p(yi = k|fi) = sig(
bk − fi

σ
)− sig(

bk−1 − fi
σ

) (5)

where sig(·) is the sigmoid function, sig(x) = 1/(1+e−x).

3.3. Scalable Variational Gaussian Process for Or
dinal Regression

Gaussian Processes are inefficient for large datasets, suf-

fering from its computational complexity of O(N3) when

training, which requires inverting the matrix Knn + σ2I,

and O(N) and O(N2) for calculating mean and variance of

predictive distribution based on the inversion. To solve this

problem, Sparse Pseudo-input Gaussian Processes(SPGP)

was first presented by Snelson and Ghahramani [21], and

further modified as fully independent training conditional

(FITC) approximation by Quiñonero-Candela and Ras-

mussen [18]. FITC introduces inducing points Z and u,

which is assumed that u and the latent function f have same

form. Thus, the joint prior p(f ,u) and marginal likelihood

p(y) are:

p(f ,u) = N

(

[

f

u

]

∣

∣

∣

∣

∣

0,

[

Knn,Knm

K⊤
nm,Kmm

]

)

(6)

p(y) =

∫

p(y|u)p(u) du

= N (y|0,Qnn + diag(Knn −Qnn) + σ2I) (7)

where matrices Knm = K(x,u), Kmm = K(u,u) and

Qnn = KnmK−1
mmK⊤

nm

Finding inducing points and hyperparameters requires

maximizing the marginal likelihood with respect to all the
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parameters by gradient ascent [18]. In order to get a sparse

approximation, Titsias et al. [22] proposed a variational ap-

proach which instead maximizes the lower bound of loga-

rithm of the above marginal likelihood, with computation

complexity only O(NM2):

log p(y) ≥ logN (y|0,Qnn + σ2I)

−
1

2σ2
tr(Knn −Qnn) (8)

Note that the explicit lower bound for marginal like-

lihood is only tractable for conjugate case, e.g., Gaus-

sian likelihood; for more general and non-conjugate cases,

Hensman et al. [7] extended the above lower bound to:

log p(y) ≥ −KL[q(u)||p(u)] +

∫

q(f) log p(y|f) df (9)

where q(f) is defined as
∫

p(f |u)q(u) du, which is a mul-

tivariate Gaussian distribution due to Gaussian assumption

of q(u) = N (u|v,C). Here the first term is simply a KL
divergence term of two Gaussian distributions:

KL =
1

2

[

log
|Kmm|

|C|
−m+ tr(K−1

mmC) + v⊤K−1
mmv

]

(10)

Since the likelihood in the integral p(y|f) can be factor-

ized to the product of independent likelihood p(y|f) =
∏N

i=1 p(yi|fi), the second term in Eq. 9 can be written

as an expectation of log-likelihood with respect to a Gaus-

sian, Eq(f)[log p(y|f)] =
∑N

i=1 Eq(fi)[log p(yi|fi)]. For

our case, the ordinal log-likelihood is:

log p(yi = k|fi) =
fi
σ

− log(e−bk−1/σ − e−bk/σ)

− LLP(−
bk − fi

σ
)− LLP(−

bk−1 − fi
σ

) (11)

where LLP refers to the logistic-log-partition function. The

expectation of LLP is analytically intractable, but can be

solved using the piecewise linear and quadratic bound of

LLP [9][14], as well as the expectation of log-likelihood.

Therefore, the lower bound in Eq. 9 is tractable and its gra-

dient can be computed in analytical form.

The posterior distribution is derived based on the as-

sumption that q(f ,u) = p(f |u)q(u). For any new testing

vector x∗, the posterior distribution of latent function f∗ and

y∗is given by:

p(f∗|x∗,D) =

∫

p(f∗|u)q(u) du (12)

p(y∗|x∗,D) =

∫

p(f∗|x∗,D)p(y∗|f∗) df∗ (13)

The integral in posterior distribution of p(f∗|x∗,D) is Gaus-

sian since both p(f∗|u) and q(u) are Gaussian distributed.

Its mean and variance can be computed in O(M2), from

which the posterior distribution of p(y∗|x∗,D) is com-

puted.

Figure 2: The architecture of GP-DNNOR.

4. A Probabilistic Deep Neural Network for

Ordinal Regression (GP-DNNOR)

As GPs regression with ordinal likelihood can be opti-

mized in stochastic mini-batch manner by using the method

in section 3.3, a deep neural network for ordinal regression

based on Gaussian Processes (GP-DNNOR) is proposed.

Figure 2 shows the architecture of GP-DNNOR. Before the

GPs layer, Gh and Gc in Figure 2 are standard convolution

layers and fully connected layers in the classic CNNs, such

as those in the VGG [20] network. Gh and Gc are learned to

map an image xi into high-level feature space, and the out-

put vector is denoted as x′

i. x
′

i is the input of the GPs layer,

i.e., the x in the covariance matrix Knn = K(x,x) of Eq.

1. In other words, during training of GP-DNNOR, both GPs

parameters and GPs inputs are optimized simultaneously.

By using the variational approach in section 3.3, GPs

layer provides predicted mean and variance E[f(x′

i)],
V[f(x′

i)] for distribution of the latent function for x′

i. We

also make b′ks trainable, by specifying a separate “∆ layer”

with m − 2 trainable nodes in Figure 2, which is designed

to learn the boundaries b = {b1, b2, · · · , bm−1}. Being able

to adjust the values of b′ks along with the training process

has been proven to be more efficient than pre-specified fixed

b′ks by experiments. To guarantee b′ks satisfying the ordered

constraints bk−1 < bk, we define bk = b1 +
∑k−1

i=1 ∆2
i as

in Section 3.2 and represent positive ∆′

is as nodes in the

∆ layer. To avoid shifting to −∞, b1 is fixed to −1 in the

implementation. It should be pointed out that the value of

b1 does not affect the learning results, because as shown in

Eq. 5, it is the value of bk − fi that affects in the likelihood

function, and fi is automatically shifted according to b1 dur-

ing learning. One example of the benefits of trainable b′ks
can be observed from Figure 1c. Finally, a GPs loss layer

which calculates the variational expectation loss in Eq. 9 is

followed at the end.

For sake of clear presentation, the learning procedure of

GP-DNNOR is summarized in Algorithm 1. The inputs are

a training set with labeled instances and a set of testing im-

ages. The outputs include the predicted rank labels ŷj and

mean E[f(x∗

j )] and variance V[f(x∗

j )] of latent function

values for the test images, and the boundaries b dividing

the latent function values into ordinal intervals. The algo-

5304



Algorithm 1 Pseudo code of learning in GP-DNNOR

Input: A training set D = {(xi, yi)}, where xi is an

image and yi ∈ {1, ....,m} is its rank label. And a testing

set Dt = {x∗

j}.

Output: Predictions Yt = {(ŷj ,E[f(x
∗

j )],V[f(x
∗

j )])} and

boundary vector b where b1 = −1, bk+1 = bk +∆2
k.

1: Initialize weights of Gh and Gc in Figure 2, and

initialize ∆ = {∆k = 1|k = 1, · · · ,m− 2}.

2: for epoch = 1 to MAXepoch do

3: Shuffle D and divide it into mini-batches Ds.

4: for each Ds do

5: procedure FORWARD(Ds)

6: Forward propagate instances into Gh, Gc,

and output vectors {x′

i} to the GPs layer.
7: Calculate {E[f(x′

i)],V[f(x
′

i)]} in the GPs

layer and output to the loss layer.
8: Calculate the loss in Eq.9 using {E[f(x′

i)]}
and b.

9: end procedure

10: Backward propagate through the GPs layer to

Gc and Gh.
11: Update weights in Gc and Gh.

12: FORWARD(Ds)

13: Backward propagate to ∆.

14: Updates ∆.

15: end for

16: end for

17: Ouput b.
18: Forward propagate instances {x∗

j}, and output

{E[f(x∗
′

j )],V[f(x∗
′

j )])} by the GPs layer.

19: Calculate {ŷj} in Eq. 13 using {E[f(x∗
′

i )]}.

rithm starts with initialization; in experiments, the weights

of Gh and Gc are initialized by VGG weights pretrained on

ImageNet. At each training epoch, the training instances

are randomly shuffled and redivided into mini-batches. For

each mini-batch, two separate rounds of forward and back-

ward propagations for f and b are performed as shown in

lines 5 − 11 and 12 − 14. Instead of updating them simul-

taneously, we choose to update f and b, conditioning on

fixed b and f , from the previous iteration, respectively. This

is to guarantee that we optimize both conditional loss func-

tions in the correct direction. In the forward procedure, GPs

layer assigns the inducing points and calculate E[f(x′

j)] and

V[f(x′

j)] (line 7). The number of inducing points in the ex-

periments of this paper is set to the size of mini-batch. The

loss to be minimized is the bound in Eq. 9 with the logistic

ordinal likelihood with mean E[f(x′

j)] and b as inputs. The

gradient of the loss with respect to E[f(x′

j)] is calculated

and backpropagated through the GPs layer to Gc and Gh in

line 10. All the weights in Gh and Gc are updated when b
is kept fixed as the previous value; afterwards, the instances

in the current mini-batch Ds are forward propagated again

to update b. As shown in Algorithm 1, standard stochastic

backprobagation is used. GP-DNNOR, therefore, is scal-

able for large scale datasets.

5. Evaluation

Different ordinal datasets contain varying degrees of or-

dinal information. Some of them are more close to clas-

sification while others are close to regression. Therefore,

three datasets with very diverse images are employed in the

experiments. Moreover, they are used to evaluate how GP-

DNNOR performs on datasets with different data sizes, the

number of ranks and class distributions.

• Image aesthetic benchmark [19] is to evaluate algo-

rithms rating images to five aesthetic grades: Unac-

ceptable, Flawed, Ordinary, Professional and excep-

tional. The “urban” category of the benchmark is used

in the experiments, and Figure 3 shows an example im-

age of each rank. The images are Flickr photos which

are labeled to one of the five aesthetics levels. The total

number of images is 3492 and the samples in different

ranks are imbalanced. The second column of Table

1 lists the data size of each rank in this dataset. All

approaches are tested on five random training/testing

partitions following those in [13] for fair comparison.

• Historical image benchmark [17] stores color images

photographed on five decades, 1930s to 1970s. Figure

4 shows some sample images. It is used to evaluate al-

gorithms predicting the dates when images were pho-

tographed in terms of decade. The five decades cor-

respond to five ordinal categories and each category

has 265 images. This benchmark is a small scale or-

dinal dataset with balanced number of samples in each

rank. The experiments are performed on 20 folds and

the mean values of results are reported.

Table 1: Class distributions of the three datasets

#Images Urban image Historical Adience

aesthetics color images face

Rank 1 2 265 2293

Rank 2 135 265 1971

Rank 3 2203 265 1963

Rank 4 1003 265 1541

Rank 5 149 265 4530

Rank 6 2108

Rank 7 762

Rank 8 798

Total 3492 1325 15966
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Figure 3: Urban image aesthetics dataset (unacceptable to exceptional from left to right)

Figure 4: Historical color image dataset (1930s to 1970s from left to right)

Figure 5: Adience face dataset (0-2 to >60 from left to right)

• Adience face benchmark [10] has 15966 face images

of eight age groups: 0-2, 4-6, 8-13, 15-20, 15-20, 25-

32, 38-43 and elder than 60 years old. The images

data in different age groups is imbalanced. Figure 5

shows example face images, and Table 1 lists the class

distributions in the fourth column. This dataset is em-

ployed to evaluate the scalability of GP-DNNOR and

the performance on relative large number of ranks with

imbalanced training samples. In the experiments, the

five-fold partition follows [10] for fair comparison.

GP-DNNOR is implemented in TensorFlow, and the GPs

layer is implemented using GPflow [15]. The operations of

GP layer to calculate from x′ to E(x′) is a standard GP re-

gression by introducing a latent variable Z as pseudo-inputs

to support batch-based calculation. All deep methods em-

ploy VGG-16 as the basic architecture, and the convolu-

tional layers and fully-connected layers are fine-tuned from

the weights pretrained on ImageNet. In the training of GP-

DNNOR for all the three datasets, the size of mini-batch is

150 and the learning rates for both f and b are 0.0001. The

number of neurons in the last fully connected layer of GP-

DNNOR is 100, and the number of inducing points is set to

150. In the experiments, the images are resized to 256×256
pixels and are randomly cropped to 224×224 pixels further

during the learning.

In the rest of this section, we first compare GP-DNNOR

with other probabilistic and non-probabilistic model, then

derive the importance of uncertainty information provided

by GP-DNNOR. We adapt Mean Absolute Errors (MAE)

and accuracy as the comparing metrics. Note that accuracy

is not quite adequate for evaluating ordinal regression, since

it only counts the number of correctly classified samples

and neglected ordinal errors. If two methods A and B as-

sign an input sample to the third rank and the tenth rank

but its ground truth label is the second rank, their errors

in terms of accuracy are exactly the same. MAE is con-

sidered more suitable to evaluate ordinal regression, which

puts more weights on measuring the distance between the

true and the predicted rank.

5.1. Results Comparing with Probabilistic Models

To the best of our knowledge, GP-DNNOR is the first

attempt to introduce probabilistic properties into the deep

ordinal regression. We compare our method with CNNm-

GP[2], which is an end-to-end model with GP classifi-

cation layer on the top of a DNN. CNNm-GP focuses

more on multi-class classification, whose top layer uses

multi-class inverse-link likelihood function[7], while GP-

DNNOR is designed for ordinal regression, with more com-

plicated ordinal likelihood. Furthermore, as in Figure 2,

GP-DNNOR includes a ∆ layer to learn decision bound-

aries b = {b1, b2, . . . , bm−1} as discussed in Section 4.

Experiments evaluating probabilistic methods were con-

ducted on the above mentioned three datasets. Table 2

summaries the results in terms of MAE and accuracy.
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Table 2: Results comparing with probabilistic models

Urban image aesthetics Historical Color Image Adience Face

Accuracy (%) MAE Accuracy (%) MAE Accuracy (%) MAE

CNNm-GP[2] 63.17 0.41 49.98±2.90 0.84±0.08 46.1±10.0 0.78±0.11

GP-DNNOR 68.29 0.32 46.60±2.98 0.76±0.05 57.4±5.5 0.54±0.07

For image aesthetic and Adience Face datasets, our pro-

posed GP-DNNOR outperforms CNNm-GP in both accu-

racy and MAE, while for the historical color image dataset,

it achieves 3.4% lower accuracy but better MAE. We note

that historical color image dataset is extremely difficult as a

classification problem that untrained human annotators only

achieved 26% accuracy[17]. Due to its property of blurry

boundaries among neighbouring ranks, GP-DNNOR, as an

ordinal regression method which is trained to reduce the

MAE, falls behind when classifying into the exact rank. It

worth noting that samples misclassified by GP-DNNOR are

likely to fall in the neighboring rank, while those misclassi-

fied by CNNm-GP are distributed more randomly.

It worth noting that there are some variations of CNNm-

GP and GP-DNNOR, e.g., the separately and jointly trained

CNN and GP with different likelihood functions. Although

those variations did not achieve the expected experimental

results as GP-DNNOR, they provided significant perspec-

tive on the contributions of different components of the pro-

posed method. When training CNN and GP separately with

Gaussian and Logistic ordinal likelihood on the image aes-

thetic dataset, the accuracy is 67.14%, 67.37%, and MAE is

0.35, 0.34, respectively. Similarly, training with Gaussian

ordinal likelihood, instead of the proposed Logistic likeli-

hood, achieved 67.32% accuracy and 0.34 MAE.

5.2. Comparing with Nonprobabilistic Models

To comprehensively evaluate the proposed approach,

GP-DNNOR is also compared with state-of-the-art deep

ordinal regression methods, which contain no informa-

tion about uncertainties. RED-SVM[11], Niu et al.’s

method[16] and CNNPOR[13] are baseline methods on

general ordinal regression, and the results of a traditional

non-probabilistic and non-ordinal multi-class DNN (de-

noted by CNNm) are cited from [13].

Table 3 presents the results of comparing GP-DNNOR

with non-probabilistic models. It is observed that GP-

DNNOR achieves the best MAE performance consistently

for all the three datasets. As for accuracy, GP-DNNOR

achieves 0.8% and 3.52% lower than the best benchmark

given by CNNPOR for the urban image aesthetics and his-

torical color datasets respectively, but the best performance

for Adience face dataset. It should be emphasized that the

methods performing better than GP-DNNOR in terms of ac-

curacy are not probabilistic and are not able to provide un-

certainty information.

As a reference, the comparison of non-probabilistic

models shows that GP-DNNOR exploits the advantages of

ordinal regression by reducing MAE, and presents compa-

rable performance in accuracy. Moreover, GP-DNNOR is

also capable of interpret uncertainty information of the pre-

diction, which we will further discuss its value in next sec-

tion.

5.3. Analysis of Uncertainty

Like other Gaussian Processes based models, GP-

DNNOR method provides probabilistic perspective of or-

dinal regression. It not only assigns a label for a testing

sample according to posterior mean, but also provides in-

formation of the uncertainties, i.e., how likely the model

would assign a testing sample to a certain label. As shown

in Figure 6, given a group of testing samples, GP-DNNOR

classifies samples with b3 < E[f(xi)] ≤ b4 into class 5.

Samples with E[f(xi)] falling outside the interval (b3, b4]
are not given the correct labels. We distinguish the correctly

classified and misclassified samples by different colours. In

spite of this, it gives the credible intervals, showing the

probability of any given sample being classified to each

class. Unlike softmax classification methods, which calcu-

late the probabilities according to the means, E[f(xi)], GP-

Figure 6: Predictions with uncertainties for Adience face

dataset. Data samples being correctly classified into class

5 are highlighted in blue, while incorrect classifications to

other classes are in orange.
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Table 3: Results comparing with non-probabilistic models (SVM is not scalable to train on Adience Face dataset)

Urban image aesthetics Historical Color Image Adience Face

Acc (%) MAE Acc (%) MAE Acc (%) MAE

Classification CNNm[13] 68.19 0.36 48.94±2.54 0.89±0.06 54.0±6.3 0.61±0.08

Ordinal RED-SVM@8168[11] 63.88 0.39 35.92±4.69 0.96±0.06 - -

RED-SVM@deep[11] 65.44 0.37 25.38±2.34 1.08±0.05 - -

regression Niu et al.’s method[16] 66.49 0.35 44.67±4.24 0.81±0.06 44.7±4.2 0.81±0.06

CNNPOR[13] 69.09 0.33 50.12±2.65 0.82±0.05 57.4±5.8 0.55±0.08

GP-DNNOR 68.29 0.32 46.60±2.98 0.76±0.05 57.4±5.5 0.54±0.07

Figure 7: Test sample images of the first rank in Adience face dataset respects to the predicted f .

DNNOR instead gives a comprehensive overview through

the posterior distribution. Based on the posterior distribu-

tion, we can easily derive the uncertainties of the results.

Those error bars showing in Figure 6 are plotted using 95%

credible intervals. Figure 6 shows an interesting property.

For the correctly classified samples, the ratio of the error

bar and the length of the interval is likely smaller than the

ratio calculated from in correctly classified samples.

Besides, another advantage of GP-DNNOR over other

deep learning ordinal methods, which are derived from the

classification perspective, is that GP-DNNOR is able to in-

terpret the continuous properties of datasets. Other deep

learning ordinal methods assign sample to one of the labels,

whereas GP-DNNOR captures the information in the mid-

dle of different classes. With the posterior distribution of

the first rank (age group 0-2) in the Adience Face Dataset,

GP-DNNOR also tells how likely the testing face is clas-

sified to 0-2 group, and neighbouring groups, along with

age group assignment. In particular, within the group 0-2,

GP-DNNOR is able to decide which subjects are close to

age 0 and which are close to age 2, i.e., we can observe a

linear relationship between the value of E[f(xi)] and exact

ages of testing faces, which is not provided by the dataset.

Figure 7 shows sample faces from 0-2 group. The red lines

indicate the intervals and all the faces in Figure 7 are from

group 0-2. Within the first interval, (−∞, b1], it is observed

that babies close to the left hand side are younger than those

close to b1. In the second interval (b1, b2], the faces are also

from 0-2 group, but they look much older than those in the

first interval. Figure 7 shows that E[f(xi)] can capture in-

formation within and between the intervals.

6. Conclusions

This paper integrates a deep neural network and a GPs

regression layer with non-conjugate likelihood for ordinal

regression problems. The proposed network is trained end-

to-end in the stochastic mini-batch manner, and the ordi-

nal regression function and boundaries dividing it to ordinal

intervals are learned simultaneously. The experimental re-

sults from the three datasets show that the proposed method

achieves best MAE performances, and comparable accura-

cies to state-of-the-art methods. Moreover, it provides un-

certainty information of predictions, which brings fresh in-

sights into ordinal regression.
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