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Abstract

Highly accurate 3D volumetric reconstruction is still an

open research topic where the main difficulty is usually

related to merging some rough estimations with high fre-

quency details. One of the most promising methods is the fu-

sion between multi-view stereo and photometric stereo im-

ages. Beside the intrinsic difficulties that multi-view stereo

and photometric stereo in order to work reliably, supple-

mentary problems arise when considered together.

In this work, we present a volumetric approach to the

multi-view photometric stereo problem. The key point of our

method is the signed distance field parameterisation and its

relation to the surface normal. This is exploited in order to

obtain a linear partial differential equation which is solved

in a variational framework, that combines multiple images

from multiple points of view in a single system. In addi-

tion, the volumetric approach is naturally implemented on

an octree, which allows for fast ray-tracing that reliably al-

leviates occlusions and cast shadows.

Our approach is evaluated on synthetic and real data-

sets and achieves state-of-the-art results.

1. Introduction

Recovering the 3D geometry of an object is still a quite

open challenge in computer vision as most of the tech-

niques provide good results in specific frameworks only. In

particular, two well-known approaches namely multi-view

(MVS) and photometric stereo (PS) have been developed to

produce great results considering some key complementary

assumptions. Indeed, while MVS is assumed to provide

rough 3D volumetric reconstructions of textured objects,

PS is supposed to retrieve highly detailed surfaces from a

single view. High quality volumetric reconstruction of ob-

jects achieved by refining coarse multi-view reconstruction

[10, 40] with shading information [14, 47, 42] is a classical

way [6] of combining complementary information.

Multi-View Photometric Stereo (MVPS) approaches

have been developed so as to overcome constraints coming

from both sides, in order to deal with: specular highlights

Figure 1. Top: 3D reconstruction of a three (toy) house scene with

and without albedo, respectively left and right side. Bottom row:

sample images. The scene scale is indicated by the coin on left bot-

tom image. Our approach is capable of dealing with the near-field

effects (point light sources, out-of-focus shapes (middle)), occlu-

sions and cast shadows.

[16, 1], dynamic scenes [44], visibility and occlusions [7]

and mapping of the PS views onto the volume [37, 35].

Since implicit parameterisation of volumes has been de-

veloped using level-set approaches [27, 34], recent ad-

vances in parameterising volumes with signed distance

functions (SDFs) [53, 32] have made the multi-view ap-

proach prone to be merged with differential formulation

of irradiance equation providing shading information [26].

On the other hand, recent photometric stereo approaches

have moved towards more realistic assumptions consider-

ing point light sources [29, 36] that make the acquisition
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process easier by using LEDs in a calibrated setting.

In this work, our aim is to propose a new MVPS ap-

proach capable of dealing with scene having complex ge-

ometry when acquiring images in the near-field. This in-

creases the difficulty of the reconstruction problem due to

the severe visibility issues given by occlusions, cast shad-

ows, out-of-focus regions, etc. (see Figure 1).

Contribution To do so, our novel approach is based on

• A differential parameterisation of the volume, based

on the signed distance function that allows irradiance

equation ratios to deal with near-field Photometric

Stereo modelling.

• A variational optimisation that fuses information from

multiple viewpoints into a single system.

• An octree implementation allowing for quick raytrac-

ing so as highly accurate volumetric reconstructions

can be obtained in scenes with multiple objects.

2. Related Works

Reconstructing accurate 3D geometry of a volume has

been a challenging area in computer vision. Most of the

research trying to solve this problem has been developed by

merging multi-view methods for coarse reconstruction [10],

with techniques based on shading information for providing

high frequency details of the surface [30, 46, 48, 31, 5, 8]

rather than based on a topological evolution of the surface

[16]. However, regarding the refinement, several methods

take inspiration from Shape from Shading [14] to extract 3D

geometry from a single image (MVSfS) and consider shape

refinement resulting from single shading cues [50, 49, 3].

With the aim to improve the quality of the details and make

the reconstruction more robust to outliers, multiple shading

images from a single view point are considered. A number

of MVPS approaches have been presented [12, 35, 52].

Merging shading information with multi-view images

becomes a more complicated problem when considering

specular surfaces. Drastic changes in both shading under

different lighting and the viewing point modify the appear-

ance of the 3D geometry so that specific approaches have

been developed to deal with irradiance equations with not

negligible specular component. Jin et al. [16] exploit a rank

constraint on the radiance tensor field of the surface in space

with the aim to fit the Ward reflectance model [45]. Other

approaches instead reconstructed an unknown object by us-

ing a radiance basis inferred from reference objects [43, 1].

Zhou et al. [52] developed a camera and a handheld moving

light system for firstly capturing sparse 3D points and then

refining the depth along iso-depth contours [2]. A similar

handheld system has been developed by Higo et al. [13]

where multi-view images were acquired under varying illu-

mination by a handled camera with a single movable LED

point light source for reconstructing a static scene.

In order to make the MVPS solvable, additional assump-

tions have been considered. In particular, with the aim to

compute the camera positions so as to map accurately the

photometric stereo views, the relative motion of the cam-

era and the object can be constrained. Hernandez et al.

[12] captured multi-view images for a moving object un-

der varying illuminations by combining shading and silhou-

ettes assuming circular motion in order to compute the vi-

sual hull. Zhang et al. [51] generalised optical flow, pho-

tometric stereo, multiview-stereo and structure from motion

techniques assuming rigid motion of the object under ortho-

graphic viewing geometry and directional lighting. Further-

more, shadows and occlusions are not considered.

When photometric stereo (as well as SfS) has to be in-

tegrated with multi-view techniques, the problem of finding

the correspondence of pixels with shading information onto

the 3D surface is crucial. Geometric distortions produced

by changes in pose have to be combined with varying illu-

mination. One way to do so is by region tracking consider-

ing brightness variations using optical flow [11], parametric

models of geometry and illumination [9], or outlier rejec-

tion [15]. Okatani and Deguchi [33] proposed a photometric

method for estimating the second derivatives of the surface

shape of an object when only inaccurate knowledge of the

surface reflectance and illumination is given by assuming

represented in a probabilistic fashion.

Other approaches instead align the shading images with

the coarse 3D in order to map the photometric stereo data

onto the 3D shape [21, 17]. Delaunoy and Prados [7] use a

gradient flow approach whereas Sabzevari et. al [37] firstly

computes a 3D mesh with structure from motion with a low

percentage of missing point and then the mesh is reprojected

onto a plan using a mapping scheme [22]. Recently, Park et

al. [35] proposed a refinement method by computing an op-

tical displacement map in the same 2D planar domain of the

photometric stereo images. So, they transformed the coarse

3D mesh into a parameterised 2D space using a parameter-

ization technique that reduces distortions [41].

In this work, with the aim to avoid the mapping proce-

dure, we present a differential approach for MVPS. Being

inspired by the signed distance function parameterisation

used by Maier et al. [26] for the MVSfS problem, we derive

a volumetric parameterisation which handles the differen-

tial irradiance equation ratio presented in [29] for near-field

photometric stereo. The problem is posed in a 3D domain

which in practice is implemented in a octree, which allows

for fast ray-tracing. This accelerates the computation of cast

shadows (that are similarly conceived as in [23]) and occlu-

sions from different views and makes it possible to generate

sub-milimeter precision models for scenes occupying a vol-
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ume of several liters.

3. Signed Distance Function Parameterisation

With the aim to provide suitable mathematical char-

acterisation of a collection of solid objects, we consider

the implicit surface parameterisation in terms of the SDF

d(x),x ∈ R
3. This parameterisation turns out to be suit-

able for our aim due to its practical way of describing the

outgoing normal vector to a surface. In fact, the SDF allows

to describe the volumetric surface as the zeroth level-set of

d, d(x) = 0 . The essence of our differential approach is the

observation that the surface normal n equals to the gradient

of the SDF d as follows

n(x) = ∇d(x). (1)

Similarly to [53] that used the SDF for single image

shading refinement, we consider the SDF for the irradi-

ance equation to derive a differential multi-view photomet-

ric stereo formulation where we assume to have Nps images

(i.e. light sources) for each known camera position Cq (that

is Nps(Cq), q = 1, . . . Nviews).

To exploit the monocular aspect of the photometric

stereo problem, we consider image ratios for the Lamber-

tian shading model [20] assuming calibrated nearby LED

light sources

ik(u(x)) = ρ(x)ak(x)n(x) · lk(x) (2)

where u ∈ R
2 is the image-plane projection of the 3D point

x and ρ(x) indicates the albedo. Note that as we are fol-

lowing a volumetric approach, the irradiance equation is

considered for a set of 3D points x. The bar over a vector

means that it is normalized (i.e. n = n

|n| ). We model point

light sources by considering the following lk(x) = x− pk

from [29], where pk is the known position of the point light

source with respect to the global coordinate system. We

model the light attenuation considering the following non-

linear radial model of dissipation

ak(x) = φk

(lk(x) · sk)
µk

||lk(x)||2
(3)

where φk is the intrinsic brightness of the light source, sk is

the principal direction (i.e. the orientation of the LED point

light source) and µk is an angular dissipation factor.

Modeling with image ratios As in [29], we follow the ra-

tio method that significantly simplifies the PS problem by

eliminating the dependence on the albedo as well as the

non-linear normalisation of the normal.

Indeed, dividing equations for images ih and ik (from

the same point of view Cq) as in (2), we have

ih(x)

ik(x)
=

ah(x)n(x) · lh(x)

ak(x)n(x) · lk(x)
(4)

which leads to

n(x) · (ih(x)ak(x)lk(x)− ik(x)ah(x)lh(x)) = 0. (5)

By substituting the parametrisation of the normal from

(1), we get the following albedo independent, homogeneous

linear PDE

bhk(x) · ∇d(x) = 0 (6)

where

bhk(x) = ih(x)ak(x)lk(x)− ik(x)ah(x)lh(x). (7)

The geometrical meaning of (6) is the extension to the

3D volumetric reconstruction of the PDE approach pre-

sented in [29] and the proposed PS model still consists of

a homogeneous linear PDE. However, an important differ-

ence with [29] is that bhk(x) does not depend on d (i.e.

(6) is linear and not quasi-linear as proposed in [29]) due to

the fact that the relevant quantities are expressed on a global

coordinate system independent of the existence of a surface.

Crucially, this allows to use the nonlinear lighting model of

(3) without linearising approximations (e.g. spherical har-

monics [4]) or dependence on any initial surface estimates.

An interesting observation is that (6) is conceptually sim-

ilar with the iso-depth curves in the work of [52]. Nonethe-

less, the SDF formulation is a more natural ‘object centered’

depth and this allows for a unified optimisation as we de-

scribe in the next section.

In order to simplify the notation, we will rename the pair

hk as p and we will call the set of all the combinations of

pairs of images (with no repetition).

MVPS as a weighted least squares problem With the aim

to consider photometric stereo images coming from differ-

ent views into a single mathematical framework, we stack

in a single system the following weighted version of (6)

wp(Cq,x)bp(x) · ∇d(x) = 0 (8)

where wp(Cq,x) = max(n(x) · vq(x), 0). This weight

term wp is essentially a measure of visibility. The resulting

system then counts
∑Nviews

q=1

(

Nps(Cq)
2

)

equations as shown

in (9)







[w1(C1,x)b1(x)]
t

[w2(C2,x)b2(x)]
t

...






∇d(x) = 0. (9)

With the aim to solve it as a least square problem, we

consider the normal equations

B(x)∇d(x) = 0 (10)
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Figure 2. Synthetic data samples where we show per pairs dif-

ferences in near lighting, perspective deformation and self occlu-

sions.

with

B(x) = [w1(C1,x)b1(x), w2(C2,x)b2(x), . . .]·






[w1(C1,x)b1(x)]
t

[w2(C2,x)b2(x)]
t

...







B(x) is now a positive, semi-definite, 3x3 matrix.

B adjustment The geometrical constraint coming from

(6) ensures that all the vector fields bp(x) ∈ R
3 span the

same bi-dimensional space ∀x of the volume as they de-

fine the level-set of the SDF. This means that under ideal

circumstances, the rank of B in (10) should be exactly 2.

However, due to numerical approximations this is never ex-

actly true; we enforce this constraint by using eigenvalue

decomposition of B hence

B = QΛQt = Q





Λ1 0 0
0 Λ2 0
0 0 Λ3



Qt (11)

with Λ1 ≥ Λ2 ≥ Λ3 and setting Λ3 = 0.

We note that this rank correction is a sanity check step.

Indeed if B∇d = 0 with B full rank, then ∇d = 0 which

can never be true as |∇d| = 1 (Eikonal equation) and so

d cannot be the SDF of any real surface. In practice, this

would lead to over-smoothing of the SDF and loss of details.

In addition, the Eikonal equation can be implicitly enforced

by demanding that ∇d = q3, where q3 is the third collumn

of Q and corresponds to the nullspace of B (q3 is a unit

vector hence enforcing the Eikonal equation). Hence (10)

is updated to the following full rank system (I3×3 is the

identity matrix)
(

B(x) + I3×3

)

∇d(x) = B′(x)∇d(x) = q3. (12)

4. Variational resolution

In this section, we describe how we build the variational

solver to compute the signed distance field based parame-

terisation introduced in the previous section.

Discretisation To avoid excessive computation, we note

that the photometric stereo equations do not need to be com-

puted in the whole volume but rather only to a subset of

voxels Ω ⊂ R
3, which are close to the surface. In fact, (1)

is only true in the vicinity of the surface. We discretise the

variational problem (12) by using first order forward finite

differences ∇d = G · d, with d being the vector stacking

d(x) in all of Ω. G is the sparse kernel matrix describing

the connectivity in Ω.

We note that the differential approach is inevitably rank

deficient (needing an integration constant for the theoreti-

cal minimal solution). Hence, we follow the standard of

most modern variational approaches (e.g. [28]) and adopt a

Tikhonov regulariser of the form d = d0 where d0 is some

initial estimate of the SDF obtained from the distance trans-

form of the an initial surface estimate. Also note that differ-

ential approaches are guaranteed to recover smooth surfaces

without the need of a smoothness regularisers (like the one

of [8]). Thus the problem becomes (using λ = 0.05)

min
d

(||BΩGd− qΩ||+ λ||d− d0||) (13)

where BΩ and qΩ are obtained by stacking the relevant

quantities from (12) for all voxels in Ω. The resulting lin-

ear system is solved with the conjugate gradients method.

(a) Ground truth (b) Visual Hull

(c) Initial estimates: 500,1500,10K triangles

Figure 3. Synthetic data experiment - initial estimates used for ini-

tialising the MVPS optimisation. The variable quality initial esti-

mates of the bottom row are generated by subsampling the ground

truth (3(a)) using Meshlab’s edge collapse decimation function.
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(a) [35]-RMS Err 0.105mm (b) Ours-RMS Err 0.090mm (c) [35]-RMS Err 0.370mm (d) Ours-RMS Err 0.293mm

Figure 4. Evaluation using the 1500 triangles mesh initial estimate (a),(b) and the visual hull initial estimate (c),(d). The colour coding

shows the error in millimeters compared to the ground truth (computed using Meshlab’s Hausdorff distance function).

Jacobi preconditioner is used as the system is too large

(107 − 109 elements) to use a more sophisticated one.

4.1. Octree Implementation

To manage the required set of voxels ∈ Ω described

above we use an octree structure. Ω is defined at the leafs

of the tree and Voxel neighbors for computing finite differ-

ences are found by bottom up traversal of the tree.

We perform an iterative procedure of solving (13) on the

leafs of the tree and then subsequently subdividing those

leafs where the absolute value of SDF is smaller than 2

voxel sizes. The procedure repeats until the voxels are small

enough so as their projection on the image planes is smaller

than the pixel size and thus the maximum obtainable reso-

lution has been reached. As a result, only a small fraction of

the volume is considered for calculations and the hierarchy

of voxels is densely packed around the surface. Finally, the

reconstructed surface is computed with the Marching cubes

variant of [19].

It is important to note however that this iterative proce-

dure is only needed for computational reasons. If the whole

volume could be filled with voxels, solving (13) would re-

cover the whole surface in a single step.

Visibility Estimation In order to deal with scenes with a

complex geometry and multiple objects, occlusions and cast

shadows need to be addressed. This is performed by ray-

tracing lines from each voxel to each light source and cam-

era and using the current estimate of the geometry. As it is

well accepted in the graphics community (e.g [25]), octree

Table 1. Quantitative evaluation based on the initial estimate qual-

ity. Errors are in mm. Noise added to vertex positions and the

magnitude is relative to the average triangle size.

Experiment Triangle Number Visual Hull

Method Noise 250 500 1500 10K 30K 14K

[35]

0% 0.245 0.141 0.105 0.029 0.025 0.370

5% 0.290 0.172 0.119 0.036 0.029 -

10% 0.393 0.250 0.153 0.046 0.031 -

Proposed

0% 0.203 0.114 0.090 0.026 0.023 0.293

5% 0.234 0.137 0.104 0.033 0.024 -

10% 0.321 0.193 0.131 0.043 0.028 -

structures allows for very quick visibility checks and when-

ever an occlusion/shadow is detected, the relevant weight in

(9) is set to 0.

The details of the tree evolution and raytracing opera-

tions are elaborated in the supplementary §A.

The method was implemented in Matlab with the octree

code using c++ in a mex file.

5. Experiments

With the aim to prove the capability of our approach to

reconstruct complex scenes, we considered both synthetic

and real data. We compared against [35] using the code

from their website. It is worth to mention that differently

from our method, their state-of-the-art approach for MVPS

is based on a fully un-calibrated PS model.

For the synthetic case, we used the Armadillo model

from the Stanford 3D Scanning Repository1. The virtual

object was scaled to have approximate radius 20mm and

the virtual camera of focal length 6mm was placed in sev-

eral locations on a sphere of 45mm around the object.

We rendered 12 views with 8 images each of resolution

1200x800x24bits per pixel (see Figure 2).

In order to quantitatively describe the dependency of the

accuracy of the volumetric reconstruction to the initial esti-

mate, we subsampled the initial mesh2 to 5 different meshes

1http://graphics.stanford.edu/data/3Dscanrep/
2Using the quadric edge collapse decimation function of Meshlab.

Figure 5. Hardware setup used for the acquisition. Only 9/52

LEDs are used for the acquisitions. The stereo configuration al-

lows to get a wider view from the camera on the right whereas the

camera in the center of the PCB is able to acquire near-field views

of the objects.
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Figure 6. Real data: 2/108 photometric stereo images (we used

12 views with 9 lights in each view) and initial geometry estimate

obtained with MVS. This initial estimates are only 8k and 11k

triangles for the Queen and Buddha datasets respectively.

with number of triangle ranging from 250 to 30K (the orig-

inal mesh was 150k triangles). For each of these meshes we

added Gaussian noise to the vertex coordinates with std 0, 5,

10% of the average triangle size. The visual hull (computed

with voxel carving) was also used for a final experiment.

The evaluation metric is the RMS Hausdorff distance

to the ground truth (computed with Meshlab). Results are

shown in Figures 4 and Table 1. The proposed approach

outperforms [35] in all experiments with the difference be-

ing more significant on the low quality initial estimate ex-

periments.

5.1. Real Data

For acquiring real world data we used an active light sys-

tem (see Figure 5) consisting of two FLIR cameras FL3-U3-

32S2C-CS. One camera mounted an 8mm lens and was sur-

rounded by OSRAM ultra bright LEDs for capturing data

in the near-field. The second camera had a 4mm lens for

acquiring a wider area helping to track the trajectories of

both cameras. The stereo pair was calibrated using Mat-

lab’s computer vision toolbox and a checkrboard, in order

to be able to capture the absolute scale of the world, which

is needed for the near light modeling (Equation (3)).

The images have been acquired while moving the setup

around the scene. We used COLMAP-SFM [38, 39] to pro-

cess multi-view data to get camera rotation and translation

Figure 7. Qualitative evaluation on real data set of Figure 6. The

proposed approach outperforms [35] and generates more detailed

reconstructions.

Figure 8. Closeup rednerings showing comparison of [35] (left) to

the proposed method (right). Note that the proposed method is

clearly outperforming the competition, especially in the top row

which corresponds to a view in the middle of the scene which is

particularly challenging due to cast shadows (see Figure 1).

between the photometric stereo views as well as a low qual-

ity reconstruction to use as initial estimate. In addition, a

few more images were captured in between the photomet-

ric stereo sequences (with neutral illumination) in order to

make SFM more robust with respect to a too small over-

lap between images. To make the models obtained through

MVS have less noise, we remove some noisy regions and

background points far away from the scenes of interest.

Then, we performed Poisson reconstruction [18] with a low

level setting so as the initial estimate contains continues

surfaces (and not point clouds). As Table 1 suggests, our

method does not need a very accurate initial estimate. Fi-

nally, the initial SFD d0 is computed as the distance trans-

form of the initial surface.

We performed minimal prepossessing to remove satu-

rated and almost saturated pixels as they likely correspond

to specular highlights, which are inconsistent with the Lam-

bertian shading model assumed.

Our real-world datasets include a marble Buddha statue,
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Figure 9. Top view of the reconstruction of the ‘village’ dataset presented in Figure 1. This includes the initial geometry estimate obtained

with SFM([38, 39] (left), [35] (middle) and the proposed method (right).

plaster bust of Queen Elisabeth (Figure 6), a plastic 3D

printed version of the Armadillo next to an owl statue (Fig-

ure 10) as well as toy village scene (Figure 1).

The experiments were run on a server machine. The

computational requirements were 15-20GB of RAM and

10-20 minutes of CPU time for the synthetic experiments

and the single object datasets showed in Figure 6. Figure

1 and 10 correspond to much bigger volumes and thus they

needed around 2 hours and 150GB of RAM; this cost is

justified by the fact that the octree was allowed to grow

to around 30M voxels of size 0.2mm which is required to

cover the few litters volume.

The proposed approach outperforms [35] in all datasets.

In the simple objects (see Figures 7) the difference is that

our method is able to get more detailed surfaces as it is not

limited by the initial estimate and iteratively refines the sur-

face to the limit of precision. This is in contrast to [35]

which is limited by the initial estimates as it is used to cre-

ate a 2D domain and the calculate a displacement map. Note

Figure 10. Sample images (3/90) from the Armadillo-owl dataset.

The height of the armadillo is around 15cms.

that using [35] in an iterative fashion is explicitly discour-

aged by the authors as the 2D parameterisation gets very

expensive if the initial estimate has a high triangle count.

In addition, their 2D domain is set to a fixed resolution and

thus cannot generate surfaces with arbitrary level of details.

This is in contrast to our octree implementation which natu-

rally allows continues refinement and different level of pre-

cision in different parts of the scene.

In addition, our methods performs very well on a chal-

lenging datasets where the existence of cast shadows highly

degrades the quality of the reconstructions generated by

[35] (see Figures 8, 9, 11 and 12). This is expected as

Figure 11. Closeup rednerings showing comparison of [35] (left)

to the proposed method (right) for the dataset of Figure 10.
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Figure 12. Top view of the reconstruction of the armadillo dataset. This includes the initial geometry estimate obtained with SFM([38, 39]

(left), [35] (middle) and the proposed method (right).

our method ray-traces cast shadows whereas [35] only in-

directly handles them using a robust estimation. Finally,

albedo colourised reconstructions can be seen in Figure 13.

6. Conclusion

We presented the first volumetric parameterisation based

on the signed distance function for the MVPS problem.

Very high accuracy is achieved by using an octree imple-

mentation for processing and ray-tracing the volume on a

tree. While considering photometric stereo images, our

fully differential formulation is albedo independent as it

uses the irradiance equation ratio approach for the near-field

photometric stereo presented in [29].

The main limitation of the proposed approach is the in-

ability to cope with missing big portions of scene (this also

true for most competing approaches e.g. [35, 52, 50]). This

is because Equation (1) only applies in the vicinity of a sur-

Figure 13. Albedo-mapped reconstruction of the 2 multi-object

datasets. The albedo is calculated using simple least squares on

Equation (2) using the final geometry estimate (along with occlu-

sion/shadow maps). Black albedo regions signify that this partic-

ular part of the surface is not visible in any image.

face so the geometry cannot move very far away from initial

estimate. In addition, the initial estimate is used for calcu-

lating the initial occlusion/shadow maps hence if an object

that casts a shadow on the scene is not included in the ini-

tial estimate, the reconstruction of the shaded part will be

problematic.

The main drawback of our method compared to mesh pa-

rameterisation techniques (e.g. [35]) is the elevated mem-

ory requirements. Even though the octree implementation

minimises the number of voxels required, it is inevitable to

need a few voxels per each potential surface point. This

is due to the fact that the surface is the zero crossings of

the SDF and at least a pair of opposite signed values are

required per surface point. In addition, the use of the varia-

tional optimisation is also memory expensive as the matrix

enconding the neighbouring information about voxels (G in

Equation (13)) needs to be stored in memory as well.

As future work, the image ratio based modeling can be

extended in order to handle specular highlights using the

model presented in [28]. This requires to enhance the vari-

ational solver with the inclusion of a shininess parameter,

as an additional unknown per voxel. Additional realistic ef-

fects such as ambient light ([24]) can also be included in the

proposed model.
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