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Abstract

3D object detection and pose estimation from a single im-

age are two inherently ambiguous problems. Oftentimes,

objects appear similar from different viewpoints due to

shape symmetries, occlusion and repetitive textures. This

ambiguity in both detection and pose estimation means that

an object instance can be perfectly described by several

different poses and even classes. In this work we propose

to explicitly deal with these ambiguities. For each object

instance we predict multiple 6D pose outcomes to estimate

the specific pose distribution generated by symmetries and

repetitive textures. The distribution collapses to a single

outcome when the visual appearance uniquely identifies

just one valid pose. We show the benefits of our approach

which provides not only a better explanation for pose

ambiguity, but also a higher accuracy in terms of pose

estimation.

1. Introduction

Driven by deep learning, image-based object detection

has recently made a tremendous leap forward in both accu-

racy as well as efficiency [39, 16, 31, 38]. An emerging re-

search direction in this field is the estimation of the object’s

pose in 3D space over the existing 6-Degrees-of-Freedom

(DoF) rather than on the 2D image plane [24, 37, 46, 51,

34, 29, 49, 33]. This is motivated by a strong interest in

achieving robust and accurate monocular 6D pose estima-

tion for applications in the field of robotic grasping, scene

understanding and augmented/mixed reality, where the use

of a 3D sensor is not feasible [36, 26, 50, 45].

Nevertheless, 6D pose estimation from RGB is a chal-

lenging problem due to the intrinsic ambiguity caused by

visual appearance of objects under different viewpoints and

occlusion. Indeed, most common objects exhibit shape am-

biguities and repetitive patterns that cause their appearance

* The first two authors contributed equally to this work.

Figure 1: Pose ambiguities. External or self-occlusion can

cause the 6DoF pose of an object to become ambiguous.

Our method is able to detect and predict these ambiguities

automatically without additional supervision. The antipo-

dally symmetric Bingham distributions show that the model

has understood the full range of valid poses.

to be very similar under different viewpoints, thus rendering

pose estimation a problem with multiple correct solutions.

Furthermore, also occlusion (from the same object or from

others) can cause pose ambiguity.

For example, as illustrated in Figure 1, the cup is identi-

cal from every viewpoint in which the handle is not visible.

Thus, from a single image, it is impossible to univocally es-

timate the current object pose. Moreover, object symmetry

can also induce visual ambiguities leading to multiple poses

with the same visual appearance. However, most datasets

do not reflect this ambiguity, as the ground truth pose anno-

tations are mostly uniquely defined at each frame. This is

problematic for a proper optimization of the rotation, since

a visually correct pose still results in a high loss. Thus,

many recent 3D detectors avoid regressing the rotation di-

rectly and, instead, explicitly model the solution space in an

unambiguous fashion [37, 24].

Essentially, in [24], the authors train their convolutional
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Figure 2: Overview. We predict M hypotheses for the pose

to approximate the distribution in the solution space. Each

hypothesis is visually identical from the current viewpoint.

neural network (CNN) by mapping all possible pose solu-

tions for a certain viewpoint onto an unambiguous arc on the

view sphere. Rad et al. [37] employ a separate CNN solely

trained to classify the symmetry in order to resolve these

ambiguities. However, this simplification exhibits several

downsides, such as the explicit inclusion of information

about certain symmetries in each trained object. Moreover,

this is not always easy to model, as e.g. in the case of par-

tial view ambiguity. Further, all these approaches rely on

prior knowledge and annotation of the object symmetries

and aim to solve the ambiguity by providing a single out-

come in terms of estimated pose and object. Added to this,

these methods are also unable to deal with ambiguities gen-

erated by other common factors such as occlusion.

On the contrary, Sundermeyer et al. [42] and Corona et

al. [7] recently proposed novel methods to conduct pose

estimation in an ambiguity-free manner. In the core, both

learn a feature embedding solely based on visual appear-

ance. Nonetheless, although [42] is able to deal with am-

biguities implicitly, it does not model their detection and

description explicitly. In contrast, [7] also learns to classify

the order of rotational symmetry, in particular the number

of equivalent views around an axis of rotation. However,

they require explicit hand-annotated labels and, in addition,

cannot deal with ambiguities aside from these symmetry

classes such as (self-) occlusion.

In this paper we propose to model the ambiguity of the

object detection and pose estimation tasks directly by al-

lowing our learned model to predict multiple solutions, or

hypotheses, for a given object’s visual appearance (Fig 2).

Inspired by Rupprecht et al. [40] we propose a novel ar-

chitecture and loss function for monocular 6D pose esti-

mation by means of multiple predictions. Essentially, each

predicted hypothesis itself corresponds to a 3D translation

and rotation. When the visual appearance is ambiguous,

the model predicts a point estimate of the distribution in 3D

pose space. Conversely, when the object’s appearance is

unique, the hypotheses will collapse into the same solution.

Importantly, our model is capable of learning the distribu-

tion of these 6D hypotheses from one single ground truth

pose per sample, without further supervision.

Besides providing more insight and a better explanation

for the task at hand, the additional knowledge gained from

rotation distributions can be exploited to improve the accu-

racy of the pose estimates. In essence, analyzing the distri-

bution of the hypotheses enables us to classify if the current

perceived viewpoint is ambiguous and to compute the axis

of ambiguity for that specific object and viewpoint. Subse-

quently, when ambiguity is detected, we can employ mean

shift [6] clustering over the hypotheses in quaternion space

to find the main modes for the current pose. A robust av-

eraging in 3D rotation space for each mode then yields a

highly accurate pose estimate. When the view is ambiguity-

free, we can improve our pose estimates by robustly averag-

ing over all 6D hypotheses, and by taking advantage of the

predicted pose distribution as a confidence measure.

Our contributions are threefold:

• We propose a novel method for 6DoF pose estimation,

which can deal with the inherent ambiguities in pose

by means of multiple hypotheses.

• Explicit detection of rotational ambiguities and char-

acterization of the uncertainty in the problem without

further annotation or supervision.

• A mechanism to measure the reliability and to increase

the robustness of the unambiguous 6D pose prediction.

2. Related Work

We first review recent work in object detection and pose

estimation from 2D and 3D data. Afterwards, we discuss

common grounds and main differences with approaches

aimed at symmetry detection for 3D shapes.

Object Detection and Pose Estimation. Almost all cur-

rent research focus on deep learning-based methods.

[48, 25, 7] employ CNNs to learn an embedding space

for the pose and class from RGB-D data, which can sub-

sequently be utilized for retrieval. Notably, the majority

of most recent deep learning based methods focus on RGB

as input [24, 37, 8, 46, 51, 42]. Since utilizing pre-trained

networks often accelerates convergence and leads to better

local minima, these methods are usually grounded on state-

of-the-art backbones for 2D object detection, such as Incep-

tion [44] or ResNet [16]. In particular, Kehl et al. [24] em-

ploy SSD [31] with an InceptionV4 [43] backbone and ex-

tend it to also classify viewpoint and in-plane rotation. Sim-

ilarly, Sundermeyer et al. [42] also use SSD for localization,

but employ an augmented auto-encoder for the unambigu-

ous retrieval of the associated 6D pose. Rad et al. [37] uti-

lize VGG [41] and augment it to provide the 2D projections
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of the 3D bounding box corners. A similar approach is cho-

sen by [46], based on YOLO [38]. Afterwards, both apply

PnP to fit the associated 3D bounding box into the regressed

2D projections, in order to estimate the 3D pose of the de-

tection. In [51], Xiang et al. compute a shared feature em-

bedding for subsequent object instance segmentation paired

with pose estimation. Finally, Do et al. [8] extend Mask-

RCNN [15] with a third branch, which provides the 3D ro-

tation and the distance to the camera for each prediction.

Object Symmetry Detection Oftentimes, object pose

ambiguity arises from symmetric shapes. We review rel-

evant methods that extract symmetry from 3D models to

outline commonalities and differences with our approach.

To our knowledge, [7] is the only method which esti-

mates both: the 6D pose, and the symmetry of the perceived

object. In particular, the network is trained to also predict

the rotational order (i.e. the number of identical views), pos-

ing it as a classification task.

Generally, most methods for symmetry detection are

found in the shape analysis community. Among the dif-

ferent kinds of symmetries, axial symmetries are of partic-

ular interest, and multiple approaches have been proposed.

Most methods rely on feature matching or spectral analysis:

[9] treat the problem as a correspondence matching task be-

tween a series of keypoints on an object, determining the re-

flection symmetry hyperplane as an optimization problem.

Elawady et al. [10] rely on edge features extracted using a

Log-Gabor filter in different scales and orientations coupled

with a voting procedure on the computed histogram of lo-

cal texture and color information. In addition, [5] and [35]

are also grounded on wavelet-based approaches. Recently,

neural network approaches have also been proposed. Ke et

al. [23] adapt an edge-detection architecture with multiple

residual units and successfully apply it to symmetry detec-

tion using real-world images.

Notably, all these approaches aim at detecting symme-

tries of 3D shapes alone, while our focus is to model the am-

biguity arising from objects under specific viewpoints with

the goal of improving and explaining pose estimation.

3. Methodology

In this section we describe our method for handling sym-

metries and other ambiguities for object detection and pose

estimation in detail. We will first define what we understand

as an ambiguity.

3.1. Ambiguity in Object Detection and Pose Esti­
mation

We describe the rigid body transformations SE (3) via

the semi-direct product of SO (3) and R
3. While for the

latter, we use Euclidean 3-vectors, the algebra H1 of unit

quaternions is used to model the spatial rotations in SO (3).
A quaternion is given by

q = q11 + q2i + q3j + q4k = (q1, q2, q3, q4) , (1)

with (q1, q2, q3, q4) ∈ R
4 and i2 = j2 = k2 = ijk = −1.

We regress quaternions above the q1 = 0 hyperplane and,

thus, omit the southern hemisphere, such that any possible

3D rotation can be expressed by only one single quaternion.

Under ambiguities, a direct naive regression of the rota-

tion as a quaternion will lead to poor results, as the network

will learn to predict a rotation that is closest to all results

in the symmetry group. This prediction can be seen as the

(conditional) mean rotation. More formally, in a typical su-

pervised setting we associate images Ii with poses pi in a

dataset (Ii, pi) where i ∈ {1, . . . , N}. To describe symme-

tries, we define for a given image Ii, the set S(Ii) of poses

p that all have an identical image

S(Ii) = {pj |Ij = Ii} . (2)

Note that in the case of non-discrete symmetries the set

S will contain infinitely many poses, which in turn trans-

forms the sums of S in the following to integrals. For the

sake of a simpler notation and a finite training set in prac-

tice, we chose to continue with a notion of a finite |S|. The

naive model f(I, θ), that directly regresses a pose p′ from

I , optimizes a loss L(p, p′) by minimizing

θ∗ = argmin
θ

N
∑

i=1

L(fθ(Ii), pi) (3)

over the training set. However, due to symmetry, the map-

ping from I to p is not well defined and cannot be modeled

as a function. By minimizing Equation 3, f is learned to

predict a pose p̃ approximating all possible poses for this

image equally well.

f(Ii, θ
∗) = p̃ = min

p

|S(Ii)|
∑

j=1

L(p, pj) (4)

This is an unfavorable result since p̃ is chosen to mini-

mize the sum of all losses towards the different symmetries.

In the following section, we will describe how we model

these ambiguities inside our method.

3.1.1 Multiple Pose Hypotheses

The key idea behind the proposed method is to model the

ambiguity by allowing multiple pose predictions from the

network. In order to predict M pose hypotheses from f ,

we extend the notation to fθ(I) = (f
(1)
θ (I), . . . , f

(M)
θ (I))

where f now returns M pose hypotheses for each image I .
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For training, the idea is not to punish all hypotheses

given the current pose annotation, since they might be cor-

rect under ambiguities. Thus, we use a loss that optimizes

only one of the M hypotheses for each annotation. The

most intuitive choice is to pick the closest one. We adapt

the meta loss M from [40] that operates on f ,

θ∗ = argmin
θ

N
∑

i=1

M(fθ(Ii), pi), (5)

while we use the original pose loss L for each f (j)

M̂(fθ(I), p) = min
j=1,...,M

L(f
(j)
θ (I), p). (6)

However, the hard selection of the minimum in equation

6 does not work in practice as some of the hypothesis func-

tions f
(j)
θ (I) might never be updated if they are initialized

far from the target values. We relax M̂ to M by adding the

average error for all hypotheses with an epsilon weight:

M(fθ(I), p) =

(

1− ǫ
M

M − 1

)

M̂(fθ(I), p) +

ǫ

M − 1

M
∑

j=1

L(f
(j)
θ (I), p).

(7)

The normalization constants before the two components are

designed to give a weight of (1 − ǫ) to M̂ and ǫ to the

gradient distributed over all other hypotheses. When ǫ → 0,

M → M̂. This is necessary since the average in the second

term already contains the minimum from the first one.

3.2. Architecture

We employ SSD-300 [31] with an extended Incep-

tionV4 [43] backbone and adjust it to also provide the 6D

pose along with each detection. In particular, we append

two more ’Reduction-B’ blocks to the backbone. Essen-

tially, we branch off after each dimensionality reduction

block and place in total 6.099 anchor boxes to cover objects

at different scales. Moreover, to include the unambiguous

regression of the 6D pose, we modify the prediction kernel

such that it provides C+M ·P outputs for each anchor box.

Thereby, C denotes the number of classes, M denotes the

number of hypotheses, and P denotes the number of param-

eters to describe the 6D pose. In our case, for each of the

M predicted hypotheses, we regress P = 5 values to char-

acterize the 6D pose, composed of an explicitly normalized

4D quaternion for the 3D rotation and the object’s distance

towards the camera. We can estimate the remaining two

degrees-of-freedom by back-projecting the center of the 2D

bounding box using the inferred depth.

Additionally, in line with [32, 24] we conduct hard neg-

ative mining to deal with foreground-background imbal-

ances. Thus, given a set of positive boxes Pos and hard-

mined negative boxes Neg for a training image, we mini-

mize the following energy function:

L(Pos,Neg) :=
∑

b∈Neg

Lclass+

∑

b∈Pos

(Lclass + αLfit + βM(fθ(I), p)).
(8)

For the class and the refinement of the anchor boxes, we em-

ploy the cross-entropy loss Lclass and the smooth L1-norm

Lfit, respectively. In order to compare the similarity of two

quaternions, we compute the angle between the estimated

rotation and the ground truth rotation according to

Lrotation(q, q
′) = arccos

(

2〈q, q′〉2 − 1
)

. (9)

Additionally, we employ the smooth L1-norm as loss for

the depth component Ldepth. Altogether, we define the final

loss for each hypothesis j and input image I as follows

L(f
(j)
θ (I)) = Lrotation(q

(j), q′)+λLdepth(d
(j), d′). (10)

3.3. Processing Multiple Hypotheses

During inference we further analyze the predicted mul-

tiple hypotheses in order to determine whether the pose of

the object is ambiguous. Notice that prior to this, we first

map all hypotheses to reside on the upper hemisphere. If we

detect an ambiguity, we additionally exploit the multiple hy-

potheses to estimate the view-dependent axes of ambiguity.

Detection of Visual Ambiguities in Scenes. We analyze

the distribution of predicted hypotheses in quaternion space

to determine whether the pose exhibits an ambiguity. To this

end, Principal Component Analysis (PCA) is performed on

the quaternion hypotheses qi. The singular value decom-

position of the data matrix indicates the ambiguity: if the

dominant singular values σ1/2 ≫ 0 (σi > σi+1 ∀i), an am-

biguity in the pose prediction is likely, while small singular

values imply a collapse to a single unambiguous solution.

We determine the existence of ambiguity by thresholding

the value of σ2. Empirically, we find the criteria σ2 > 0.8 to

offer good estimations for ambiguity. It is noteworthy that

we can learn to detect ambiguities without further supervi-

sion, directly from standard datasets.

Estimation of the Axis of Ambiguity. As mentioned,

very prominent representatives for visual ambiguities are

symmetries in the objects of interest, as illustrated in Fig. 3

(left) and (mid). Nevertheless, for other objects such as
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Figure 3: Examples of pose ambiguity. Left: Rotational

ambiguity. Mid: Two different possible poses for each side.

Right: Ambiguity around an arc through (self-) occlusion.

cups, also (self-) occlusion can induce ambiguities in ap-

pearance (right).

To calculate a viewpoint dependant ambiguity axis, we

take a closer look at the following scenario. A rotation

qi = (qi1, qi2, qi3, qi4) rotates the camera c0 to ci around

the rotation axis

ai = (qi2, qi3, qi4) /
√

q2i2 + q2i3 + q2i4. (11)

All these rotation axes lie in the same plane which is perpen-

dicular to the ambiguity axis s ⊥ ai ∀i. Thus, if we stack

the rotation axes A =
(

aT1 , a
T
2 , · · · , a

T
n

)

, we can formulate

the overdetermined linear equation system AT s = 0. The

ambiguity axis can be found as the solution to the optimiza-

tion problem

min
s∈R3

∥

∥AT s
∥

∥

p
, (12)

which we solve for p = 2 using SVD.

3.4. From Multiple Hypotheses to 6D Pose

After analyzing the distribution of the hypotheses, we

can robustly compute the associated 6D pose for each case.

Unambiguous Object Pose. In case of an unambiguous

object pose, we utilize the multiple hypotheses as an input

for a geometric median (geodesic L1-mean [14]) to improve

robustness of the overall estimation

qgm = argmin
q∈H1

∑

i

dgeo (qi, q) . (13)

The iterative calculation follows the Weiszfeld algo-

rithm [47, 13] in the tangent spaces to the quaternion hy-

persphere [4]. From a statistical perspective, our rotation

measures are treated as inputs for an L1-estimator to ro-

bustly detect the geometric median where dgeo gives the

geodesic distance on the quaternion hypersphere. Note that

Gramkow [12] showed that locally, using the Euclidean dis-

tance in the ambient, quaternion space well approximates

the Riemannian one. In addition, we compute the median

depth of all hypotheses. Afterwards, we utilize the center

of the 2D detection and backproject it into 3D to obtain the

translation and therewith the full 6D pose of the detection.

Ambiguous Object Pose. As the number of possible 3D

rotations is finite yet unknown, we employ mean shift [6]

to cluster the hypotheses in quaternion space. Specifically,

we use the the angular distance of the quaternion vectors

to measure similarity and the Weiszfeld algorithm to merge

clusters inside mean shift. This yields either one cluster

(if the poses are connected) or multiple (if they are uncon-

nected) as illustrated in Fig. 3. For each cluster we compute

a median rotation and the median depth to retrieve the asso-

ciated 3D translation. Note that we only consider the depths

of the hypotheses, which contributed to the corresponding

cluster. We apply simple contour checks [24] to find the

best fitting cluster from which we extract the final 6D pose.

Synthetic Data. As noted in [19], domain adaptation be-

tween synthetically generated data samples and real-world

images trivializes the collection of training data. We render

CAD models in random poses and add a series of augmen-

tations, such as illumination changes, shadows and blur, as

well as background images taken from the MS COCO [30].

4. Evaluation

In this section, we first introduce our experimental setup.

Following that, we clearly demonstrate the benefits of our

method compared to typical pose estimation systems on

a toy dataset. Next, we show robustness in determining

whether a view exhibits an ambiguity. Fourth, we report

our 6D pose estimation accuracy for the unambiguous and

the ambiguous case on common benchmark datasets. Fi-

nally, we demonstrate how we can model reliability in pose

estimation by analyzing the variance across hypotheses.

4.1. Experimental Setup

Evaluation metrics. In order to properly assess the 6D

pose performance, we distinguish between potentially am-

biguous and non-ambiguous objects. When dealing with

non-ambiguous objects, we report the absolute error for

the 3D rotation in degrees and 3D translation in millime-

ters. We also show our accuracy using the Average Distance

of Distinguishable Model Points (ADD) metric from [18],

which measures if the average deviation of the transformed

model points is less than 10% of the object’s diameter.

For ‘ambiguous’ objects we rely on the Average Dis-

tance of Indistinguishable Model Points (ADI) metric,

which extends ADD for ambiguity, measuring error as the

average distance to the closest model point [21, 17].

We also show our results for the Visual Surface Similar-

ity (VSS) metric. As [24], we define VSS similar to the Vi-

sual Surface Discrepancy (VSD) [21], however, set τ = ∞.

Hence, we measure the pixel-wise overlap of the rendered

ground truth pose and the rendered prediction, which is not

subject to ambiguities.
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Figure 4: Synthetic toy dataset. Top: Contours of the rendered poses for the naive SH (M=1) model in red and our MH
(M=30) model in blue. Bottom: Bingham distributions for each pose cluster, together with the ground truth quaternion in

green and the SH predicted quaternion in red. Our model is not only correct in both cases but can also predict the full range

of valid poses. SH fails on the cube example.

Object Ambiguity
SH MH

VSS [%] ADI [%] VSS [%] ADI [%]

Cup (Self-) Occlusion 97.0 100 98.1 100

Cube Plane Symmetries 87.4 15.6 98.6 100

Table 1: Synthetic results. for the naive SH (M = 1) and

our MH (M = 30) model on the synthetic toy dataset.

Bingham Distributions. In order to visually analyze the

multi-hypotheses output of our network, we inspect the un-

derlying rotation distributions. A Bingham distribution [1]

(BD) is a special equivalent to a Gaussian distribution on

a hypersphere. BDs represent a probability distribution

on Sd with antipodal symmetry well suited to study poses

parametrized by quaternions, where q and −q ∈ H1 rep-

resent the same element in SO (3). In line with previous

works [28, 11, 2], we visualize an equatorial projection of

the closest distribution to our pose output using BDs.

4.2. Synthetic Ambiguity Evaluation

We render a simple synthetic dataset of a rotating cup

and cube. We compare the baseline with M = 1 hypothe-

sis and our method with M = 30 hypotheses. The results

are shown in Fig. 4, Tab.1, and the supplement. For the

cup, both methods yield an ADI score of 100%. The single

hypothesis approach SH is indeed able to compute visually

correct poses even though it cannot model the pose distri-

bution along an arc. It has learned the conditional mean

pose where the handle is exactly opposite of the camera.

Nonetheless, this is only one of the infinitely many possi-

ble solutions. In contrast, our method is able to predict the

whole distribution as seen in the Bingham plots. This is es-

sential for tasks such as next-best-view prediction or robotic

manipulation. When there is no ambiguity, both methods

predict only the one correct pose.

Figure 5: Real data. The red frustums visualize (M = 30)
pose hypotheses. The blue frustum constitutes the median,

which determines the predicted 3D bounding box. In the

unambiguous case (left) the hypotheses agree. However,

partial symmetries and occlusion lead to multiple possible

outcomes on the right, which meaningfully reflect to the

Bingham distribution of hypotheses.

For the cube object, SH fails (red outline) with an ADI of

only 15.6%. Here, the conditional mean is not inside the set

of correct poses. Our method is again able to estimate the

underlying distribution and can correctly estimate all four

modes of correct poses. This yields a perfect ADI of 100%.

When applying our method to real data (Fig. 5), we

achieve similar results. If there is a unique solution, the

method is able to robustly estimate the correct pose. For

ambiguous views, we retrieve the governing distribution as

depicted by the viewpoint frustums and spherical plots.

4.3. Real World Datasets

To conduct evaluations on real data, we build two

datasets addressing both unambiguous and ambiguous
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Figure 6: Ambiguity detection. Symmetry axis (green

line) estimation. Notice that one screw was classified to

be unambiguous (i.e. no axis), because the ambiguity could

be resolved through the texture.

cases. In particular, for the former, we use the popular

‘LineMOD’ [18] and ‘LineMOD Occlusion’ dataset [27].

The authors of [27] selected one sequence from the orig-

inal ‘LineMOD’ dataset and labeled eight additional ob-

jects. Nevertheless, we moved the ‘glue’ and ‘eggbox’ ob-

ject to the ambiguous dataset, since both exhibit several

views (mostly from the top), which are not unique. Ad-

ditionally, following [24, 37] we removed the ‘cup’ and

‘bowl’ objects, because no watertight CAD models are pro-

vided for them. We also discard the ‘lamp’ since the CAD

model does not possess correct normal vectors for proper

rendering. To the latter, the ambiguous dataset, besides the

‘glue’ and ‘bowl’ objects, we added several models from

T-LESS [20] to cover different types of ambiguities. In

essence, T-LESS mostly consists of symmetric and texture-

less industrial objects. For our experiments we choose a

subset that covers both cases: complete rotational symme-

try along an axis (object 4) and objects with more than one

rotational symmetry (object 5, 9, 10).

4.4. Ambiguity Detection Analysis

To evaluate the ability of our model to learn pose dis-

tributions, we manually labeled for each validation image

of the ambiguous dataset, whether the current object view

exhibits ambiguity based on the visible object texture and

shape. This ground truth is used to quantitatively assess our

capability of detecting pose ambiguity. Additionally, we

compute the ground truth symmetry axis for each object. It

is important to note that we do not conduct object symmetry

detection, instead, we describe the perceived pose ambigu-

ity in terms of a symmetry axis. These annotations are only

used for evaluation and not during training.

For each detected ambiguity, we compute the aver-

age discrepancy of the computed symmetry axis from the

ground truth annotation. For the ambiguity-free case, we

achieve to report an accuracy of more than 99%, while for

the ambiguous case we can also state a high accuracy of

82% correctly classified views. Furthermore, the mean axis

only deviates by 24◦, which shows that our formulation is

able to precisely explain the perceived ambiguity.

Rot. [◦] Trans. [mm] VSS [%] ADD [%] F1

SSD-6D [24] 28.0 72.4 67.4 9.4 88.8

[42] – – – 22.1 –

SH (M = 1) 17.9 45.6 76.8 31.2 91.6

MH(M = 5) 17.4 39.5 78.2 35.3 93.4

Table 2: Pose errors of unambiguous objects with syn-

thetic training data. Comparison with [42], [24]. Results

of [24] from their released models and code.

ape can cat dril duck holep mean

Tekin [46] 2.5 17.5 0.7 7.7 1.1 5.5 5.8

MH(M = 5) 5.9 22.4 4.2 32.0 12.2 17.0 15.6

BB-8 [37] Tekin [46] MH(M = 5)

ADD [%] 45.9 47.9 44.4

Table 3: Pose errors of unambiguous objects with real

training data split from [3]. Top: Comparison with [46]

on LineMOD Occlusion. Bottom: Comparison with [37]

and [46] on LineMOD. Results of [46] from their released

models and code.

In Fig. 6, we respectively show one sample of estimated

ambiguity axis from ‘LineMOD’ and ‘T-LESS’. For each

detection, we draw the estimated axis in red, while the green

line denotes the hand-annotated groundtruth axis.

4.5. Comparison to State­of­the­Art

Unambiguous Pose Estimation. In Tab 2 and Tab 3, we

report our results for the unambiguous subset for training

with synthetic data and with the train data split from [3].

Since the number of predicted hypotheses M is a hyperpa-

rameter, we will show an ablation in the supplement and

only report our best results with M = 5 here.

For the case of synthetic training only, even for the sin-

gle hypothesis case, our approach outperforms SSD-6D by

more than 35% of relative error while also being more ro-

bust in terms of 2D detection. Comparing with Sunder-

meyer et al. [42] we can report a relative improvement of

approximately 50% referring to ADD. In addition, our aver-

aging over all hypotheses leads to more robustness towards

outliers and, thus, another improvement of all metrics.

When also employing real data, we can improve our re-

sults by approximately 9% to 44.4% and are on par with the

state-of-the-art methods from [37] and [46], even though

we employ no crop and paste augmentations. Further, when

using the more challenging ‘LineMOD Occlusion’ dataset,

we can exceed Tekin et al. [46] for all objects and overall

almost triple their ADD score from 5.8% to 15.6%.

Ambiguous Pose Estimation. Referring to Tab 4, for the

ambiguous ‘LineMOD’ objects, we attain a VSS score of

79% and an ADI score of 55%, which is a relative im-

provement of approximately 13% and 145% compared to
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VSS [%] ADI [%] F1

MH SH [24] MH SH [24] MH SH [24]

eggbox 83.1 78.5 76.3 55.7 56.0 26.3 98.0 83.0 93.7

glue 74.6 74.0 65.1 54.6 58.7 17.6 90.1 74.0 76.8

mean 78,9 76.3 70.7 55.2 57.4 22.0 94.1 78.5 85.5

VSS [%] ADI [%]

Scene MH SH [42] MH SH [42]

obj 04 5, 9 70.8 68.6 78.5 19.7 14.1 15.2

obj 05 2, 3, 4 87.6 82.8 88.8 78.0 48.3 76.3

obj 09 5, 11 84.4 79.1 86.5 69.9 54.5 77.3

obj 10 5, 11 82.0 78.5 82.3 57.9 29.4 31.9

mean 81.2 77.3 84.0 56.4 36.6 50.6

Table 4: Ambiguous dataset. (top: ‘LineMOD’) (bottom:

T-LESS). We compare our multiple hypotheses MH (M =
30) results and the same predictor trained to output a single

hypothesis SH (M = 1) with [42]1 and SSD-6D [24].

SSD-6D. In the 6D setting, the multiple hypothesis detector

overall achieves similar performance as the single hypoth-

esis predictor. However, for the 2D detection case, we are

able to increase the accuracy from 79% to 94%. As con-

stituted, only a few views are ambiguous for these objects.

Investigating the results, we discovered that the single hy-

pothesis predictor is not able to understand exactly these

views and tends to simply discard them. In contrast, the

multiple hypotheses predictor is indeed able to understand

these views and yields reliable pose predictions.

For all ambiguous ‘T-LESS’ objects (Tab 4), our multi-

ple hypotheses approach surpasses the single hypothesis es-

timator, which, when trained and evaluated under the same

conditions, is not able to capture the ambiguities in pose.

Thus, the single hypothesis predictor is not able to produce

equally accurate results, being only capable of computing

precise poses for unambiguous views.Comparing with [42],

we report similar performance in pose. Our ADI improves

with 56.4% compared to 50.6% while VSS falls slightly be-

hind by 2.8%. For fairness, we only compare the 6D pose

accuracy for correctly detected objects (i.e. IoU ≤ 0.5)

since [42] trained their 2D detector for T-LESS on real data.

4.6. Measuring Reliability

To the best of our knowledge, there is no prior work ca-

pable of modelling the confidence in the continuous pose

estimate. Yet, this information can highly improve the over-

all robustness and accuracy. In our case, we can utilize the

different hypotheses to first determine whether the current

view is unambiguous and subsequently employ them as a

confidence measurement in the unambiguous 6D pose. To

quantify the effect of this, we report our test results on the

unambiguous subset of ‘LineMOD’ in Fig. 7 (top), where

we compute a confidence measure via the standard devia-

tion with respect to the Karcher mean [22].

STD σ Rot. [◦] Trans. [mm] VSS [%] ADD [%] Rejects [%]

< 0.05 11.8 39.4 80.0 37.7 32.6

< 0.075 13.8 41.3 79.1 35.5 18.2

< 0.10 15.5 43.0 78.3 34.3 10.5

< 0.15 17.3 44.0 77.7 33.4 4.0

< ∞ 19.2 44.8 77.3 32.7 0.0

Figure 7: Reliability. Top: results for different bins for the

standard deviation over all hypotheses for the poses. Bot-

tom: pose with the lowest (left) and the highest (right) stan-

dard deviation in the hypotheses. GT pose in blue, predicted

pose in red. The red frustums illustrate the hypotheses.

Naturally, a lower standard deviation means more accu-

rate poses. By only allowing poses with σ < 0.1, all metrics

improve, while only losing about 10.5% of all estimates.

The rotational error decreases by approximately 20% and

the translation error drops from 44.8mm to 43.0mm. Ac-

cordingly, using an even lower threshold (e.g. σ < 0.05)

gives another significant improvement for pose (especially

in rotation), however, at the cost of rejecting more estimates.

The qualitative example image in Fig. 7 also confirms these

results. The pose with the lowest standard deviation for the

‘driller’ is very accurate, and the one with the highest is

rather imprecise. We experience the same behavior for all

unambiguous ‘LineMOD’ objects.

5. Conclusion

We propose a new approach for pose estimation that im-

plicitly models ambiguities without requiring any input pre-

processing as well as the feasibility of domain adaptation

between synthetic and real data. In addition, we can es-

timate the axis of rotational ambiguity and perform pose

refinement based on clustering without knowing the num-

ber of clusters in advance. Our experiments show that our

method is suitable for detecting both challenging objects

with multiple rotational symmetries and datasets with lit-

tle ambiguity. Lastly, we argue that our method constitutes

a metric of reliability for the 6D pose.

In conclusion, we believe that the new formulation of

the pose detection problem from images as an ambiguous

task paves the way towards interesting applications in the

domain of robotic interactions and automation.
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