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Abstract

Scene Parsing is a crucial step to enable autonomous

systems to understand and interact with their surround-

ings. Supervised deep learning methods have made great

progress in solving scene parsing problems, however, come

at the cost of laborious manual pixel-level annotation. Syn-

thetic data as well as weak supervision have been investi-

gated to alleviate this effort. Nonetheless, synthetically gen-

erated data still suffers from severe domain shift while weak

labels often lack precision. Moreover, most existing works

for weakly supervised scene parsing are limited to salient

foreground objects. The aim of this work is hence twofold:

Exploit synthetic data where feasible and integrate weak

supervision where necessary. More concretely, we address

this goal by utilizing depth as transfer domain because its

synthetic-to-real discrepancy is much lower than for color.

At the same time, we perform weak localization from eas-

ily obtainable image level labels and integrate both using a

novel contour-based scheme. Our approach is implemented

as a teacher-student learning framework to solve the trans-

fer learning problem by generating a pseudo ground truth.

Using only depth-based adaptation, this approach already

outperforms previous transfer learning approaches on the

popular indoor scene parsing SUN RGB-D dataset. Our

proposed two-stage integration more than halves the gap

towards fully supervised methods when compared to previ-

ous state-of-the-art in transfer learning.

1. Introduction

Scene parsing is an important computer vision task aim-

ing at assigning semantic information to the entire im-

age and providing a complete understanding of the scene.

State-of-the-art scene parsing works [7, 23, 24, 46] heav-

ily rely on human labeled pixel-level data, which is expen-

sive and cumbersome to collect. To enable computer vision

applications without such labeling efforts, two paradigms

have been investigated: unsupervised domain adaptation
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Figure 1. Illustration of our teacher-student framework. The

teacher utilize depth as a low domain-shift auxiliary cue. This

is fused with weak localization information to generate pseudo la-

bels, which are used to train the student.

and weak supervision. Domain adaptation for scene pars-

ing (c.f. [15]) addresses the problem by transferring from

a source domain (simulation) to features that are aligned

with target domain (real data) without any labeled target

samples. In spite of the progress that has been accom-

plished in realistic scene rendering and transfer learning

approaches, there is still a significant domain discrepancy

between real and synthetic imagery, especially in textur-

ing. Weak supervision tackles this issue by leveraging weak

annotations with lower acquisition costs such as bound-

ing boxes [10, 21, 26, 27], scribble [22], points [3] or even

image-level labels [1,6,19,20,27,30–33,35,38,41–43]. This

enables a more cost-effective scaling of training datasets.

Nevertheless, for image-level annotations, issues such as

lack of boundary information, rare pixels for objects of in-

terest, class co-occurrence and discriminative localization

remain tremendous challenges. Moreover, the majority of

existing works for weak supervision are only capable of

handling salient foreground objects.

In this work, we aim at improving performance by trans-

ferring through a path of little domain discrepancy. While

RGB images contain rich information, it is difficult to trans-
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fer from synthetic to real instances in the RGB domain.

Hence, we resort to depth information as an auxiliary cue

that can be easily captured and is only used at training time.

In the depth domain only the object geometry is of interest,

which is easier to accurately synthesize and hence presents

less domain shift. Therefore we adapt the depth cue to

model sensing artifacts that are typically encountered in real

depth measurements. However, the resulting teacher net-

work is unable to segment all categories properly. Books in

a book shelf, for example, do not have a distinctive geom-

etry. To recover such information, we leverage image-level

object tags. Such tags are easy to acquire, but do not come

with location or boundary information. We hence adapt a

weak localization technique to obtain heat maps from RGB

images through a network trained solely on these image-

level tags. Finally, the localization heat map information

is fused with the depth-based predictions to yield a pseudo

ground truth, which is in turn used to train the final stu-

dent network on RGB images only. Fig. 1 illustrates our

approach. Our main contributions can be summarized as

follows:

• We propose a teacher-student learning procedure to

learn scene parsing through low domain shift auxiliary

cues and weak domain-specific annotations. The stu-

dent network is shown to surpass its teacher, leading

to 58% reduction of the gap between state-of-the-art

supervised and domain adaptation methods.

• We are the first to perform depth map adaptation

through cycle consistent adversarial networks, utiliz-

ing a min-max normalization to ensure proper learning

of real depth map noise. It is shown to perform favor-

ably against state-of-the-art domain adaption results on

SUN RGB-D [39].

• A two-stage voting mechanism is proposed to inte-

grate cues from depth adaptation and weak localization

based on contour maps.

In order to facilitate low complexity mobile inference, we

furthermore apply complexity reduction techniques to your

final model. Related results are presented in the supplemen-

tary material as those are not our own contributions.

2. Related Work

2.1. Domain Adaptation

Domain adaptation aims at transferring source data to

features that are aligned with the target domain so as to

generalize the ability of the learned model and improve the

performance on the task in target domain without target la-

bels [15]. Recently, with the progress made in computer

graphics, adaptation between synthetic and real domain has

become a popular path for various computer vision tasks.

Several datasets such as SceneNet [25], Pbrs [45] have

been proposed for scene parsing. Unfortunately, severe do-

main shift is still met by virtue of the difficulties generat-

ing photo-realistic imagery. Therefore, several adaptation

methods [8, 9, 15, 16, 44] have been proposed to reduce the

simulation-to-real gap by means of Generative Adversarial

Networks (GAN). [16] applies techniques of global and cat-

egory specific adaptation. The global statistics are aligned

by using a domain adversarial training technique. [8] ex-

tends the approach by not only aligning global statistics but

class-specific ones as well. [9] uses the target guided dis-

tillation strategy from [14] and spatially-aware adaptation

during the training process. [44] applies domain adaptation

in a curriculum learning [4] fashion, learning scene parsing

from tasks that are less sensitive to the aforementioned do-

main discrepancy. Moreover, [15] combines a cycle consis-

tency reconstruction loss as proposed by [48] with a gener-

ative approach to prevent the mapping functions from con-

tradicting each other.

2.2. Weak Image­level Supervision

Weakly supervised approaches leverage weak annota-

tions that come at lower costs than the original ones. Since

such annotations are efficient to collect, one can build a

large-scale dataset for diverse semantic categories with less

effort and learn scene parsing in the wild. Early works

mostly applied methods based on graphical models which

infer labels for segments with probability relations between

images and annotations. Additionally, class-agnostic cues

and post-processing are often used to improve the results.

Among those methods exploiting only weak annotations,

learning only from images is the most economical but also

challenging one. Paradigms such as multiple instance learn-

ing (MIL) [2] and self-training [17] are often applied. [27]

adopt a self-training EM-like procedure, where the model is

recursively updated from the results created by itself. [31]

formulates the task as a MIL problem by applying a global

max pooling after the CNN to enforce the predictions cor-

respond to positive classes. Recently, techniques based on

discriminative localization [37, 47], which probe into the

contribution of each hidden neuron, are often employed.

SEC [19] uses such discriminative localization to indicate

a position within the area of a semantic class and expand it

to neighboring pixels. However, neural networks tend to

focus only on discriminative parts and not on the object

as a whole. Hence, works have been focusing on trans-

ferring information to the non-discriminative part of ob-

jects. [42] obtains improvements by exploiting an adversar-

ial erasing method. Class-agnostic cues are used to obtain

shape or instance information in most works that achieve

state-of-the-art results [6]. [41] uses both techniques to mine

common object features from the initial localization, ex-
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Figure 2. Overview of our proposed framework. A four stage design first adapts synthetic depth maps to appear like real ones. Those

adapted depth maps are then used to train a teacher in stage two. Stage three fuses the teacher’s predictions with weak localization from

class activation maps (CAM) based on contour maps to generate pseudo ground truth. Finally, in stage four, the student network is trained

on RGB data using the pseudo labels from the previous stage.

pand object regions and consider saliency maps under a

Bayesian framework. [1] propagates semantic information

by a random walk with the affinities predicted by Affini-

tyNet. [43] argues that varying dilation rates can effectively

promote object localization maps. Furthermore, most ex-

isting works are dedicated to handle multiple salient fore-

ground instances and evaluate on the Pascal VOC dataset

[12]. [36] is the only existing work that considers complete

scene parsing (background + foreground) with only image-

level label by leveraging two-stream deep architecture and

heat map loss. However, their result does not perform well

compared to other adaptation methods on the Cityscape

dataset.

3. Proposed Method

In this section, we present the details of our proposed

scene parsing framework. Fig. 2 illustrates how it proceeds

in four stages: First, we adapt the depth cues from the syn-

thetic into the real domain. Second, we train a teacher net-

work on the adapted synthetic depth cues. Third, by ap-

plying the teacher network to the target (real) domain and

integrating the generated labels with weak localization over

contour maps, we obtain robust pseudo ground truth. Lastly,

we train the student network on the target domain RGB in-

put using the constructed pseudo ground truth.

3.1. Depth Domain Adaptation

Our objective is to transfer label information from syn-

thetic data XSyn = {XSyn,D} to the real domain XReal =
{XReal,D, XReal,RGB} while only using depth cues due to

their smaller domain gap when compared to RGB. While

it is possible to train on synthetic depth data directly, the

domain gap still leads to noticeable performance degrada-

tion when evaluating on the target (real) domain. Hence,

transforming the depth data from the source (synthetic) into

the target domain would be beneficial to the later pseudo

ground truth generation. This is an unsupervised adapta-

tion problem where only unaligned data from the source and

the target domain is available, as only YSyn can be accessed

while YReal cannot. We follow similar adversarial adaptation

approaches and learn generators as mappings across these

domains (see stage 1 in fig. 2). In such a setting, discrimina-

tors are employed to enforce similarity between the domain

mapping and the respective target domain. This alleviates

the need for alignment between both domains. In order to

construct the sensor noise model (i.e. synthetic to real do-

main) correctly, we introduce a min-max normalization η

for depth images:

(1)η(I) = 2×
(

I −min(I)

max(I)−min(I)
− 1

2

)

.

7347



By normalizing depth values to lie in the interval [−1, 1]
rather than learning in the absolute scale directly, we avoid

scale shifting caused by distribution differences among

datasets. Additionally, this approach prevents the depth am-

plitude distribution from becoming the main judging crite-

rion for the discriminator, thereby in turn learning a better

sensor noise model. We introduce the sensor noise model N

which maps data from the synthetic to the real domain for

the purpose of adding realistic noise to clean synthetic sam-

ples. It will be optimized to prevent the discriminator DN

from distinguishing between mapped and real depth data.

The discriminator, on the other hand, tries to differentiate

real noisy data from the mapped ones. We express this ob-

jective as:

(2)

LNoise(N,DN , XSyn,D, XReal,D)

= Ext∼ XReal,D
[log DN (η(xt))]

+ Exs∼ XSyn,D
[log (1−DN (η(N(η(xs)))))],

where Eq. 2 ensures that N produces convincing sensor-

like noisy samples given synthetic clean samples XSyn,D.

Nonetheless, existing works indicate that networks opti-

mizing such objectives are often unstable, mainly because

LNoise does not consider preservation of the original con-

tent. Hence a cycle-consistency constraint [48] is imposed

on our adaptation procedure. For that purpose, the restora-

tion model R is introduced to map the sensor-like depth

map back to the clean synthetic domain, optimising a simi-

lar min-max adversarial loss:

(3)

LRestore(R,DR, XReal,D, XSyn,D)

= Ext∼ XSyn,D
[log DR(η(xt))]

+ Exs∼ XReal,D
[log (1−DR(η(N(η(xs)))))].

In contrast to the noise simulator N , the restorer R per-

forms tasks such as hole filling and denoising. More details

on how this is accomplished along with qualitative results

can be found in the supplementary material. Moreover, an

L1 penalty is imposed on samples mapped twice so as to

reach their original domain again, e.g. mapping a synthetic

sample to the sensor-like depth domain and back to the syn-

thetic domain. This is referred to as the min-max cycle-

consistency loss:

LCycle(N,R) = Exs∼ XSyn,D
[‖R(η(N(η(xs))))− η(xs)‖]

+ Ext∼ XReal,D
[‖N(η(R(η(xt))))

− η(xt)‖].
(4)

These three loss functions form our complete objective:

L(N,R,DN , DR) = LNoise(N,DN , XSyn,D, XReal,D)

+ LRestore(R,DR, XReal,D, XSyn,D)

+ LCycle(N,R).

(5)

Finally, we train the two autoencoders N,R and their re-

spective discriminators, DN and DR, jointly by solving the

following optimization problem:

(6)N,R = argmin
N,R

max
DN ,DR

L(N,R,DN , DR).

3.2. Training in Adapted Domain

The ability to simulate noise on synthetic training sam-

ples enables us in stage two to train a scene parsing

model SP ada using the noisy synthetic training samples that

mimic the real training samples, denoted XSyn→Real,D =
{N(η(xSyn,D))∀xSyn,D ∈ XSyn,D}, and the corresponding la-

bels YSyn. We train the model by minimizing a pixel-wise

multinomial logistic regression loss. Additionally, to pre-

vent overfitting towards an unbalanced class distribution,

we apply the class balancing strategy proposed in [28]. For-

mally, the weighted negative log likelihood loss between

the prediction and synthetic ground truths for pixel i from a

sample xSyn→Real,D can be written as

(7)LAdapt,i = −
∑

c∈C

wcyi,c log

(

epi,c

∑

c′∈C epi,c′

)

,

where pi,c is the prediction made by SP ada, yi,c the ground

truth label, C the set of classes with weights wc.

3.3. Pseudo Ground Truth Generation

The third stage utilizes the predictions made by the

teacher model SP ada on real depth data and proceeds to gen-

erate pseudo ground truth labels YPseudo.

3.3.1 Weak Localization

Experiments on depth-only input reveal that the perfor-

mance of SP ada is still insufficient for certain categories,

e.g. books, as their geometry is not distinctive enough. In

an attempt to remedy this by adapting a model in the RGB

domain, we observed a performance drop nonetheless. This

may be due to the domain shift between synthetic and real

textures, as a result from the difficulties to model and render

certain textures accurately in an automated fashion. Conse-

quently, we propose to utilize weak supervision based on

real RGB data as a separate cue for fine-tuning to the ob-

ject appearance in the target domain. To avoid high la-

beling costs, we only use image-level tags extracted from

SUN RGB-D, without location or boundary information.

We generate localization cues by leveraging a CNN that is

trained for image classification with a global average pool-

ing layer (GAP) as proposed by [47]. However, the resulting

class activity maps (CAM) ŶCAM are imprecise, [19] even

noted that networks trained with a final GAP overestimate

the response region. Hence, we add a 2 × 2 max pooling

layer before the GAP to extract key information and pre-

vent the GAP from overestimation.
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objects placed on or in larger ones. The response area’s size (ex-

ceeding τCAM) is hence used as a decision criterion if there are

several confident predictions for a single contour.

3.3.2 Cue Integration

To integrate the depth-based predictions ŶAdapted =

SPada(XReal,D) and the weak localizations ŶCAM, we pro-

pose a two-stage integration mechanism. Our objective

is to choose between those two predictions and generate

pseudo labels ŶPseudo where we trade coverage for confi-

dence: We prefer learning from fewer but more confident

pseudo labels. This trade-off is category-related, different

categories have different coverage-confidence profiles that

need to be accommodated. We utilize Ultrametric Contour

Maps (UCM) [13], a hierarchical representation of the im-

age boundaries, to infer pseudo labels over segments γk ∈ Γ
of the image. We only take those contours into account

that exceed a confidence threshold τUCM, denoting them

γ∗

k ∈ Γ∗.

First Integration Step The first step adds information

about the observed geometry to the contours γ∗

k ∈ Γ∗ by

analyzing the depth-based predictions ŶAdapted within each

contour. In order to remove low confidence labels from

ŶAdapted, we first apply a Softmax and threshold the result

against τAdapted = 0.6, resulting in Ŷ ∗

Adapted. τAdapted was

chosen so as to balance accuracy and coverage. We then

turn to the histogram H(γ∗

k , ŷ
∗

Adapted) = {hc,k}c∈Categories
of

predicted categories within each contour γ∗

k . Taking a sim-

ple maximum likelihood approach, we select the category

with the largest histogram value to be the prediction of the

first integration step, i.e. ŷStep 1,k = argmaxc hc,k for each

contour.

Second Integration Step The second integration step de-

cides whether the localization heat maps ŷCAM provide a

more confident prediction than the contours’ ŷStep 1,k. From

ŷCAM we first generate a proposal set of possible classes Pk

for each contour, comprising the most activated class in the

heat map and a set of small objects. Since weak localiza-

tion is provided by a deep neural network that has a rather

larger receptive field, small objects may not be accurately

represented in the activations. Therefore, we manually add

classes that cover only few pixels of an image to the list of

candidates to be checked for confidence. Next, we use peak

activation pk,c and response rate rk,c to determine which

of the proposals is confident enough to replace the estimate

from step one, forming the electable set Ek. If this set is

empty, i.e. there are no confident localizations, we resort

to the result from depth based prediction. Otherwise, if we

have several confident classes, we are interested in the cat-

egory that is most specific, where we take the one with the

smallest response area Ac. This way, we avoid neglecting

small objects that overlap with larger ones (e.g. books on a

table as shown in Fig. 3). All thresholds τ are tuned on 30

random samples of our training set to avoid human learning

on the dataset. A listing of the algorithm can be found in

the supplementary material.

3.4. Training in Target Domain

After computing YPseudo as described in the previous

stage, the last stage trains the student network SP full us-

ing the real RGB images XReal,RGB and the estimated labels

YPseudo. Those estimated labels provide information for only

a subset of all pixels, i.e those pixels that we are confident

about. In [40] the authors note that they achieved a better

disparity map for whole image with only a portion of high-

confidence predictions. Hence, assuming that the majority

of estimates in YPseudo are correct, we expect the missing or

incorrectly labeled regions to be recovered by the general-

ization capability of the neural network. Formally, the loss

for the student network for a pixel i is given by

LParse,i = −
∑

c∈C

wPseudo,cyPseudo,i,c log

(

epi,c

∑

c′∈C epi,c′

)

(8)

where the pixels in YPseudo with unknown or ignored labels

do not contribute to the loss. pi,c denotes the prediction for

class c at pixel i and yPseudo,i,c is a one-hot vector containing

the pseudo labels.

4. Experiments

To demonstrate the efficacy of our method, several abla-

tion studies on depth-aware adaptation and cue integration

are presented. We evaluate our approach on the SUN RGB-

D dataset [39]. At first, we present experiments to demon-

strate the effectiveness of our depth adaptation method. Two

synthetic datasets, SceneNet [25] and Pbrs [45], are used

during training procedure. Afterwards we proceed to abla-

tion studies of our model to show the effect of each mea-

sure on the final result. Finally, we compare to state-of-

the-art domain adaptation scene parsing methods and their

fully-supervised counterpart. Note that, to be more realistic,

no additional real data is used. The only annotations used
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Table 1. Ablation study of minmax normalization for depth adaptation. Results reported are from the SUN RGB-D semantic segmentation

validation set. Best values are highlighted in bold font.

bed books ceil chair floor furn. objs. paint sofa table tv wall
mIoU

(w/o windows)

Ours Depth

(Raw, w/o minmax normalization)
27.85 0.00 28.36 26.37 72.29 24.84 10.91 4.13 23.28 34.21 6.23 58.78 26.44

Ours Depth (Raw) 40.20 0.00 33.77 31.21 72.30 30.06 11.61 13.02 31.75 40.13 4.49 62.81 30.95

Table 2. Ablation study of sensor noise simulation. These results were reported on both inpainted and raw SUN RGB-D validation set.

bed books ceil chair floor furn. objs. paint sofa table tv wall
mIoU

(w/o windows)

Inpainted

Syn Depth 33.06 0.00 25.86 24.42 76.22 26.70 9.85 9.74 26.22 38.70 6.36 63.91 28.42

Ours Depth (w/o Cycle Loss) 33.32 0.00 32.07 31.76 71.13 25.71 12.73 10.02 32.09 36.50 6.33 53.88 28.80

[5]+Syn Depth 38.55 0.00 37.60 41.21 78.25 28.28 12.80 16.26 29.41 39.71 5.85 63.34 32.61

Ours Depth 49.04 0.00 35.75 41.40 79.55 31.44 14.68 14.63 38.51 43.73 7.78 61.83 34.86

Raw

Syn Depth 25.92 0.00 31.37 18.97 54.30 22.25 6.95 8.22 19.40 29.24 2.96 47.02 22.22

[5] Depth 30.31 0.00 33.54 22.89 72.40 26.43 11.11 13.01 25.54 36.34 4.57 61.12 28.11

Ours Depth(Raw) 40.20 0.00 33.77 31.21 72.30 30.06 11.61 13.02 31.75 40.13 4.49 62.81 30.95

in our setting are image-level tags from the SUN RGB-D

dataset which are much cheaper to acquire than pixel-wise

annotations or object bounding boxes.

4.1. Implementation Details

All experiments are implemented in the Pytorch 0.3 [29]

framework with CUDA 9.0 and CuDNN backends on a sin-

gle NVIDIA Titan X. For a fair comparison and consid-

eration of computational efficiency, we evaluate our ap-

proaches and the state-of-the-art adaptation method CY-

CADA [15] using the ERFNet [34] network architecture.

Without loss of generality, our method can be applied to

other scene parsing models. Our reproduction of CYCADA

is trained with the hyperparameters as published by the

authors, including weight sharing. For the scene parsing

model, the input images were resized to 320 × 240 and the

Adam [18] variant of stochastic gradient descent is used for

minimization of all loss functions. Training is performed

with a batch size of 48. Moreover, we train with an ini-

tial learning rate of 5 × 10−4 and reduce it by half once

loss value stalls so as to accelerate convergence as done

in [34]. We apply standard data augmentation techniques

like dropout, random flipping and cropping to prevent our

models from overfitting. For the weakly supervised model,

we use the encoder of ERFNet pretrained on ImageNet [11]

for initialization and replace the original fully-connected

layers with a max-pooling, a global average pooling and a

new fully-connected softmax layer.

4.2. Ablation Studies

Minmax adversarial loss Table 1 demonstrates the ef-

fects of minmax normalization on sensor noise learning.

The IoU of most categories is improved significantly in the

minmax normalization setting over raw depth data. This

shows the utility of the normaliser η in suppressing depth

magnitude based learning in the discriminators DN and

DR. Note that the loss of category window is set to zero and

excluded in this comparison due to wrong depth reported by

the active sensors employed in creating the SUN RGB-D

dataset.

Sensor depth simulation To show the efficacy of sensor

depth simulation, we evaluate the performance of depth-

based scene parsing as shown in Table 2. Our evaluation

includes both the raw as well as the inpainted depth maps

as provided by the SUN RGB-D. We compare with mod-

els trained solely from synthetic data as well as to the sim-

ulation method proposed in [5]. Our method clearly out-

performs those two methods for both kinds of depth maps,

thereby establishing a new baseline for our following adap-

tation experiments.

Cues and Integration Table 3 disentangles the influence

of individual cues and integration mechanisms in each vot-

ing stage during training. The results show how both in-

tegration stages contribute to the IoU improvement in dif-

ferent categories to various extent, thereby complementing

each other. Class heat maps are particularly helpful for

those objects that are smaller or do not possess a distinc-

tive geometric structure. Note that while the overall mIoU

performance improves, the mIoU for some categories such

as bed and table degrades after the second integration step

due to the inter-class occurrence issue: In weak localization

where no explicit object positions are available, those cate-
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Table 3. Influence of cues and voting mechanism in each stage. These results were obtained on SUN RGB-D validation set.

Input Training Label bed books ceil chair floor furn. objs. paint sofa table tv wall window mIOU

w/o Adaptation RGB YSyn 22.57 0.00 46.84 42.50 62.82 24.55 13.86 18.96 31.81 27.45 5.76 55.74 28.58 29.34

Ours Depth Depth YSyn 49.04 0.00 35.75 41.40 79.55 31.44 14.68 14.63 38.51 43.73 7.78 61.83 0.91 32.25

Ours(1st stage only) RGB ŶStep 1 54.93 0.00 53.12 47.50 79.64 35.77 15.99 0.00 40.39 48.89 16.07 64.82 0.65 35.21

Ours(2nd stage only) RGB UCM+ŶCAM 27.71 12.87 16.13 36.19 29.17 13.12 12.95 20.15 34.56 31.27 7.81 50.72 44.99 25.97

Ours(Full) RGB YPseudo 52.06 23.52 50.03 49.44 81.00 36.39 25.17 28.09 44.64 47.88 19.68 69.69 38.25 43.53

Table 4. Comparison of pseudo labels YPseudo to our final model. Quantities labeled ”effective” refer to the original quantity multiplied by

the cover ratio, thereby taking only valid pixels into account for a more accurate comparison. Those labeled @YPseudo are evaluated only

on those pixels where pseudo labels YPseudo are available. Evaluations are conducted on the SUN RGB-D dataset. GA refers to the Global

Accuracy over all pixels.

Predictions Dataset partition Cover ratio GA GA@YPseudo Effective GA mIoU mIoU@YPseudo Effective mIoU

YPseudo Training 72.77 80.86 80.86 58.84 56.97 56.97 41.64

SP full Training 100 75.89 80.91 75.89 49.46 56.74 49.46

SP full (incl. UCM refinement) Training 97.73 76.81 81.29 75.07 50.81 57.52 49.66

SP full Validation 100 73.64 - 73.64 43.53 - 43.53

gories that mostly appear together in a scene cannot always

be properly separated, i.e. their labels could be swapped

without invalidating any data.

Student Network Table 4 compares the result of the stu-

dent network with the pseudo labels YPseudo, i.e. evaluat-

ing on YPseudo directly without training the student network.

This illustrates how the student network is able to learn a

scene parsing model that is more accurate than its training

data. In order to evaluate performance matrix and cover

ratio, i.e., percentage of valid pixels simultaneously, the

quantities labelled effective in the table refers to multiply-

ing both. Note that effective mIoU is calculated by using

class-wise cover ratio instead of global ones.

Combination of Cues Table 5 shows additional experi-

ments for different cues. We realised perfect depth transfer

by letting the supervised model generate the pseudo labels

ŷAdapted from depth input. As expected, our results lie in-

between, i.e. our depth transfer enables improvements but

cannot fully compete with supervised information. In addi-

tion, we swapped the data and adapted RGB while apply-

ing weak supervision to the depth cue. The result is almost

five percentage points below ours. Adapting RGB and us-

ing it in weak supervision at the same time brings the result

closer to ours, however mostly due to improvements in the

category ”window”, while our approach performs better in

most other categories. This indicates that synthetic RGB

data may not be necessary, which can reduce the dataset

creation effort as texturing, lighting etc. can be avoided.

4.3. Comparison to the State­of­the­Art

In Table 6, we compare our results to full supervision and

the state-of-the-art domain adaptation methods. For a fair

comparison, all models, including CYCADA are trained us-

ing the ERFNet architecture. The not adapting alternative,

denoted NADA, is trained on synthetic data directly. CY-

CADA, the state-of-the-art domain adaption method, was

trained starting from the pretrained NADA parameters. Al-

though CYCADA outperforms NADA and performs better

than our depth adaptation on categories with indistinctive

geometric structures such as paint, tv, windows, there is

only a slight improvement, which comes at the high effort

of computer generated imagery. It shows that taking appear-

ance from real data into account yields significant advan-

tages even if only image-level labels are available. Fig. 4

shows examples of our final result. Note that some visu-

alization of our results seems to be incorrect when com-

pared to the ground truth. However, we observed that some

ground truths are imprecise and a portion of regions marked

”unknown” can be predicted correctly if we align our result

with RGB inputs by applying simple UCM based contour-

wise voting using predictions at inference phase. Hence,

we argue that the performance of our approach may still be

underestimated by this evaluation. We provide further ex-

amples for this phenomenon in the supplementary material.

5. Conclusions

Starting out from synthetically generated scene parsing

data, we have demonstrated how transferring information

in the depth domain can exploit the smaller domain gap of

geometric data for indoor scene parsing. Proceeding to in-

tegrate weak localization can recover information that is not

present or difficult to detect in synthetic indoor scenery. Al-

together this yields a significant performance improvement

for learning indoor scene parsing without dense labels, re-

ducing the mIoU drop from 47% to 20%. While we utilize

depth for our adaptation, this is only necessary at training,

not at inference time, thereby maintaining a low computa-

tions and sensory footprint. These techniques may readily

applied and extended to benefit other computer vision tasks

in the future.
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Table 5. Influence of RGB and depth cues. These results were obtained on SUN RGB-D validation set.

Input bed books ceil chair floor furn. objs. paint sofa table tv wall window mIOU

Ours, D (adaptation) + RGB (weak) 52.26 23.52 50.03 49.44 81.00 36.39 25.17 28.29 44.64 47.88 19.68 69.69 38.25 43.53

Depth (w/o adaptation) + RGB (weak) 45.52 15.32 40.35 44.44 77.87 38.00 23.12 26.83 44.54 46.24 16.24 68.79 38.94 40.48

Depth (perfect transfer) + RGB (weak) 54.48 20.62 57.69 52.75 83.27 43.61 33.15 32.30 48.46 53.11 16.07 73.61 50.94 47.77

RGB (adaptation) + D (weak) 51.77 16.10 47.42 47.54 77.31 28.24 15.87 22.89 44.59 46.72 0.00 62.08 43.64 38.78

RGB (adaptation) + RGB (weak) 48.53 19.64 48.14 48.27 77.58 36.34 23.22 29.46 44.59 47.45 21.66 68.68 47.68 43.17

Table 6. Comparison of our approach to state-of-the-art domain adaptation and fully-supervised methods. Results are obtained on the SUN

RGB-D validation set.

Method
Dataset

bed books ceil chair floor furn. objs. paint sofa table tv wall window mIOU
mIOU

drop (rel.)SUN Scene Pbrs

Supervised [34]

√

(full)
62.46 26.07 67.54 62.52 85.68 47.10 38.43 43.15 49.72 59.33 40.49 76.92 54.12 54.89 -

NADA [45]
√

22.13 0.00 23.42 40.08 69.58 23.70 10.34 5.05 36.38 21.90 8.97 57.15 23.27 26.31 -52.07%

CYCADA [15]
√

28.22 0.00 24.39 39.57 68.45 23.51 12.61 15.42 39.00 16.65 13.74 59.12 34.95 28.90 -47.35%

Ours Depth
√

48.11 0.00 22.24 39.99 77.18 27.59 13.92 12.01 39.35 39.32 6.34 59.08 0.00 29.24 -46.73%

Ours Depth
√ √

49.04 0.00 35.75 41.40 79.55 31.44 14.68 14.63 38.51 43.73 7.78 61.83 0.91 32.25 -41.25%

Ours (Full)

√

(weak)

√ √
52.06 23.52 50.03 49.44 81.00 36.39 25.17 28.09 44.64 47.88 19.68 69.69 38.25 43.53 -20.70%

Ours (Full

+UCM Refinement)

√

(weak)

√ √
54.07 21.94 47.54 50.37 81.10 36.56 24.75 30.67 46.23 49.15 17.76 70.19 39.00 43.80 -20.20%

RGB GT Supervised CYCADA Ours (Depth) Ours (Full) Ours (Full+UCM)

Figure 4. Visualization and comparison of our method. Note that UCM helps aligning the predictions with image boundaries. Overlaid

images for more examples are shown in the supplementary.
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and Antonio Torralba. Learning deep features for discrimi-

native localization. In 2016 IEEE Conference on Computer

Vision and Pattern Recognition, CVPR, pages 2921–2929,

2016.

[48] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In IEEE International Con-

ference on Computer Vision, ICCV, pages 2242–2251, 2017.

7354


