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Abstract

With the surge of deep learning techniques, the field of

person re-identification has witnessed rapid progress in re-

cent years. Deep learning based methods focus on learn-

ing a discriminative feature space where data points are

clustered compactly according to their corresponding iden-

tities. Most existing methods process data points individ-

ually or only involves a fraction of samples while building

a similarity structure. They ignore dense informative con-

nections among samples more or less. The lack of holistic

observation eventually leads to inferior performance. To

relieve the issue, we propose to formulate the whole data

batch as a similarity graph. Inspired by spectral cluster-

ing, a novel module termed Spectral Feature Transforma-

tion is developed to facilitate the optimization of group-

wise similarities. It adds no burden to the inference and

can be applied to various scenarios. As a natural exten-

sion, we further derive a lightweight re-ranking method

named Local Blurring Re-ranking which makes the under-

lying clustering structure around the probe set more com-

pact. Empirical studies on four public benchmarks show

the superiority of the proposed method. Code is available

at https://github.com/LuckyDC/SFT_REID.

1. Introduction

Person re-identification (ReID) is an indispensable com-

ponent in surveillance video analysis. Given the probe, per-

son ReID aims at identifying images of the same person

across multiple non-overlapping camera views. Thanks to

the emergence of deep learning techniques and large scale

datasets [62, 64, 21, 55], the field of person identification

evolves rapidly. Though having achieved much progress,

it remains challenging due to drastic pose variation, occlu-

sion, and background cluttering.

Deep learning based ReID methods focus on exploit-

ing the powerful capability of neural networks to learn dis-
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Figure 1. The illustration of the similarity structure built by differ-

ent methods. Contrastive and triplet loss focus on pair-wise(a) and

triplet-wise(b) relationship, respectively. While our method cap-

ture dense connections between samples by formulating the data

as a graph(c).

criminative feature. When projected to the obtained fea-

ture space, data points are expected to gather into clus-

ters according to their labels. In order to intensify intra-

class compactness and inter-class separability of the fea-

ture, many efforts have been made in recent years. Besides

designing tailor-made neural architectures, a large variety

of loss functions have also been proposed. The two most

prevalent types of loss functions in ReID are classification

loss(e.g. softmax cross entropy loss) [63, 10, 44, 43] and

metric learning based loss(e.g. triplet loss and contrastive

loss) [5, 15, 60]. Classification loss has promising conver-

gence but is vulnerable to overfitting. It processes samples

individually and only builds connections implicitly through

the classifier. Metric learning based loss explicitly opti-

mizes the distances between samples. While the similarity

structure it builds only involves a pair/triplet of data points

and ignores other informative samples. This leads to a large

proportion of trivial pairs/triplets which could overwhelm

the training process and eventually makes the model suffer

from slow convergence. To relieve the issue, many meth-

ods [40, 29, 27] incorporate more samples while building

the similarity structure. Whereas, they are still limited by

the number of samples considered which may impair the

performance.
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Motivated by aforementioned observations, we propose

to capture more informative structure by taking all instances

in the batch into account. Specifically, the whole data batch

is regarded as a similarity graph in our method. The in-

sight is illustrated intuitively in Figure 1. To encourage the

learning of discriminative feature, we borrow the inspira-

tion from spectral clustering which operates on the similar-

ity graph of the input data. Given the input data, spectral

clustering partitions them into groups. It is expected that

samples from different groups have very low similarities

and those within the same group have high similarities. Un-

der the setup of supervised learning, the ground-truth parti-

tions (i.e. identity label) are also given. In addition, group-

wise similarity derived from the feature can be learned in

the deep learning scheme. Thus, the objective becomes to

optimize group-wise similarities such that the given parti-

tions are optimal in the case. Whereas, it is non-trivial to

optimize group-wise similarities directly. Alternatively, we

perform a feature transformation with the guidance of the

derived transition probabilities. Then, the supervision is im-

posed on the transformed feature. To push the performance

ahead, we further combine the model with an auxiliary clas-

sification branch. The whole process is fully differentiable

and only brings marginal computational cost. Despite its

simplicity, the proposed method improves the performance

significantly over strong baselines.

Furthermore, we adapt the online feature transformation

to the offline post-processing stage. In the properly learned

embedding space, there underlies a clustering structure in

the local neighborhood of each data point. The proposed

local blurring re-ranking acts as a pre-clustering process.

It makes ambient clustering structure more compact which

could diminish ambiguity in retrieval.

In summary, this paper has following contributions:

• To efficiently capture more informative structure, we

form the data in one batch into a similarity graph.

Inspired by spectral clustering, a novel feature trans-

formation is proposed which facilitates the optimiza-

tion of group-wise similarities on the graph. It intro-

duces no extra cost to the inference and can be readily

adapted to other tasks which require embeddings.

• A lightweight re-ranking method is naturally derived.

It makes the underlying clustering structure more com-

pact in the neighborhood of the probe set.

• Extensive experiments validate the effectiveness of our

method. Competitive performances are achieved on all

four public benchmarks.

2. Related Works

Person re-identification has witnessed rapid progress

lately with the power of deep neural networks. Recent ef-

forts on deep learning based person ReID can be roughly

categorized into two directions. One is to customize the

network architecture for person ReID. Besides common

techniques in CNN such as multi-scale feature aggrega-

tion [30] or attention modules [22, 47], tailor-made archi-

tectures [44, 42, 33, 53, 49, 11] for person ReID are also

devised. Sun et al. [44] split the feature map into several

horizontal parts and imposed supervision on them directly.

Suh et al. [42] employed a sub-network to learn body part

feature and fused it with appearance feature via a bilinear-

pooling layer. These methods explicitly consider the struc-

ture of human body to alleviate the impact of occlusion or

inaccurate detections, thus improve the performance.

The other direction concentrates on developing discrim-

inative loss functions. There are two dominant streams in

this direction. One is to introduce the classical metric learn-

ing into deep learning, such as contrastive loss [12] and

triplet loss [34]. The performances of these methods are

highly dependent on the similarity structure built in train-

ing. Several works make improvement by incorporating

more informative samples [40, 29, 27]. Another stream

improves on classification loss. Center loss [57] regular-

izes the distance between data points and their correspond-

ing class center. Large-margin softmax [25] and its vari-

ants [24, 50, 48] enforce various types of margin on the

vanilla softmax cross entropy loss. They all have demon-

strated effectiveness in face recognition and person ReID.

Spectral clustering is a conventional algorithm for data

clustering. It was pioneered by Donath et al. [8] and became

popular in the pattern recognition community since some

landmark works [38, 28, 26, 46]. It is based on the spec-

tral graph theory and converts the data clustering problem

into the graph partition problem. In contrast to K-Means,

spectral clustering makes no assumption on the structure of

the cluster. So it can generalize to more complex scenarios

like intertwined spirals. Some recent works [16, 35, 45, 58]

tried to incorporate spectral clustering with deep learning.

Though spectral clustering has been applied extensively,

combining it with CNN in person re-identification is still

under investigation.

Re-ranking is a post-processing technique to refine the

ranking of retrieval results. In essence, re-ranking methods

aim at enhancing the original similarity metric by the in-

formation of local neighbors. Early works [19, 31] tried

to explore k-reciprocal nearest neighbors for general im-

age retrieval. Recently, Zhong et al. [65] introduced re-

ranking technique into ReID task. They combined the Jac-

card distance of k-reciprocal encodings and the Euclidean

distance of original features in post-processing. Along this

line, Sarfraz et al. [33] aggregated distances between ex-

panded neighbors of image pairs to reinforce the original

pairwise distance. Moreover, to take advantage of the di-

versity within a single feature, Yu et al. [61] further fused

distances between different sub-features.
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Graph convolutional networks generalize the vanilla

convolution operator to non-Euclidean data. Due to the

complementarity, it often acts as a feature aggregation com-

ponent over the current CNN framework. GCN was first

proposed by Kipf et al. [20] for semi-supervised classifi-

cation. Currently, it is a rising research direction in com-

puter vision. Yan et al. [59] modeled dynamics of human

body skeletons via graph convolutional networks. Wang et

al. [51, 52] exploited GCN and an equivalent view non-local

feature aggregation to capture the spatial-temporal relations

between convolutional features and object proposals in the

video, respectively. GCN focuses on propagating and trans-

forming information within the graph to generate better fea-

tures. While the proposed SFT module aims at adjusting

the supervision to guide the learning of the feature below it.

The two methods differ in their motivations.

The two most related works to ours are [36, 37]. They

both applied similarity transformation on the graph to

achieve better results. However, there are obvious discrep-

ancies in terms of the definition of the graph. For each im-

age in the probe set, they construct one graph with probe-

to-gallery similarities as nodes and gallery-to-gallery simi-

larities as edges. While in our approach, each node directly

corresponds to the feature of a sample and each edge is de-

fined as the similarity of its endpoints. Consequently, in

each mini-batch, they need to construct several subgraphs,

while we treat the whole mini-batch as one single graph

which is much conceptually simpler and faster.

3. Method

To capture thorough information from the data, we pro-

pose to formulate data points in the training batch as a

graph. In the case, we focus on optimizing group-wise sim-

ilarity on the graph. The inspiration is initially borrowed

from spectral clustering which operates on the similarity

graph of the data.

We first give a brief introduction of spectral clustering

algorithm and its closely related concept graph cut in Sec-

tion 3.1. We then elaborate on the proposed Spectral Fea-

ture Transformation (SFT) in Section 3.2. In Section 3.3,

we extend the proposed feature transformation to the post-

processing stage to further refine the retrieval result.

3.1. Graph Cut and Spectral Clustering

Under the setup of spectral clustering, data X =
{xi}i=1,...,n are represented as an undirected graph.

Wherein, each vertex of the graph corresponds to a data

point in X and each edge is weighted by the similarity be-

tween its endpoints wij = sim (xi, xj). For brevity, we take

the 2-cluster problem as an example in the following for-

mulation, and readers can refer to [41] for the multi-cluster

extension.

To obtain the optimal clustering result on a graph, an

intuitive way is to solve a minimum cut problem. For two

disjoint subsets A,B ⊂ X , the cut between them is defined

as

cut(A,B) =
∑

i∈A,j∈B

wij . (1)

However, minimizing vanilla cuts often leads to a trivial

solution where a single vertex is separated from the rest of

the graph. To circumvent the issue, Shi et al. [38] proposed

to normalize each subgraph by its volume:

Ncut(A,B) =
cut(A,B)

vol(A)
+

cut(A,B)

vol(B)
, (2)

where vol(A) =
∑

i∈A,j∈X wij is the total connection from

nodes in A to all nodes in the graph.

3.2. Spectral Feature Transformation

Suppose X ∈ R
n×d is the final embedding of a training

batch. Wherein, n and d denote the number of data points

and the dimension of the embedding vector, respectively.

We adopt the cosine similarity with Gaussian function to

measure the affinities between samples. Formally, each ele-

ment of the affinity matrix W is defined as

wij = exp

(

xT
i xj

σ · ‖xi‖2‖xj‖2

)

, (3)

where σ is a hyper-parameter which reflects the decay rate

of the affinity as the cosine similarity decreases. Now, we

can define a similarity graph over all data points in the mini-

batch as G = (X,W ). By normalizing the rows of W to 1,

we can derive the transition probability matrix T :

T = D−1W, (4)

where D is a diagonal matrix whose elements are defined

as di =
∑n

j=1
wij . In practice, the computation of T can

be implemented by applying softmax function with temper-

ature σ on affinity matrix W .

The most intriguing property we can derive from T is the

escaping probability P (A → Ā). It is proportional to the

total transition probability from a subgraph A ⊂ X to an-

other Ā = X−A [26]. In ReID task, a subgraph A denotes

the set of samples belonging to the same identity. So, the

escaping probability is essentially the chance of an identity

getting misclassified. In other words, it measures inverse

group-wise similarities. It is straightforward that a small

P (A → Ā) requires strong intra-cluster connections and

weak inter-cluster connections, which is the desired prop-

erty for spectral clustering. In fact, as proved in [26], the

escaping probability is exactly equivalent to the Ncut met-

ric,

Ncut(A, Ā) = P (A → Ā) + P (Ā → A). (5)
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Figure 2. The overall architecture of the proposed model. We adopt the output of the final global average pooling layer as image embedding

for retrieval. Spectral feature transformation is performed on the embeddings of the data batch. Subsequently, a classifier is imposed on

the transformed feature. We also combine the model with an extra classification branch. Parameters are shared between the two classifiers.

From this perspective, Ncut metric can be readily derived

from the transition probability matrix T .

Given the data, traditional spectral clustering aims at

seeking optimal partitions w.r.t the Ncut metric. While in

the fully supervised setting, the ground-truth partitions A, Ā

are known. Moreover, the feature which can derive the tran-

sition probability matrix T is learned adaptively in the deep

learning paradigm. In this case, the objective becomes to

optimize T so that the Ncut metric of the given partitions is

minimal. By doing this, we essentially minimize the prob-

ability of misclassifying a data sample from group A into

group Ā. Unfortunately, directly optimizing the transition

probability is ill-conditioned. The hard constraint overlooks

the potential connection between samples which degrades

the performance. Alternatively, we utilize T to guide the

transformation of feature X and apply supervision on the

transformed feature. Specifically,

X ′ = TX, (6)

where X ′ denotes the feature which has undergone the

transformation. Subsequently, the supervision is imposed

on the transformed feature using a classifier. In the case, im-

plicit connections are considered and the necessity of hard

constraint is also bypassed tactfully. The scheme can also

be understood from the viewpoint of the spring model. As

vertexes are optimized, springs (weighted by T ) change ac-

cordingly.

To fully liberate the power of spectral clustering, it is

necessary to satisfy the assumption that the input data obey

the underlying cluster structure. In other words, there must

be sufficient images for each identity in the training batch.

Thus, we adopt the sampling strategy proposed by Her-

mans et al. [15] which is ubiquitous in deep metric learn-

ing. Specifically, a mini-batch in training contains P iden-

tities and each identity has K images. To further push the

performance ahead, we combine an extra vanilla classifica-

tion branch as in many existing methods. The two branches

share the same classifier as supervision. Only then can we

guarantee that the distribution of features are aligned before

and after spectral feature transformation. Notably, the pro-

posed spectral feature transformation is just applied in the

training process and would be discarded during inference.

The overall architecture of the proposed neural networks is

displayed in Figure 2.

3.3. Local Blurring Re­ranking

In this section, we further extend the proposed spectral

feature transformation to the offline post-processing stage.

Given a probe image, images in the gallery are ranked ac-

cording to the cosine similarity with it. Then, we collect

features of top-n entries and perform spectral feature trans-

formation on them. Finally, the top-n rank list is recom-

puted based on the similarity derived from transformed fea-

tures. Since n is much smaller than the size of the gallery

and the features are extracted in advance, the refinement

process introduces negligible overhead.

The extension is based on the assumption that there un-

derlies a cluster structure in the neighborhood of the probe

images. This is exactly the case when the feature extractor

has been properly trained on the training data. As expressed

in the mathematical formulation of spectral feature transfor-

mation, the embedding of each data point will be blurred by

the others according to the similarities between them. Each

data point will be moved towards the high-density area (i.e.

cluster center) which has more short paths to it. This pro-

cess is equivalent to conduct a clustering operation on local

neighbors of the probe image [2]. Therefore, it can make

the cluster structure more compact and relieve the ambigu-

ous issue in retrieval. In addition, as the evaluation protocol

implies, the top ranking list has a larger impact on the fi-
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Figure 3. A retrieval example on DukeMTMC-reID. (a) is the re-

sult of the model with classification branch only. (b) is generated

by the proposed model (i.e. SFT + classification). (c) is the refined

result based on (b) using local blurring re-ranking.

nal performance. So we only refine the top-n ranking list to

balance efficiency and performance gain. Compared with

k-reciprocal re-ranking which is operated on the whole test

set, the proposed re-ranking is much more efficient. Exper-

iments show that this simple operation leads to prominent

improvement.

3.4. Discussion

In the sequel, we will analyze some appealing proper-

ties of our method which contribute to the improvement and

connections to other techniques.

Relax assumptions and ease optimization Instead of

applying direct constraints on pairwise similarities, our

method relaxes the learning objective to optimize such sim-

ilarities after the group-wise transformation of SFT. SFT

moves the features towards the corresponding cluster cen-

ter, thus it has enhanced the discrimination of features. This

stabilizes the training process and finally leads to better per-

formance.

Training diversity According to the definition of SFT, all

samples in the mini-batch participate in the operation. The

transformed features of the same sample differ because the

composition of the data batch changes while training. This

desired property introduces massive diversity which effec-

tively alleviates the risk of over-fitting.

Connection to diffusion process Both diffusion pro-

cess [18, 1, 9] and our SFT are based on Markov process.

Meanwhile, they are different in motivation and implemen-

tation. In terms of motivation, diffusion process aims to

obtain a more faithful similarity, while the objective of

our method is to learn discriminative features. As for im-

plementation, diffusion process is performed on the whole

dataset, while our SFT process data in the form of mini-

batch. They are applied to affinity matrices and features,

respectively.

(a) Without SFT (b) With SFT

Figure 4. Visualization of the affinity matrix. We randomly sample

6 identities from DukeMTMC-reID and take all images belonging

to them for visualization. For clarification, samples are arranged

according to their identities. It can be seen that the proposed spec-

tral feature transformation significantly suppresses the similarities

among different identities.

4. Experiments

4.1. Datasets

To validate the effectiveness of the proposed method,

we conduct extensive experiments on four popular

person re-identification benchmarks, i.e., Market-

1501 [62], DukeMTMC-reID [64, 32], CUHK03 [21]

and MSMT17 [55]. In terms of CUHK03, we use manual

annotations and follow the protocol proposed in [65].

Given the probe images, gallery images are sorted ac-

cording to the cosine similarity with it. On the basis of

generated ranking list, Cumulated Matching Characteristics

(CMC) at rank-1, rank-5 and mean average precision (mAP)

are calculated to evaluate the performance of the model.

4.2. Implementation Details

We adopt ResNet-50 [14] pre-trained on ImageNet [7] as

our backbone network. We use the output of global average

pooling layer of ResNet as the embedding vector. In order

to preserve more fine-grained information, the downsam-

pling of the last stage of ResNet is discarded which leads

to a total stride of 16. The hyper-parameter σ of SFT layer

is set to 0.02 for MSMT17 and 0.1 for the remaining three

datasets. As for the classifier, we follow a bottleneck de-

sign which has been proven effective by many works [44].

Specifically, a fully-connected layer is applied to reduce the

dimension of the feature from 2048 to 512 which is fol-

lowed by Batch Normalization [17] and PReLU [13]. The

output is then l2-normalized and fed into the loss function.

To push the performance ahead, we adopt AM-Softmax [48]

loss for the final classification. In all experiments, the mar-

gin and the scaling parameter of AM-Softmax are set to 0.3

and 15, respectively. In terms of data pre-processing, input

images are resized into 256× 128. Random horizontal flip-

ping and random erasing [66] are utilized as data augmen-

tation. In training, each mini-batch contains 16 persons and
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each person has 8 images which results in a batch size of

128. Stochastic Gradient Descent (SGD) with the momen-

tum of 0.9 is applied for optimization. We train 140 epochs

in total. The learning rate warms up from 0.001 to 0.1 lin-

early in the first 20 epochs. It is decayed to 0.01 and 0.001

at 80th and 100th epoch, respectively. As for local blurring

re-ranking, we refine the top-50 ranking list for each probe

image on Market-1501, DukeMTMC-reID and CUHK03.

While for MSMT17, top-150 ranking list is refined, since

it has a much larger gallery than the other datasets. Our

implementation is based on MXNet [4] framework.

4.3. Ablation Study

Effectiveness of Spectral Feature Transformation. As

shown in the first two rows of Table 1, consistent improve-

ments are achieved on all four benchmarks. The improve-

ment on Market-1501 is relatively marginal. There are

many persons with few images on Market-1501, e.g. 161

persons have no more than 8 images. In such condition,

the balanced sampling would re-sample frequently from the

same images, which may limit the improvement. For conve-

nience, we employ the same training setting for all datasets

which makes the baseline overfit on CUHK03. While our

approach is immune to overfitting as mentioned before.

This results in significant improvement on CUHK03. In

addition, we visualize the affinity matrix between images

of 6 different identities with and without SFT module. It

can be easily observed in Figure 4 that the affinity between

different identities is obviously suppressed. Thus, the fea-

tures extracted by our method are more discriminative for

person ReID. It it noteworthy that the proposed SFT intro-

duces negligible training overhead and no extra parameters.

In our setting, it only leads to 0.0336 GFLOPs computa-

tion, while the overhead of the backbone network is 4.08

GFLOPs. The relative cost is less than 1%.

Effectiveness of Local Blurring Re-ranking. We also

evaluate our method with and without the proposed local

blurring re-ranking. As reported in rows 4-5 of Table 1,

local blurring re-ranking could further improve the perfor-

mance significantly. To further clarify its effectiveness, we

make a comparison with the k-reciprocal encoding [65]

method. As shown in the last two rows in Table 1, the pro-

posed post-processing surpasses k-reciprocal encoding on

all benchmarks in terms of Rank-1 accuracy which is the

most considerable metric in the real scenario. As for mAP,

our post-processing method demonstrates advantages only

on the CUHK03 dataset. Note that k-reciprocal encoding

takes massive resource to search for k-reciprocal nearest-

neighbors of all items in the gallery. Suppose the gallery

size is N , the computational complexity of k-reciprocal re-

ranking is O(N2 logN), while that of LBR is O(N logN).
The gap of efficiency becomes significant when the gallery

gets larger. This is also validated by the elapsed time on

the three largest dataset reported in Table 3. Taking all

these components together, the performance of our method

improves dramatically. A qualitative illustration of the re-

trieval is represented in Figure 3. It is clear that the rank-

ing result improves when components are added sequen-

tially. And Local blurring re-ranking effectively corrects

false matches.
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Figure 5. The influence of bandwidth σ.

Combination with vanilla classification branch. As

shown in row 2 and row 4 in Table 1, the combination

with classification branch leads to prominent improvement.

We also implement a variant supervised by triplet hard

loss [15] and classification loss as the counterpart. Our

method shows consistent superiority over it. We find the

participation of triplet loss even degrades the performance

on MSMT17 slightly. We further investigate the necessity

to share parameters between the two branches. As shown

in Table 2, shared version outperforms unshared version

significantly. It is reasonable since independent classifiers

may optimize model to different directions which impairs

the stability while training.

4.4. Parameter Analysis

Influence of hyper-parameter σ. The proper selection of

affinity function is crucial for the success of spectral clus-

tering. So, it is necessary to investigate the impact of σ on

the learned features. To this end, we vary σ to five different

values and evaluate the performance of the model trained

under these settings. As visualized in Figure 5, our method

is relatively robust to the value of λ.

Influence of the number of images per identity K. We

investigate the trend of the performance when varying K.

Given that Market-1501 and CUHK03 are relatively small
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Variants
Market-1501 DukeMTMC CUHK03 MSMT17

mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

Classification branch only (baseline) 77.3 91.2 63.9 82.0 40.6 44.9 37.3 66.7

SFT branch only 79.6 91.6 70.4 85.4 60.2 66.3 44.7 71.9

Triplet + Classification 80.0 92.2 68.2 83.7 27.6 59.0 60.2 65.6

SFT + Classification 82.7 93.4 73.2 86.9 62.4 68.2 47.6 73.6

SFT + Classification + LBR 87.5 94.1 79.6 90.0 71.7 74.3 58.3 79.0

SFT + Classification + k-reciprocal 90.6 93.5 83.3 88.3 68.7 71.7 60.8 76.1

Table 1. Ablation studies on Market-1501, DukeMTMC-reID, CUHK03(labeled) and MSMT17 dataset. LBR denotes the proposed local

blurring re-ranking method.

Dataset
unshared shared

mAP R-1 mAP R-1

Market-1501 79.0 91.8 82.7 93.4

DukeMTMC 66.9 83.3 73.2 86.9

CUHK03 43.1 47.1 62.4 68.2

MSMT17 35.3 63.7 47.6 73.6

Table 2. Ablation study on shared/unshared classifier.

method Market DukeMTMC MSMT17

k-reciprocal 209 s 152 s 11009 s

LBR (Ours) 41 s 24 s 423 s

Table 3. The elapsed time of re-ranking methods.

which can not satisfy the need of larger K. We only conduct

experiments on MSMT17 and DukeMTMC-reID. Figure 6

shows that our approach can benefit from larger K, while

the performance of vanilla baseline model even degrades

when K increases. This phenomenon again validates our

hypothesis that group-wise training is more advantageous

with larger mini-batch. Because it can utilize holistic infor-

mation of the whole batch for the training of a sample.

6 8 10 12 14 16
K

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.87

Ra
nk

-1
 A

cc
ur

ac
y

baseline
proposed

(a) DukeMTMC-reID

6 8 10 12 14 16
K

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

Ra
nk

-1
 A

cc
ur

ac
y

baseline
proposed

(b) MSMT7

Figure 6. The trend of performance while K(#images per identity)

varies.

4.5. Comparison with State­of­the­Art Methods

The proposed method is compared with state-of-the-art

methods in this section. KR and LBR in the tables below

denote k-reciprocal re-ranking and the proposed local blur-

ring re-ranking, respectively.

Results on Market-1501 dataset. As shown in Table 4,

our method achieves the best rank-1 accuracy among com-

petitors, while mAP is slightly lower than SGGNN [37]. It

must be highlighted that both SGGNN [37] and GSRW [36]

undergo customized post-processing. After the refinement

of LBR, our method outperforms them significantly. We

further perform a comparison on the dataset with 500k dis-

tractors. The results are summarized in Table 5. As reported

in the table, our method is robust to distractors. When dis-

turbed by 100k distractors, the mAP/rank-1 accuracy of our

method only decreases by 4.9%/2.5%. Note that the rank-

1 accuracy is still over 90% in this case. While for the

other four competitors, the degradations are much larger

than ours. The performance gaps are even more significant

when increasing the distractor size. Note that our method

can still maintain over 90% rank-1 accuracy when disturbed

by 100k distractors. This strongly demonstrates the robust-

ness of our method.

Methods Reference
Market-1501

mAP R-1 R-5

GLAD [56] ACMMM17 73.9 89.9 -

MLFN [3] CVPR18 74.3 90.0 -

HA-CNN [22] CVPR18 75.7 91.2 -

DuATM [39] CVPR18 76.6 91.4 97.1

Part-aligned [42] ECCV18 79.6 91.7 96.9

PCB [44] ECCV18 77.4 92.3 97.2

GSRW [36] CVPR18 82.5 92.7 96.9

SGGNN [37] ECCV18 82.8 92.3 96.1

Mancs [47] ECCV18 82.3 93.1 -

Proposed - 82.7 93.4 97.4

Proposed(+ KR) - 90.6 93.5 96.6

Proposed(+ LBR) - 87.5 94.1 97.5

Table 4. Comparison with state-of-the-art methods on the Market-

1501 dataset.

Results on DukeMTMC-reID dataset. The results on

DukeMTMC-reID dataset are presented in Table 6. It can

be seen that our method outperforms other state-of-the-arts

significantly. Specifically, our approach gains 1.4% and 2%

improvement over Mancs [47] in terms of mAP and rank-

1 accuracy, respectively. After the refinement of LBR, our

method even promotes rank-1 accuracy up to 90.0%.

Results on CUHK03 dataset. We only conduct experi-
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Methods

Distractor Size

0 100k 200k 500k

mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

Zheng et al. [63] 59.9 79.5 52.3↓7.6 73.8↓5.7 49.1↓10.8 71.5↓8.0 45.2↓14.7 68.3↓11.2
APR [23] 62.8 84.0 56.5↓6.3 79.9↓4.1 53.6↓ 9.2 78.2↓5.8 49.8↓13.0 75.4↓ 8.6

TriNet [15] 69.1 84.9 61.9↓7.2 79.7↓5.2 58.7↓10.4 77.9↓7.0 53.6↓15.5 74.7↓10.2
Part-aligned [42] 79.6 91.7 74.2↓5.4 88.3↓3.4 71.5↓ 8.1 86.6↓5.1 67.2↓12.4 84.1↓ 7.6

Proposed 82.7 93.4 77.8↓4.9 90.9↓2.5 75.5↓ 7.2 89.3↓4.1 71.9↓10.8 87.1↓ 6.3

Table 5. Comparison with state-of-the-art methods on the Market-1501+500k dataset.

Methods Reference
DukeMTMC

mAP R-1 R-5

PSE [33] CVPR18 62.0 79.8 89.7

HA-CNN [22] CVPR18 63.8 80.5 -

MLFN [3] CVPR18 62.8 81.0 -

DuATM [39] CVPR18 64.6 81.8 90.2

GSRW [36] CVPR18 66.4 80.7 88.5

SGGNN [37] ECCV18 68.2 81.1 88.4

PCB+RPP [44] ECCV18 69.2 83.3 -

Part-aligned [42] ECCV18 69.3 84.4 92.2

Mancs [47] ECCV18 71.8 84.9 -

Proposed - 73.2 86.9 93.9

Proposed(+ KR) - 83.3 88.3 92.0

Proposed(+ LBR) - 79.6 90.0 94.0

Table 6. Comparison with state-of-the-art methods on the

DukeMTMC-reID dataset.

Methods Reference
CUHK03

mAP R-1 R-5

SVDNet [43] ICCV17 37.8 40.9 -

DPFL [6] ICCV17 40.5 43.0 -

HA-CNN [22] CVPR18 41.0 44.4 -

MLFN [3] CVPR18 49.2 54.7 -

DaRe [54] CVPR18 61.6 66.1 -

Proposed - 62.4 68.2 84.4

Proposed(+ KR) - 68.7 71.7 85.5

Proposed(+ LBR) - 71.7 74.3 85.6

Table 7. Comparison with state-of-the-art methods on the

CUHK03 dataset. We adhere to newly proposed evaluation pro-

tocol [65] and report results on manually labeled version of

CUHK03.

ments on the manually labeled subset of CUHK03 under the

new protocol [65]. The results are reported in Table 7. It can

be observed that our method achieves the best performance

among compared methods. It outperforms DaRe [54] by

0.8% and 2.1% in terms of mAP and rank-1 accuracy, re-

spectively.

Results on MSMT17 dataset. Since MSMT17 is released

very recently, there is no other published work evaluated

on it to our best knowledge. So we only compare our

method with baselines reported by authors [55]. As shown

Methods Reference
MSMT17

mAP R-1 R-5

GoogleNet [55] CVPR18 23.0 47.6 65.0

PDC [55] CVPR18 29.7 58.0 73.6

GLAD [55] CVPR18 34.0 61.4 76.8

Proposed - 47.6 73.6 85.6

Proposed(+ KR) - 60.8 76.1 84.5

Proposed(+ LBR) - 58.3 79.0 85.8

Table 8. Comparison with state-of-the-art methods on the

MSMT17 dataset.

in Table 8, our method outperforms these baselines dramat-

ically. Specifically, it exceeds GLAD by 13.6% and 12.2%

in terms of mAP and rank-1 accuracy, respectively. This

verifies the scalability and the robustness of our method

when applied in large scale scenarios. To clarify the su-

periority of our method, we remind readers that GLAD [56]

performs pretty well on Market-1501 as recorded in Table 4.

5. Conclusion

Inspired by spectral clustering, we propose a novel fea-

ture transformation module to facilitate the learning of dis-

criminative features which only involves several basic ma-

trix operations. In contrast to most existing methods, our

approach formulates the whole data batch as a similarity

graph to capture potential relational structure. The em-

phasis is laid on optimizing group-wise similarities in our

method. Furthermore, we extend the online operation to

the post-processing stage. It conducts pre-clustering in

the local neighborhood of the probe set which mitigates

the ambiguity when retrieving. Though its simplicity, the

proposed method brings prominent improvement over the

strong baseline. Ablation studies on four benchmarks prove

the effectiveness and scalability of our method.
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