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Abstract

Many objects in real world have convex shapes. It is a

difficult task to have representations for convex shapes with

good and fast numerical solutions. This paper proposes a

method to incorporate convex shape prior for multi-object

segmentation using level set method. The relationship be-

tween the convexity of the segmented objects and the signed

distance function corresponding to their union is analyzed

theoretically. This result is combined with Gaussian mixture

method for the multiple objects segmentation with convex-

ity shape prior. Alternating direction method of multiplier

(ADMM) is adopted to solve the proposed model. Special

boundary conditions are also imposed to obtain efficient al-

gorithms for 4th order partial differential equations in one

step of ADMM algorithm. In addition, our method only

needs one level set function regardless of the number of ob-

jects. So the increase in the number of objects does not

result in the increase of model and algorithm complexity.

Various numerical experiments are illustrated to show the

performance and advantages of the proposed method.

1. Introduction

Image segmentation is important in image processing

and computer vision. It has been an active research area

and numerous methods have been proposed, see [2, 3, 4, 16]

and the references therein. However, it is a challenging task

to segment the object of interest precisely and accurately

for poor quality images, such as occlusion and low contrast

images. Image segmentation with shape priors, such as con-

vexity [8], star shape [26], geodesic star [9], hedgehog [11],

can effectively improve the segmentation accuracy and pre-

cision. Convexity is one of the widely used shape priors

[7, 8, 19]. In this paper, we propose a continuous model for

multiple disjoint convex objects segmentation. Our method

is based on convexity shape representation by level set func-

tion. One important advantage of the proposed model is

that its computational cost is independent of the number of

objects. We only need one level set function to represent

the convexity all the considered convex objects. The con-

vexity of the represented objects is equivalent to a simple

constraint on the signed distance function. Labels on fore-

ground and background can be incorporated in the model

easily to improve the segmentation accuracy. Some special

techniques are used to combine ADMM and proper bound-

ary conditions to get very efficient algorithm. Experiments

on various images show the effectiveness of the model and

the efficiency of the algorithms.

Related works: Image segmentation with convex shape

prior has attracted much attention. It is well-known that

convexity is an important cue for human vision [12, 15].

Many objects in optical images and images created from

some inverse problems (such as CT, ultrasound, MRI, sonic)

are convex. However, the object integrity is often broken

due to occlusions, illumination bias and artifacts caused by

inverse crimes. In order to tackle the problem, convexity

prior has been investigated for image segmentation.

Several methods have been proposed in the literature.

According to the definition of convex region, the authors of
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[8] propose a discrete method for binary segmentation by

penalizing 1-0-1 configurations on all the intervals of any

straight line passing through any pixel in certain directions.

Such penalization terms are non-submodular and they make

the related optimization problem difficult to solve. Trust re-

gion (TR) method is used to solve the model after linear or

quadratic approximation. Similarly, 0-1-0 congurations on

straight lines are used to compute the integral of squared

curvature along object boundary [17].

In [22], a method for n-sided convex object modelling is

proposed. This method needs one foreground and n back-

ground labels. Therefore, the labeling number is very large,

and the computation cost is very expensive for complex ob-

jects, e.g. a circle.

It is a natural way to represent shape priors by level set

function [5, 18]. For convex shape segmentation, one only

needs to keep the curvature nonnegativity of the boundary

curve. The curvature of the boundary curve can be com-

puted easily using level set representation. This idea is

adopted for convex segmentation in the literature [2, 25, 28].

The method is further developed in [13, 27], where the con-

vexity of the level set function (signed distance function)

is guaranteed by imposing proper constraints, and efficient

algorithms are developed.

As for the multiple convex objects segmentation prob-

lem, it is more challenging than single convex object seg-

mentation. In [7], the method for single convex object seg-

mentation in [9] is extended for multiple convex objects

segmentation. Graph-cut algorithm is developed to solve

the TR sub-problem, which can maintain the convexity of

all foreground subregions simultaneously. In [19], the min-

cost multi-cut method is extended for multiple convex ob-

jects segmentation. The objects convexity is obtained by

imposing constraint on the number of intersections of any

line with the object boundary. Branch-cut of ILP solver is

used to solve it.

Recently, k-part shape priors for image segmentation

drew a lot of attentions [10, 14, 29]. The aim of these meth-

ods is to divide the object into several parts with given shape

priors. The notions of k-convexity [1] and k-star shape [23]

are introduced. This concept is extended in [10] for any

shape priors, such as geodesic-star and hedgehog.

Our contributions: The segmentation problem for mul-

tiple convex objects is a challenging task. There are not

so many methods that are easy to use, efficient and robust

for real applications. For the methods in [7, 19], plenty of

labels on the objects and backgrounds are usually needed

to get accurate segmentation results, and the computational

cost is high, especially for large number of objects. In this

paper, we propose a level set representation method to seg-

ment multiple convex objects. The proposed method has

three advantages as follows.

1) The convexity of the segmented objects is guaranteed by

Figure 1. Results by the proposed method with different values of

c (second row, c = 2, 2.3, 2.5 from left to right) and the method

without (top right) convexity prior for the tomato image (top left).

a linear constraint on the signed distance function associ-

ated to the union of all the objects. Thus, only one level set

function is needed for our method regardless of the number

of objects. The computational cost does not increase with

the increasing of the number of objects.

2) The proposed method is based on the property of c-
sublevel set (see Section 2) corresponding to the union of

convex objects. The parameter can be easily tuned to merge

and separate objects based on the shortest distance between

them (see Figure 1).

3) We develop special techniques to solve the minimization

problem with the signed distance function under the con-

vexity constraint. This has led to an efficient algorithm by

dividing the problem into easily solved sub-problems.

We explain in more details about the proposed method

as follows. Usually, we need k convex level set functions

to represent k convex objects. In this work, we prove that

the convexity of k objects can be characterized by the prop-

erty of the c-sublevel set of the SDF equivalently, i.e. the

c-sublevel set consists of k convex subregions if c is less

than half of the smallest distance, c̃, between any two ob-

jects. Such characterization provides a description of the

convexity of the k convex objects, i.e. the SDF correspond-

ing to their union should be convex on each subregion of its

c-sublevel set. On the other hand, the SDF is convex on each

subregion if and only if the curvature (Laplacian of SDF) of

the SDF’s c level set curve is nonnegative for c < c̃.

The result on the level set representation for multi-

ple convex objects is incorporated with probability based

method for multiple convex objects segmentation, i.e. a

nonnegative constraint of Laplcian SDF is imposed on the

c-sublevel set instead of the whole image domain [13, 27].

For simplicity, Gaussian mixture method (GMM) is adopted

to compute the probabilities belonging to the background

and foreground for each point. We adopt the method in [7]

to compute the probability for foreground containing all the

convex objects, i.e. we don’t distinguish the distributions

for different objects. This method can reduce the model
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complexity and computational cost. For poor quality im-

ages, labels on the foreground and background can be added

to improve the segmentation accuracy. Even more, we can

choose different values of the parameter c to merge or sep-

arate adjacent objects (see Figure 1). This will be discussed

in Section 2.

Traditionally solving minimization problems with

signed distance functions is time-consuming. Recent work

[6] reveals that one can use ADMM type of methods to ob-

tain very fast algorithms for such problems. In this paper,

we develop an efficient algorithm for our proposed model.

Proper boundary conditions and suitable splitting of the

variables are essential to reduce the complicated optimiza-

tion problem into simpler sub-problems. Our experiments

not only verify the effectiveness of the proposed method in

segmentation while keeping the convexity of the object re-

gions, but also demonstrate its robustness against noise and

parameter imprecision.

The rest of this paper is organized as follows. In Sec-

tion 2 we provide our method in details, from the setup to

the mathematical framework, and present the ADMM al-

gorithm for our model in Section 3. In Section 4 we show

some numerical examples, which demonstrate the effective-

ness of the proposed method. Finally, conclusions and fu-

ture work are discussed in Section 5.

2. Method description

In this section we present the method for multiple ob-

jects segmentation using a single level set function under

the convexity prior. First we shall discuss the representa-

tion method of multiple convex objects by a single level

set function. Later we shall incorporate such representation

with the GMM-based segmentation model.

2.1. Convex shape representation

Assume D ⊂ R
2 (possibly consisting of several disjoint

connected subregions). The signed distance function (SDF)

of D is defined as follows:

φ(x) =

{
−dist (x, ∂D) x ∈ D
dist (x, ∂D) x 6∈ D,

(1)

where ∂D denotes the boundary of D and dist(x, ∂D) =
miny∈∂D ‖x − y‖2. It is well known that |∇φ| = 1 holds

almost everywhere for the SDF of any region. For a given

function ψ, the level set and sublevel set are defined as

levcψ = {x|ψ(x) = c},
slevcψ = {x|ψ(x) ≤ c}.

It is obvious that ∂D = lev0φ and D = slev0φ.

In the following, we assume D =
⋃
k∈K

Ωk, where Ωk
for k ∈ K = {1, 2, · · · ,K} are disjoint simple regions. In

addition, we define the distance between any two convex

regions Ωi,Ωj (i 6= j) as

dist(Ωi,Ωj) = min{‖x− y‖2, x ∈ Ωi, y ∈ Ωj}. (2)

Then we have the following result about the relation be-

tween the convexity of Ωk, k ∈ K, and the level set function

φ corresponding to D.

Lemma 1 Assume Ωk ⊂ R
2, k ∈ K are disjoint simply

connected regions, and φ is the SDF of D =
⋃K
k=1 Ωk.

Let c̃ = 1
2 min{dist(Ωi,Ωj), i 6= j, i, j ∈ K}. Then all

Ωk, k ∈ K, are convex if and only if slevcφ consists of K

convex subregions Ωck = Ω̄k
⋂
slevcφ, k ∈ K, for all c < c̃,

where Ω̄k = {x|dist(x,Ωk) < c̃}.

The proof of Lemma 1 is given in Appendix. According

to Lemma 1, level set levcφ = ∂slevcφ for all c < c̃ con-

sists of K convex curves ∂Ωck (some may be empty sets). It

is well known that the curve convexity is equivalent to the

nonnegativity of its curvature. Due to |∇φ(x)| = 1 almost

everywhere, the curvature for the c level set of SDF φ is

κ(c) = ∇ ·
( ∇φ
|∇φ|

)
= ∆φ. (3)

Therefore, we have ∆φ(x) ≥ 0 if φ(x) < c̃. This yields the

following key theorem.

Theorem 1 Assume Ωk ⊂ R
2, k ∈ K are disjoint simply

connected regions, and φ is the SDF corresponding to D =⋃K
k=1 Ωk. Let c̃ = 1

2 min{dist(Ωi,Ωj), i 6= j, i, j ∈ K}.

Then all Ωk, k ∈ K, are convex if and only if ∆φ ≥ 0
almost everywhere on slevcφ for c < c̃.

For an optimization problem with SDF (e.g. level set

based image segmentation model), if we require △φ ≥ 0
on slevcφ for c ≥ 0, we will get a SDF φ such that slev0φ
consists of several convex subregions by Theorem 1, and

the distance between any two subregions will be larger than

2c. In other words, if there are two regions, the distance be-

tween which is smaller than 2c, they must be contained in

one of the subregions of slev0ψ .

2.2. Image segmentation model with convexity
shape constraint

In this subsection, we describe the Gaussian mixture

method (GMM) for multiple disjoint objects segmentation

with convex shape prior using a single level set function.

The proposed method differs slightly from the traditional

GMM-based model. Although we estimate the Gaussian

distributions on different objects, we don’t distinguish them

in the model but view their mixture as the distribution of

foreground.

615



Assume an image I : x ∈ Ω ⊂ R
2 7→ [0, 1]d with

d = 1 for gray image and d = 3 for color image. Sup-

pose that the object regions Ωk ⊂ Ω, k ∈ K, that we

would like to segment are convex. Let Ω0 = Ω\(
⋃K
k=1 Ωk)

be the background region. Suppose the values I(x) on

Ωk, k ∈ K = {0, 1, · · · ,K}, obey the Gaussian distribu-

tion G(µk,Σk), and denote the probability density function

by

p(I(x), µk,Σk)=
1

A
exp

(
−
‖I(x)−µk‖2Σ−1

k

2

)
, (4)

where A = (2π)
d

2 det(Σk)
1/2. Then the proportion of the

k-th distribution is rk = |Ωk|
|Ω| , k ∈ K. In this work, the

probabilities of point x belonging to the background Ω0 and

foreground
⋃K
k=1 Ωk are

p0(x) =
r0p(I(x), µ0,Σ0)∑K
k=1rkp(I(x), µk,Σk)

, (5)

and p1(x) = 1− p0(x), respectively. Assume φ is the SDF

corresponding to
⋃K
k=1 Ωk, and H is the Heaviside func-

tion, i.e. H(t) = 0 for t ≤ 0 and 1 otherwise. We have

p(φ) =
∏

x∈Ω

[p0(x)]
H(φ(x))[1− p0(x)]

1−H(φ(x)). (6)

Discarding the constant term, we can get the log-likelihood

functional

−
∫

Ω

[ln(1− p0(x))− ln p0(x)]H(φ(x))dx. (7)

The nonnegative weighted likelihood functional is used as

the region force term of the following image segmentation

model

argmin
φ

∫

Ω

[−w0 ln p0(x) + w1 ln(1− p0(x))]H(φ)dx

+

∫

Ω

g(x)δ(φ)|∇φ|dx, |∇φ(x)| = 1, x ∈ Ω, (8)

where g = α
1+β|∇Î(x)|

is an edge detector function with

Î being the smoothing image of I and α, β > 0, δ is the

distribution derivative of H , and w0, w1 > 0 are balance

parameters. The constraint |∇φ(x)| = 1 is required for

SDF. In the following, we denote

F (φ)=[−w0 ln p0(x)+w1 ln(1−p0(x))]H(φ)+g(x)δ(φ).

Based on Theorem 1, we can obtain the following model

for multiple objects segmentation with convexity prior by

imposing constraint ∆φ ≥ 0 on slevcφ

argmin
φ

∫

Ω

F (φ)dx, ∆φ(x) ≥ 0, x ∈ slevcφ,

|∇φ(x)| = 1, x ∈ Ω, (9)

where c ≥ 0 is a small user-specified parameter, which may

vary for different images and desired segmentation results.

As for the choice of c, we can use c = 0 for simplicity in

practice. However, we can choose large value for c if there

is only one object to segment. In addition, we can select c
deliberately to get desired result.

We can see the role of c clearly by comparing the seg-

mentation results in Figure 1. As we see that the red tomato

is completely separated into several (approximate) convex

regions by green branches. Therefore, the result by convex

shape prior model (9) with c = 0, which is not illustrated

here, is very similar with the one by the model (8) without

convex shape prior. However, these disjoint convex regions

will be gradually merged with the increasing of parameter

c, which is just the thing that Theorem 1 tells us.

Labeling information is widely used for convex object

segmentation [7, 8, 14]. Our method also can incorporate

labeling information. Assume Lbg and Lob are the labeled

regions on the background and foreground. Then the so-

lution of SDF should satisfy φ(x) ≥ 0 for x ∈ Lbg and

φ(x) ≤ 0 for x ∈ Lob. We only need to add an additional

constraint on the optimization problem (9), and get the fol-

lowing minimization problem with labeling prior.

argmin
φ

∫

Ω

F (φ)dx, ∆φ(x) ≥ 0, x ∈ slevcφ,

|∇φ(x)| = 1, x ∈ Ω, φ ∈ L, (10)

where L={ψ|ψ(x) ≥0, x ∈Lbg, and ψ(x) ≤0, x ∈Lob}.

3. Algorithm for the proposed models

In this section the ADMM algorithm for the constrained

optimization problem (10) is presented in details, and the

algorithms for (8) and (9) can be obtained similarly. For

implementation simplicity, we assume the boundary of the

image domain Ω belongs to the background, all the object

regions of interest are in the interior of the image domain.

Otherwise we can always pad extra pixels just outside the

boundary of the image domain. Thus we only require φ to

be a signed distance function inside the interior set Ωo of Ω,

and ∆φ ≥ 0 on slevcφ, i.e.

|∇φ(x)| = 1, x ∈ Ωo and ∆φ(x) ≥ 0, x ∈ slevcφ. (11)

In order to obtain the efficient algorithm, we impose the

following conditions of φ on the boundary of Ω

∂φ

∂~n
=
∂∆φ

∂~n
= 0, on ∂Ω. (12)
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Here and after, we denote by ~n the unit outer normal vector

of ∂Ω, and define the following function spaces and sets

V = {φ ∈ H2(Ω)| ∂φ
∂~n

=
∂∆φ

∂~n
= 0 on ∂Ω},

V1 = {ζ ∈ H1(Ω)| ∂ζ

∂~n
= 0 on ∂Ω},

V2 = {ξ ∈ H1(Ω)×H1(Ω)| ξ · ~n = 0 on ∂Ω},
S0 = {ψ|ψ ∈ V, ψ ∈ L},
S1 = {ζ ∈ V1|ζ(x) ≥ 0, x ∈ slevcφ},
S2 = {ξ ∈ V2| |ξ(x)| = 1, x ∈ Ωo}.

By introducing three auxiliary variables ψ = φ, ζ = ∆φ
and ξ = ∇φ, the constrained minimization problem (10)

under (11) and (12) is equivalent to:





arg min
φ,ζ,ξ

∫

Ω

F (φ)dx,
∂φ

∂~n
=
∂∆φ

∂~n
= 0, on ∂Ω

ψ= φ, ζ= △φ, ξ= ∇φ, ψ ∈ S0, ζ ∈ S1, ξ ∈ S2.

(13)

The augmented Lagrangian functional for problem (13) is

then given as

L(φ, ψ, ξ, ζ, λ0, λ1, λ2) =

∫

Ω

F (φ)dx

+ 〈λ0, φ− ψ〉+ 〈λ1,∆φ− ζ〉+ 〈λ2,∇φ− ξ〉 (14)

+
ρ0
2
‖φ− ψ‖22 +

ρ1
2
‖∆φ− ζ‖22 +

ρ2
2
‖∇φ− ξ‖22,

where φ, λ0 ∈ V, λ1, ζ ∈ V1, λ2, ξ ∈ V2, ψ ∈ S0, ζ ∈
S1, ξ ∈ S2, and ρ0, ρ1, ρ2 > 0 are augmented parameters.

We use 〈·, ·〉 to denote the inner product of two functions

in L2(Ω). The ADMM algorithm for (13) is now given in

Algorithm 1. If there is no labeling information, we view

Algorithm 1 Alternating direction algorithm for (14)

1. Initialization: λi = 0, ρi > 0, i = 0, 1, 2, and φ0;

3. For t = 0, 1, 2, · · · ,Num

4. ψt+1 = argminψ∈S0
L(φt, ψ, ξt, ζt, λt0, λ

t
1, λ

t
2),

5. ζt+1=argminζ∈S1
L(φt, ψt+1, ξt, ζ, λt0, λ

t
1, λ

t
2),

6. ξt+1=argminξ∈S2
L(φt, ψt+1, ξ, ζt+1, λt0, λ

t
1, λ

t
2),

7. φt+1=argminφ∈V L(φ, ψ
t+1, ξt+1, ζt+1, λt0, λ

t
1, λ

t
2),

8. λt+1
0 = λt0 + ρ0(φ

t+1 − ψt+1),
9. λt+1

1 = λt1 + ρ1(∆φ
t+1 − ζt+1),

10. λt+1
2 = λt2 + ρ2(∇φt+1 − ξt+1),

11. end(for)

Lbg and Lob as empty sets. For this case, the terms with

respect to ψ is maintained as well and understood as a prox-

imal term about φ to stabilize the iteration procedure. The

role of it will be clear for the update of φ in (19).

Steps 4, 5 and 6 have closed form solutions, and the

minimizer of Step 7 is the solution of a fourth order par-

tial differential equation (PDE), which can be converted to

two 2nd order PDEs and they can be solved efficiently using

the discrete cosine transform (DCT) [21].

♠ ψ, ζ, ξ updates in Steps 4, 5 and 6: For the solution

ψt+1, after simply calculating and discarding the terms not

related to ψ, we can get

ψt+1 = arg min
ψ∈S0

ρ0
2
‖ψ − ψ̃t‖22, (15)

where ψ̃t = φt(x)+λt0(x)/ρ0. According to the constraint

of L, we can obtain the solution ψt+1 as follows:

ψt+1(x) =





max{0, ψ̃t(x)} x ∈ Lbg
min{0, ψ̃t(x)} x ∈ Lob
ψ̃t(x) otherwise.

(16)

Similarly, we can get the solution to Step 5,

ζt+1(x) =

{
max{0, ζ̃t(x)} x ∈ slevcφt

ζ̃t x 6∈ slevcφt ,
(17)

where ζ̃t(x) = ∆φt(x) + λt1(x)/ρ1. Using the constraint

|ξt+1(x)| = 1, we can obtain the solution of ξt+1 as fol-

lows:

ξt+1(x) =

{
ξ̃t(x)/|ξ̃t(x)| x ∈ Ωo

ξ̃t(x) x ∈ Ω\Ωo, (18)

where ξ̃t(x) = ∇φt(x) + λt2(x)/ρ2.

♠ φ update in Step 7: Based on the assumptions

λt1, ζ
t+1 ∈ V1, λ

t
2, ξ

t+1 ∈ V2 and φt+1, ψt+1, λt0 ∈ V , we

have

∂γ

∂~n
=
∂∆γ

∂~n
= 0, γ = φt+1, ψt+1, λt0

∂ζt+1

∂~n
=
∂λt1
∂~n

= 0, ξt+1 · ~n = λt2 · ~n = 0

hold on ∂Ω. We can obtain the Euler Lagrange equation of

the objective functional in Step 7

{
ρ1∆

2φt+1−ρ2∆φt+1+F ′(φt+1)+ρ0φ
t+1= rhdt in Ω

∂φt+1

∂~n = 0, ∂∆φ
t+1

∂~n = 0, on ∂Ω,

where rhdt = ρ0ψ
t+1 − λt0 −∆(λt1 − ρ1ζ

t+1)−∇T (λt2 −
ρ2ξ

t+1), and ∇T denotes the conjugate operator of ∇. Ap-

proximating the nonlinear term F (φt+1) by F (φt), we can

get an approximation solution by solving

{
ρ1∆

2φt+1 − ρ2∆φ
t+1 + ρ0φ

t+1 = RHDt

∂φt+1

∂~n = 0∂∆φ
t+1

∂~n = 0, on ∂Ω,
(19)

where RHDt = rhdt − F ′(φt). Selecting ρi (i = 0, 1, 2)
satisfying ρ2 = 2

√
ρ0ρ1, we can rewrite (19) as

{
(
√
ρ1∆−√

ρ0I)
2φt+1 = RHDt

∂φt+1

∂~n = 0, ∂∆φ
t+1

∂~n = 0, on ∂Ω,
(20)
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which can be converted to two Laplacian equations

{
(
√
ρ1∆−√

ρ0I)ϕ
t+1 = RHDt

∂ϕt+1

∂~n = 0,
(21)

{
(
√
ρ1∆−√

ρ0I)φ
t+1 = ϕt+1

∂φt+1

∂~n = 0.
(22)

We can solve equations (21) and (22) by DCT efficiently

(details can be found in [13]).

The numerical implementations for (16)-(18) can be got

easily after discretizing the image domain. For the numeri-

cal solution to (22), we useHǫ(φ) =
1
2+

1
π arctan(φ/ǫ) and

δǫ(φ) = H ′
ǫ(φ) =

ǫ
ǫ2+φ2 to approximateH(φ) and δ(φ) for

the computation of F ′, where ǫ > 0 is a small number.

In addition, we need to update the region force term by

estimating the means and variances of Gaussian distribu-

tions. Let φt be the level set function at present. The back-

ground domain is Ω0 = {x|φ(x) > 0}. For the object

domains, slev0φ is separated into several disconnected sub-

regions Ωk, k ∈ K, and the parameters are estimated on the

subregions.

4. Experiments

A lot of experiments on various images are conducted to

verify the effectiveness of the proposed methods with and

without convexity prior. These experiments show that the

proposed convexity model can yield convex results. Some

of the experiments are demonstrated as follows.

Some parameters in the models and algorithms are the

same for all examples below. We choose α = 0.1, β = 1 for

the edge detection function g, ρ0 = 1, ρ1 = 0.5, ǫ = 0.5 for

the numerical implementation. For the convexity models

(9) and (10), c = 0 is used for all the examples below if

it is not specified. In addition, the parameters w0, w1 in

the proposed models (9) and (8) with and without convexity

prior are chosen to be same for the same image. For all

examples, the number of objects, K, is user-specified.

We use two methods to initialize φ. The initial object

regions is estimated by k-means clustering method (Figures

2, 4, 6 and 7), or initial object boundaries (circles for ex-

ample) are given on the objects manually (Figures 3 and 5).

Then the SDF corresponding to the region estimate or ini-

tial boundaries is computed by the fast marching method

[20] or the fast sweeping method [24, 30]. The experiments

show that our method is robust to the initialization of φ.

4.1. Single object

Figure 2 illustrates the segmentation results for three real

images, ultrasound image of embryo (top), sonar image of

shipwreck (middle) and image of fossil leaf (bottom). They

represent three kinds of challenging images for the exit-

ing segmentation methods because the object regions are

Figure 2. Results for one object. The results by (8) and (9) are in

the first and second columns, respectively.

incomplete due to poor imaging qualities: The embryo is

broken into several parts because of low quality, the ship-

wreck is shown with black holes because of no sound reflec-

tion signal, and the values of fossil leaf on some regions are

faded and similar to these on the background rather than the

leaf region. Therefore, it is very difficult for the image seg-

mentation model without shape prior to get correct results.

The parameters [w0, w1] for the three examples from top to

bottom are [0.2, 0.1], [0.2, 0.1] and [0.1, 0.1]. The results

show that the proposed convexity method (9) can yield the

segmentation results correctly, while the method (8) without

convexity prior fails to get the whole object regions.

Figure 3. Comparison with the method in [8].

Figure 3 shows three examples to compare our method

(10) with the one in [8]. The labeled images (left) and
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the results by [8] (center) are downloaded from website

http://vision.csd.uwo.ca/code/. The results

by the proposed method using the same labels are presented

on the right. We can see that the results by our method is

better than these by the method in [8] visually. For example,

the result of bottom image by the method [8] is nonconvex

obviously, while the result by our method is convex. For

these images in Figure 3, the nonnegativity constraint on

Laplacian φ is imposed on the whole image except the im-

age domain boundary because there is only one object to

segmentation.

4.2. Multiple objects

Figure 4. Results for multiple objects segmentation. Left column:

results by the method (8). Right column: results by the method (9).

The parameters [w0, w1] for the three images from top to bottom

are [0.2, 0.1], [0.1, 0.08], [0.2, 0.1], respectively.

The segmentation results of three images containing

more than one objects are illustrated in Figure 4. The results

in Figure 4 show that the proposed method can be used for

multiple objects segmentation using a single SDF as long as

they are disjunct. The integrity of the objects, mushrooms,

apples and clothe buttons, are broken due to physical fac-

tors, such as occlusion and illumination bias. Therefore,

the method (8) without shape prior fails to get the origi-

nal objects’ boundaries, and it is difficult to identify them

from the segmentation results by (8) automatically. On the

other hand, the results by the proposed convex segmentation

method (9) can catch the ideal boundaries of the objects.

Figure 5 displays an example to compare the proposed

method (10) with the method in [7]. The labeled im-

age (left) and the segmentation result by [7] (middle) are

cropped from [7]. The result by our method is presented on

right. We can see that the result by our method is better than

Figure 5. Comparison with the method in [7].

Figure 6. First and third rows: Results by the model (8) without

convexity prior. Second and fourth rows: Results by the convexity

model (9).

the one in [7] (see the region in the ellipse).

4.3. Sensitivity to parameters w0, w1 and noise

In this subsection, we will investigate the sensitivity

of the proposed models with and without convex shape

prior to noise and values of w0 and w1. Figure 6 illus-

trates the segmentation results of two real images with dif-

ferent parameter pairs w0, w1. The parameters [w0, w1]
are [0.1, 0.4], [0.1, 0.5] and [0.1, 0.6] for apple image and

[0.1, 0.1], [0.1, 0.2] and [0.1, 0.4] for the remote image of a

ship from left to right. These results show that the convexity

model (9) is more stable to the parameter imprecision than

the one (8) without convexity prior .

Segmentation results of noisy images, which are heavily

polluted by Gaussian noises, are shown in Figure 7. The

noise levels are about 30, 50%, respectively, and the param-

eters w0 = 0.2, w1 = 0.15 are kept the same for both.

We can see that the boundaries of the segmented objects

by the convexity model (9) are convex and smooth, while

the boundaries of the result by the model (8) without con-

vex shape prior are rough due to noise effect. Such exper-

iment shows that the convexity model (9) is more stable to

noise pollution than the model (8) without convexity prior.

Although the Chinese old coins are not convex, we can ob-
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Figure 7. Original image, results by convexity model (9) and

model (8) without convex shape prior are shown from left to right,

respectively.

tain convex results due to the convex constraints, which also

shows the effectiveness of the proposed method.

5. Conclusion

In this work, we propose a method to represent multi-

ple convex objects by single level set function, and show

its application in multi-object segmentation with convexity

shape prior. Various experiments not only verify the effec-

tiveness of the proposed method, but also show the stability

of the method to noise and parameter choices. In the future,

we will develop more efficient algorithm to implement the

proposed model and investigate other methods for image

segmentation with convexity prior.

Appendix: Proof to Lemma 1

The sufficiency is very easy to obtain by letting c = 0.

We prove the necessity only. Let D̄ :=
⋃K
k=1 Ω̄k. Due to

slevcφ ⊂ slevc̃φ for c ≤ c̃ and slevc̃φ = D̄, we have

slevcφ= slevcφ
⋂
D̄=slevcφ

⋂
(

K⋃

k=1

Ω̄k)=
K⋃

k=1

(slevcφ
⋂

Ω̄k).

It is obvious that Ωck = slevcφ
⋂
Ω̄k, k ∈ K, are disjoint be-

cause Ω̄k, k ∈ K, are disjoint according to the assumption.

Therefore, it is sufficient to prove that Ωck for each k ∈ K

is convex. Because Ωck ⊂ slevcφ (k ∈ K) are disjoint, we

can prove them one by one. Without loss of generality, we

prove that Ωc1 is convex.

For any x1, x2 ∈ Ωc1 ⊂ Ω̄1, we should prove that

[λ, x1, x2] := λx1 + (1 − λ)x2 ∈ Ωc1 = slevcφ
⋂
Ω̄1

for all λ ∈ [0, 1]. We need to prove two arguments (I)

[λ, x1, x2] ∈ Ω̄1 and (II) [λ, x1, x2] ∈ slevcφ, respectively.

(I) In fact, assume y1, y2 ∈ Ω1 such that

dist(xi, yi) = dist(xi,Ω1) = min
y∈Ω1

‖xi−y‖2 < c̃, i = 1, 2.

According to the convexity assumption of Ω1 and triangle

inequality, we have [λ, y1, y2] ∈ Ω1 and

dist([λ, x1, x2],Ωk) ≤ ‖[λ, x1, x2]− [λ, y1, y2]‖2
≤ [λ, ‖x1 − y1‖2, ‖x2 − y2‖2].
< c̃. (23)

Therefore, we have [λ, x1, x2] ∈ Ω̄1.

(II) For this goal, we only need to prove

φ([λ, x1, x2]) ≤ c, for all λ ∈ [0, 1]. (24)

There are three cases to be considered: (i) c = 0, (ii) c < 0
and (iii) c > 0. The first case for c = 0 is obvious because

Ω1 is convex.

(ii) This case is proved via contradiction. Suppose there

is a number λ̂ ∈ [0, 1] and a point yλ̂ on ∂Ω1 such that

‖λ̂x1 + (1− λ̂)x2 − yλ̂‖2 = d(λ̂) < −c. (25)

i.e. the distance between such point and the boundary ∂Ω1

is less than −c. Let’s move each point on the section deter-

mined by x1, x2 parallel with d(λ̂) such that M[x1, x2, λ̂]
moves to yλ̂, where M is defined as follows

Mx = x+ (yλ̂ − [x1, x2, λ̂]). (26)

Under the assumption that φ(xi) = −miny∈∂Ω1
‖xi−y‖ ≤

c, i = 1, 2, i.e. the distances between xi, i = 1, 2, and

∂Ω1 are more than −c(> d(λ̂)). Thus we have Mx1,Mx2
are also in the convex set Ω1, so their convex combination

[Mx1,Mx2, λ] for λ ∈ [0, 1] is in Ω1 as well, which is

contradict to yλ̂ = [Mx1,Mx2, λ̂] on ∂Ω1.

(iii) For all x1, x2 ∈ Ω̄1 satisfying φ(xi) ≤ c, let yi =
argminy∈Ω1

‖xi − y‖2 for i = 1, 2. Therefore, we have

φ(xi) ≤ ‖xi − yi‖2 ≤ c, i = 1, 2. (27)

Using the same approach for (23), we can get

φ([λ, x1, x2]) ≤ ‖[λ, x1, x2]− [λ, y1, y2]‖2
≤ [λ, ‖x1 − y1‖2, ‖x2 − y2‖2] ≤ c. (28)
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