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Abstract

Action recognition has seen a dramatic performance im-

provement in the last few years. Most of the current state-

of-the-art literature either aims at improving performance

through changes to the backbone CNN network, or they ex-

plore different trade-offs between computational efficiency

and performance, again through altering the backbone net-

work. However, almost all of these works maintain the

same last layers of the network, which simply consist of a

global average pooling followed by a fully connected layer.

In this work we focus on how to improve the representa-

tion capacity of the network, but rather than altering the

backbone, we focus on improving the last layers of the net-

work, where changes have low impact in terms of computa-

tional cost. In particular, we show that current architectures

have poor sensitivity to finer details and we exploit recent

advances in the fine-grained recognition literature to im-

prove our model in this aspect. With the proposed approach,

we obtain state-of-the-art performance on Kinetics-400 and

Something-Something-V1, the two major large-scale action

recognition benchmarks.

1. Introduction

Action recognition has seen significant advances in

terms of overall accuracy in recent years. Most existing

methods [2, 11, 26, 27, 31] treat this problem as a generic

classification problem, of which the only difference from

ImageNet [6] classification is that the input is now a video

frame sequence. Thus, numerous efforts have been devoted

to leveraging the temporal information. However, unlike

objects in ImageNet, which are usually centered and oc-

cupy the majority of pixels, human activities are complex

concepts. They involve many factors such as body move-

ment, temporal structure, and human-object interaction.

An example of this complexity can be found in action

classes like “eating a burger” and “eating a hot-dog”. They

both depict eating something, and have a similar body mo-

tion pattern. To correctly distinguish them, one has to focus

on the object the person is interacting with. A even more
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Figure 1. Action recognition is a fine-grained recognition prob-

lem. Left: we illustrate samples from class pairs that are easily

confused by a state-of-the-art method [2]. This confusion is due

to these actions being visually extremely similar and they can only

be distinguished by fine-grained information. In (b) we show the

classification output of the proposed approach on these classes,

as well the highly activated regions with fine-grained information,

such as objects (red), motion pattern (blue), object texture (green).

difficult situation happens when we try to distinguish “pick-

ing up a phone” versus “picking up a hot-dog”, where even

the shape of the objects are similar. Another example is for

“dribbling basketball” and “shooting basketball”, where the

objects and scenes are the same. The major cue for distin-

guishing them is the difference in the body motion pattern.

This complex nature of human activities dictates that

rough modeling of the visual or temporal features will lead

to confusion between many classes that share similar fac-

tors. A common example of rough modeling is the widely

used classifier head of one global average pooling and one

linear classifier in action recognition models [2, 26], a setup

typical of image object recognition models [10] on Ima-

geNet [6]. However, as illustrated in fig. 1, even a state-

of-the-art CNN architecture, when learned with this setup,

fails to distinguish two classes when they share similar fac-

tors. In this case both classes can only be distinguished by

capturing fine-grained patterns.

In this work, we propose to tackle the complexity of hu-

man action classification by promoting the importance of
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analyzing finer details. In fact, a multitude of works in fine-

grained recognition have been dedicated to solving similar

problems on images, like distinguishing bird species [30],

car models [33, 13] and plants [25]. Taking inspiration from

a recent fine-grained recognition work [29], we propose a

novel design to improve the final classification stage of ac-

tion recognition models. Its main advantage is its ability

to better extract and utilize the fine-grained information of

human activities for classification, which are otherwise not

well preserved by the global average pooling mechanism

alone. In particular, we propose to use three classification

branches. The first branch is commonly used global aver-

age pooling classification head. The second and the third

branches share a set of convolutions, spatial upsampling

and max-pooling layers to help surface the fine-grained in-

formation of activities, and differ in terms of the classifier

used. The three branches are trained jointly in an end-to-end

manner. This new design is compatible with most of current

state-of-the-art action recognition models, e.g. [27, 38] and

can be applied to both 2D and 3D CNN-based action recog-

nition methods (sec. 6).

We evaluate the proposed approach on two major

large-scale action classification benchmarks: Kinetics-

400 [12] (400 classes) and Something-Something-V1 [9]

(174 classes). Our results show that models built with our

simple approach surpass many state-of-the-art methods on

both benchmarks. Furthermore, we also provide a detailed

ablation studies and visualizations (sec. 5) to demonstrate

the effectiveness of our approach. Our discoveries suggest

that the proposed approach does indeed help distinguishing

similar classes that are otherwise confused by the baseline

models, which leads to the improved overall accuracy.

2. Related Work

Action recognition in videos. Action recognition in the

deep learning era has been successfully tackled with 2D [20,

26] and 3D CNNs [2, 5, 11, 22, 23, 27, 31]. Most existing

works focus on modeling of motion and temporal structures.

In [20] the optical flow CNN is introduced to model short-

term motion patterns. TSN [26] models long-range tempo-

ral structures using a sparse segment sampling in the whole

video during training. 3D CNN based models [2, 11, 22, 27]

tackle the temporal modeling using the added dimension of

the convolution on the temporal axis, in the hope that the

models will learn the hierarchical motion patters as in the

image space. Several recent works have started to decouple

the spatial and temporal convolution in 3D CNNs to achieve

more explicit temporal modeling [5, 23, 31]. In [38, 32] the

temporal modeling is further improved by tracking feature

points or body joints over time.

Most of these methods treat action recognition as a video

classification problem. These works tend to focus on how

motion is captured by the networks and largely ignore what

makes the actions unique. In this work, we provide in-

sights specific to the nature of the action recognition prob-

lem itself, showing how it requires an increased sensitiv-

ity to finer details. Different from the methods above, our

work is explicitly designed for fine-grained action classifi-

cation. In particular, the proposed approach is inspired by

recent advances in the fine-grained recognition literature,

such as [29]. We hope that this work will help draw the at-

tention of the community on understanding generic action

classes as a fine-grained recognition problem.

Fine-grained action understanding. Understanding hu-

man activities as a fine-grained recognition problem has

been explored for some domain specific tasks [17, 21]. For

example, some works have been proposed for hand-gesture

recognition [8, 14, 19], daily life activity recognition [18]

and sports understanding [7, 24, 3, 1]. All these works

build ad hoc solutions specific to the action domain they

are addressing. Instead, we present a solution for generic

action recognition and show that this can also be treated as

a fine-grained recognition problem and that it can benefit

from learning fine-grained information.

Fine-grained object recognition. Different from com-

mon object categories such as those in ImageNet [6], this

field cares for objects that look visually very similar and

that can only be differentiated by learning their finer de-

tails. Some examples including distinguishing bird [30]

and plant [25] species and recognizing different car mod-

els [13, 33]. We refer to Zhao et. al [36] for an in-

teresting and complete survey on this topic. Here we

just remark the importance of learning the visual details

of these fine-grained classes. Some works achieve this

with various pooling techniques [16, 15]; some use part-

based approaches [35, 34]; and others use attention mech-

anisms [37, 39]. More recently, Wang et. al [29] proposed

to use a set of 1 × 1 convolution layers as a discriminative

filter bank and use a spatial max pooling to find the location

of the fine-grained information. Our method takes inspi-

ration from this method and extends it to the task of video

action recognition. We emphasize the importance of finding

the fine-grained details in the spatio-temporal domain with

high resolutions features.

3. Methodology

In this work we enrich the last layers of a classic ac-

tion recognition network with three branches (fig. 2). We

preserve the original global pooling branch as it has been

shown to carry important discriminative clip-level informa-

tion across all activities (sec. 3.1). At the same time, we pro-

pose two more branches to respond to very localized struc-

tures (sec. 3.2). Our intuition is that in order to learn fine-

grained details, the network needs per-class local discrim-

5483



ResNet

Stage1-4

1024x

16x14x14

ResNet

Stage 5

2048x

16x7x7

ResNet

Stage 5

2048x

16x7x7
Up

2048x

16x14x14

1
x

1
x

1

3072x

16x14x14

M
a

x
 P

o
o

l(CxN)x

16x14x14 (CxN)

M
e

a
n

 P
o

o
l

C

D
e

n
se C

M
e

a
n

 P
o

o
l

C

Concatenate

Bilinear Upsample

3x

64x224x224

2048

D
e

n
se

Up

Discriminative Filter Bank (Sec 3.2) 

Global Feature Branch (Sec 3.1)

Local Feature Branch (Sec 3.3) 

Figure 2. Architecture diagram of our proposed approach. We illustrate the design with a 3D ResNet that takes 64 frames as input, but the

overall design generalizes to both 2D and 3D architectures with an arbitrary number of input frames. The global feature branch (sec. 3.1)

functions as our baseline. Our proposed approach improves upon this baseline with a bank of discriminative filters (sec. 3.2) that specialize

on localized cues and a local feature extraction branch (sec. 3.3) that produces feature maps tuned to be sensitive to local patterns.

inative classifiers from which it can pull unique signatures

(zxchannel) and correlations across similar classes (zmax).

Finally, we propose to decouple the feature representation

for the global pool branch and for the fine-grained branches

to improve feature diversity (sec. 3.3).

3.1. Global Branch: Baseline Network

Our baseline method follows the recent approaches in

action recognition [2, 26] and it consists of a classification

backbone encoder followed by the standard global average

pooling and a linear classifier. We denote this classification

output as zavg . This pooling method is highly effective in

capturing large contextual cues from across the video se-

quence, as it aggregates information from the entire spatial-

temporal volume of the video via average pooling. It is de-

signed to capture the gist of the full video sequence and,

as such, it is quite effective at separating actions that take

place in different scenes, like dancing vs playing golf. How-

ever, this pooling methodology limits the networks ability

to focus on a particular local, spatial-temporal region as the

global average forces the classifier to consider all parts of

the video at once.

3.2. Discriminative Filter Bank

To allow the network to focus on key local regions of the

video we introduce a set of local discriminative classifiers.

Taking inspiration from [29], we model these classifiers as

filters. Each of them specializes on a particular local cue

that is important for a specific action class. The discrimi-

native filters are implemented as N · C, 1 × 1 (for 2D) or

1 × 1 × 1 (for 3D) convolutions followed by global max

pooling over the feature volume to compute the highest ac-

tivation value of each discriminative classifier. Here C is

the number of classes (400 for Kinetics-400 and 174 for

Something-Something-V1), while N is a hyper-parameter

indicating how many discriminative classifiers are associ-

ated to each class (in this work we set N = 5, as we did not

observe any substantial improvement with a larger value).

The max response from each filter for a given class is aver-

aged to produce a final classification prediction. This pro-

duces a classification prediction that is highly localized, as

the response comes from just N locations in the feature vol-

ume. Wang et al. [29] coined this classification method

cross-channel pooling, as responses are pooled in blocks

of N across the channel feature dimension. We adopt this

nomenclature and denote this classifier output as zxchannel.

We apply the standard softmax cross-entropy loss on this

output and denote this loss as Lxchannel. This loss directly

encourages each filter to specialize on its class as their out-

puts are directly aggregated to produce the classification

prediction.

This classifier is an aggregate of the N classifiers spe-

cialized for that particular class but does not include any of

the N · (C − 1) other discriminative filters. To allow each

class to benefit from all filters, we add a dense layer to the

discriminative filter output after the maxpool. We denote

this classifier output as zmax and apply a softmax cross-

entropy loss denoted as Lmax. This classifier draws from

local activation across weak classifiers from all classes, thus

it can be thought of as a middle ground between the highly

localized zxchannel and the global zavg

Finally, we combine the three classifier outputs (zavg ,

zxchannel and zmax) into a single prediction (zcomb)

through simple summation, pass it through another softmax

layer and compute a combined loss Lcomb. The final loss

used in training is just a summation of all factors:

L = Lcomb + Lavg + Lmax + Lxchannel (1)
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We apply an auxiliary loss to each individual classifi-

cation output (zavg , zxchannel and zmax) to force each to

learn in isolation. All results reported in the experimental

section use the aggregate classifier (zcomb).

3.3. Local Detail Preserving Feature Branch

While our discriminative filters provide fine-grain local

cues, they still operate on the same feature volume as the

average pooled classifier (zavg). This has two issues: one,

the feature volume has been down-sampled to such a high

degree that the filters cannot learn the finer details; and two,

this feature volume is shared between the average pooled

(zavg) and the discriminative filters (zxchannel and zmax)

classifiers, meaning that it cannot specialize for either task.

In order to overcome these issues and improve feature di-

versity, we propose to branch the last stage of our backbone

and use one branch for our average pooling classifier (global

branch) and the other (local branch) for our discriminative

filters. This allows the global branch to specialize on con-

text while the local branch can specialize on finer details.

Next, as we seek sensitivity to discriminative finer de-

tails, we add a bilinear upsampling operation in the local

branch in charge of computing the discriminative classifiers

(fig. 2) and add a skip connection from the features from

stage 4. These modules provide a specialized and detailed

feature volume for the discriminative filters, further enrich-

ing the information that the fine-grain classifiers can learn.

4. Experimental Setting

4.1. Datasets

We experiment on the two largest datasets for action

recognition: Kinetics-400 [12] and Something-Something-

V1 [9]. Kinetics-400 consists of 400 actions. Its videos are

from Youtube and most of them are 10 seconds long. The

training set consists of around 240,000 videos and the val-

idation set of around 19,800 videos, well balanced across

all 400 classes. The test set labels are withheld for chal-

lenges, so it is a standard practice to report performance

on the validation set. Kinetics-400 is an excellent dataset

for evaluation thanks to its very large scale nature, its large

intra-class variability and the extensive set of action classes.

Something-Something-V1 consists of 174 actions and it

contains around 110,000 videos. These videos are shorter

on average than those of Kinetics-400 and their duration

typically spans from 2 to 6 seconds.

One interesting difference between these two datasets

is that, on Kinetics-400, temporal information and tempo-

ral ordering of frames are not very important and a single

2D RGB CNN already achieves competitive results com-

pared to a much more complex 3D architecture; on the other

hand, temporal information is essential for Something-

Something-V1 and a simple 2D RGB CNN achieves much

lower performance than its 3D counterpart. This is due to

the different nature of the actions in these datasets: while

they are very specific on Kinetics-400 (e.g., ’building cabi-

net’), they are relatively generic on Something-Something-

V1 (e.g., ’plugging something into something’). By exper-

imenting on these diverse datasets, we show that our ap-

proach is generic and suitable to different action domains.

4.2. Implementation Details

Approaches. We experiment with two of the best per-

forming backbones for our system: 2D TSN [26] and in-

flated 3D [2] networks. Briefly, 2D TSN networks treat

each frame as a separate image. The TSN sampling method

divides an input video evenly into segments (we used 3 seg-

ments in this work) and samples 1 snippet (a single RGB

frame for this work) per segment randomly during train-

ing. This ensures that a diverse set of frames are observed

during training. Finally, a consensus function aggregates

predictions from multiple frames to produce a single pre-

diction per video clip, on which the standard soft-max cross

entropy loss is applied. In this work we use the average

consensus function, as it has been shown to be effective. As

these networks operate on each frame independently, we use

the models provided by Gluon [4], which is pre-trainined

on ImageNet [6]. Rather than processing each frame inde-

pendently, inflated 3D networks operate on a set of frames

as a unit, convolving in both the spatial and temporal di-

mensions. These 3D networks are typically modeled after

2D architectures, converting 2D convolutions into 3D ones

(i.e. a 3 × 3 convolution becomes a 3 × 3 × 3 convolu-

tion). We follow the common practice to initialize the net-

work weights by ”inflating” [2] weights from a 2D network

trained on ImageNet. We follow the 3D implementation of

Wang et. al [27], which down-samples the temporal resolu-

tion by 4 in the initial convolutions at the beginning of stage

1, via strided convolutions. From that point on the tempo-

ral dimension remains fixed. 3D networks produce a spatial

temporal feature tensor as illustrated in Fig. 2.

Network architecture. We use the ResNet backbone [10]

in all our experiments. For all network configurations, in-

stead of using stride 2 to down-sample the spatial resolution

in the initial 1 × 1 convolution (1 × 1 × 1 for 3D) of the

first Bottleneck block, we use it in the 3 × 3 convolution

(3× 3× 3) of the block instead.

Network Initialization. We initialize our networks

with the weights of a model pre-trained on the ImageNet

dataset [6] as described above. The local stage 5 branch of

the network does not have a corresponding pre-trained set

of weights as it is not part of the standard ResNet architec-

ture. Two obvious choices to initialize the local branch are

random initialization or use the stage 5 weights from Ima-

geNet pre-training. We conducted preliminary experiments
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2D 3D

Method Top-1 Top-5 Top-1 Top-5

GB (Baseline) sec. 3.1 69.6 88.3 66.8 86.0

GB + DF sec. 3.2 70.9 89.5 68.0 86.9

GB + DF + LB sec. 3.3 71.2 89.3 68.8 87.3

Table 1. Results of the different components of our model on the

Kinetics-400 dataset. Our baseline, which consists of a single

global branch (GB) is consistently outperformed by our discrimi-

native filters (DF) and add our specialized local branch (LB) com-

pliments these filters, pushing performance even higher. Perfor-

mance is computed using the training-time setting. Thus, 2D mod-

els use 3 segments while 3D models use one 16-frame segment.

and found that using a random initialization for the local

stage 5 branch weights gave consistently better results. We

use this initialization for all results presented in this work.

This is intuitive as we want the local branch to specialize for

local cues, while the pre-trained ImageNet weights are al-

ready specialized for global context and are prone to remain

close to that local minimum.

Optimization parameters. We use an SGD optimizer and

a starting learning rate of 0.01, which we reduce three times

by factor 10 during training. We set weight decay to 10e−5,

momentum to 0.9 and dropout to 0.5. Our batch size is as

large as permitted by the hardware and it changes with the

depth of the model, the approach used (i.e., 2D or 3D) and

with the number of frames of the video. For example, when

using 16 frames, ResNet152 and a 3D CNN, we can only

use a batch of 8. Moreover, when using 64 frames, we use

mixed precision (FP16). This allows us to use larger batch

sizes than with FP32.

Input size and data augmentation. We resize all videos

so the short edge is 256 pixels. We keep the temporal res-

olution (FPS) the same as the source files. During training,

we augment the training examples with horizontal flipping,

random resizing and random cropping of 224× 224 pixels.

Test-time settings. We follow the standard procedures

employed in the literature when comparing to other state-

of-the-art methods. For the 2D models, we use 20 regularly-

sampled segments at test time (a segment consists of only

a frame in our case) and perform oversampling, which con-

sists on extracting 5 crops and their flips for each segment.

This results in 200 forward passes for each video. All these

outputs are then averaged to obtain the final prediction. For

the 3D networks, we use 10 segments. Instead of resizing

each frame to a pre-defined input size, we run fully con-

volutional inference and average the predictions. Finally,

we flip horizontally every other segment. While this is the

standard testing protocol for Kinetics-400, on Something-

Something-V1 we follow the standard practice to use a sin-

gle segment for testing.

Meta-categories

Significant improvement Marginal improvement

Waxing +5.5 Interact w/ animals +1.0

Swimming +5.1 Makeup +0.9

Cooking +3.0 Watersports +0.5

Hair +3.0 Gymnastic +0.4

Using Tools +2.9 Athletics-Jumping +0.4

Eating & Drinking +2.6 Raquet-Batsports +0.3

Table 2. Top-1 accuracy improvement brought by our full 3D ap-

proach over the baseline 3D network.

5. Analysis of our system

In this section we experiment with the proposed ap-

proach on the Kinetics-400 dataset. This dataset provides

a challenging benchmark for our analysis as it consists of a

large set of 400 classes. First, we present an ablation study

on the components of our approach (sec. 5.1). Then, we

look at what actions our model is helping and hurting the

most (sec. 5.2). Finally, we examine qualitative results from

our discriminative filter banks by visualizing their max re-

sponse (sec. 5.3). We follow the standard convention and

report results in terms of Top-1 and Top-5 accuracy.

5.1. Ablation study

We investigate how the various components of our ap-

proach contribute to its final performance. We conduct this

ablation study with a simpler inference setting than that de-

scribed in sec. 4.2. We sample 3 segments with our 2D net-

work and only 1 16-frames segment with our 3D network,

as it is computationally prohibitive to train and test for each

model variation. Results are reported in table 1. The top

row reports the results of our global branch (GB) baseline,

which is the standard action recognition approach (sec. 3.1).

Adding our discriminative filter bank (DF) to it (sec. 3.2)

consistently improves performance across all models. Fi-

nally, further enriching our model with a specialized local

branch (LB sec. 3.3) achieves the best performance. This

shows that each component of our approach is important to

improve the baseline performance. Moreover, the results

show that this improvement is consistent on both 2D and

3D based networks and it shows that our approach is also

generic to different action recognition baselines.

5.2. How does performance change across actions?

In this section we investigate how our model performs

on different action classes and compare the results of the

baseline 3D CNN network with those of our full approach.

First, we look at the improvement of our model on high

level meta-categories. These are defined by the Kinetics-

400 dataset and were originally generated by manually clus-

tering the 400 classes into 38 parent classes, each one con-

taining semantically similar actions [12]. We compute the

Top-1 accuracy of a meta-category as the average Top-1 ac-
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Figure 3. Confusion matrices of 6 meta-categories. Our model (Fine-Grained) significantly improves Top-1 accuracy over the Baseline

for the meta-categories in the top row, but only marginally for those in the bottom. Nevertheless, these confusion matrices show that our

approach is much better at separating the actions within a meta-category, especially when these are visually similar.

curacy of all its child actions. In table 2, we show some of

the meta-categories for which we observed the largest (left)

and the smallest (right) improvement. These results high-

light some interesting facts. First, we observe a substan-

tial improvement on meta-categories that contain very fine-

grained actions. For example, waxing consists of classes

like “waxing back”, “waxing chest”, “waxing legs”, etc.,

which picture the same exact action, but performed on dif-

ferent body parts. Our approach is able to focus its at-

tention on the relevant and discriminative regions of the

videos (fig. 4, 5) and improve the performance on these fine-

grained actions considerably (+5.5 on average for waxing).

Similar trends can be observed for swimming (backstroke,

breast stroke, and butterfly stroke) and several other meta-

categories (table 2, left).

Interestingly, our models do not bring a similar improve-

ment on some sport-related meta-categories, like water-

sports, gymnastic, athletics-jumping and raquet-batsports.

This is because these meta-categories contain actions that

are not necessarily similar with each other and for which the

baseline model is already accurate. For example, “playing

tennis”, “playing cricket” and “playing badminton” can be

easily differentiated by looking at their background scenes

(i.e., the courts). Nevertheless, it is worth noticing that even

on these meta-categories that are by construction unlikely

to benefit from our fine-grained design, our approach still

slightly improves over the baseline. This shows that our ap-

proach is robust and, overall preferable over the baseline.

Next, we go beyond the accuracy of a meta-category and

investigate its individual actions. We analyze the confu-

sion matrices between the actions of each meta-category

(fig. 3). These visualizations clearly show that our approach

is able to produce sparser confusion matrices compared to

the baseline, further verifying that our approach is more ap-

propriate to distinguish visually similar classes. For exam-

Action
is most # confused videos

confused w/ baseline ours

Bending metal Welding 4 1

Mopping floor Cleaning floor 8 4

Peeling potatoes Baking cookies 6 2

Plastering Laying bricks 4 0

Swing dancing Salsa dancing 8 4

Brushing hair Fixing hair 7 2

Waxing legs Shaving legs 4 1

Getting a haircut Shaving head 1 7

Stretching legs Yoga 4 8

Strumming guitar Playing guitar 6 13

Table 3. Pairs of actions most confused by the baseline and our

approach, along with the number of videos each model confuses.

ple, let’s consider the meta-category watersports. Table 2

shows that our approach outperforms the baseline by a tiny

Top-1 accuracy improvement of 0.5. Nevertheless, their

confusion matrices (fig. 3, mid-bottom) show that our fine-

grained approach is capable of separating the classes within

this meta-category much better than the baseline (e.g., the

baseline confuses “surfing water” with “waterskiing” - cell

(7,5) - but our approach differentiates them well).

Finally, in table 3-top we list some of the actions that

are most confused by the baseline and for which our ap-

proach is more accurate. Again, we can appreciate how

our approach can better separate fine-grained actions, like

“mopping floor” and “cleaning floor”: while the baseline

wrongly predicts “cleaning floor” on 8 out of the 40 valida-

tion videos of “mopping floor”, our fine-grained approach

only makes 4 mistakes. Moreover, in table 3-bottom we list

actions for which our approach is more confused. While

these results may seem surprising at first, they are easily ex-

plainable. These actions are connected to each other and

they are in a parent-child relationship (e.g., “shaving head”

is a type of “haircut”) or they co-occur (e.g., “stretching
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Filter 1

Filter 3

water skiing

Filter 2

Filter 4

surfing water

Figure 4. Examples of 2 discriminative filters from two classes that roughly capture the same concepts. The top row shows three examples

of the max response from filters that capture the person and object being ridden for the water skiing and surfing water classes. The second

row shows filters that capture the texture of the water on the wake or wave in the video. Both of these cues combine to help the final

classifier differentiate between these challenging classes.

Filter 0

swimming breast stroke

Filter 4

swimming butterfly stroke

Filter 0

swimming backstroke

Figure 5. Example maximal responses of a discriminative filter on

three challenging swimming classes. Notice that each filter consis-

tently fires on the frame and location of the swimmer in a canon-

ical pose for that stroke. These filters are robust to variations in

view-point and scenes.

legs” is a common pose in “yoga”). While our model tries

to learn fine-grained details of these actions, it gets con-

fused by the ambiguity in their definition and the missing

annotations, which lead to larger mistakes.

5.3. Qualitative analysis

Next, we examine qualitative examples of how our dis-

criminate filters behave. To this end, we take activations

from across an entire video of a single discriminative fil-

ter, which is trained to have a high response for a specific

class. We then find the spatial-temporal location where this

filter has its maximal response and draw a bounding box

around the area in the frame that corresponds to that re-

sponse. First, in fig. 5, we show a single filter maximal

response on three test videos for each of three swimming

classes (breast stroke, backstroke, and butterfly). Notice

how each filter learns to fire on the precise frame and lo-

cation of the corresponding stroke’s canonical pose and is

robust to view-point and scene variations. We further ex-

plore this phenomenon in fig. 4, where we visualize two fil-

ters for two often confused classes (water skiing and surfing

water). Here we find two filters for each class that roughly

fire on the same types of local cues. The top row of fig.

4 shows responses for filters that focus on the person and

object they are riding (water skis or surf board), while the

bottom row fires on the specific wave characteristics of the

filter’s corresponding class. The dense classifier (zmax) is

then able to take advantage of these cues when making the

final prediction. Finally, in our teaser figure (fig. 1) we

show more examples of how our filters are able to localize

and disambiguate objects, motions, and textures.

6. Comparison with the state-of-the-art

In this section, we compare our method against the state-

of-the-art in the literature. We use the train and test settings

reported in sec. 4.2 and report Top-1 and Top-5 accuracy.

Kinetics-400 (table 4). We compare against 2D and 3D

approaches. Our models achieve state-of-the-art perfor-

mance on both scenarios. For 2D, enriching the TSN RGB

stream with our fine-grained components improves both

Top-1 and Top-5 accuracy by 1 point. Interestingly, our

model also achieves slightly higher performance than the

TSN two stream model, while remaining computationally

much more efficient (Flow is extremely slow to compute

and requires a forward pass through an entire second net-

work). For 3D CNNS, we improve state-of-the-art Top-1

accuracy (1 point) and runtime. The previous best perform-

ing approach (Non-local Neural Networks) employs a more

computationally intensive version of ResNet that has addi-

5488



Method Modality Top-1 Top-5 Pre-trained

2D

Two Stream (NIPS14) [20] RGB + Flow 65.6 – ImageNet

TSN Two Stream (TPAMI18) [26] RGB + Flow 73.9 91.1 ImageNet

TSN One Stream (our impl.) RGB 73.4 90.4 ImageNet

Our approach RGB 74.3 91.4 ImageNet

3D

I3D (CVPR’17) [2] RGB 71.1 89.3 ImageNet

I3D (CVPR’17) [2] RGB+Flow 74.2 91.3 ImageNet

R(2+1)D (CVPR’18) [23] RGB 74.3 91.4 Sports-1M

R(2+1)D (CVPR’18) [23] RGB+Flow 75.4 91.9 Sports-1M

Multi-Fiber (ECCV’18) [5] RGB 72.8 90.4 None

S3D (ECCV’18) [31] RGB 72.2 90.6 ImageNet

S3D-G (ECCV’18) [31] RGB 74.7 93.4 ImageNet

Non-local NN (CVPR’18) [27] RGB 77.7 93.3 ImageNet

Our approach RGB 78.8 93.6 ImageNet

Table 4. Comparison with state-of-the-art methods in the literature on the Kinetics-400 dataset.

Method Backbone Top-1 Top-5 Pre-trained

3D-CNN [9] (ICCV’17) BN-Inception 11.5 29.7 Sports-1M

MultiScale TRN [40] (ECCV’18) BN-Inception 34.4 – ImageNet

ECO lite [41] (ECCV’18) BN-Inception+ResNet18 46.4 – Kinetics-400

I3D + GCN [28] (ECCV’18) ResNet50 43.3 75.1 Kinetics-400

Non-local I3D + GCN [28] (ECCV’18) ResNet50 46.1 76.8 Kinetics-400

TrajectoryNet [38] (NIPS’18) ResNet18 44.0 – ImageNet

TrajectoryNet [38] (NIPS’18) ResNet18 47.8 – Kinetics-400

Our baseline (GB, sec. 3.1) ResNet18 42.3 72.3 ImageNet

Our approach ResNet18 45.0 74.8 ImageNet

Our approach ResNet50 50.1 79.5 ImageNet

Our approach ResNet152 53.4 81.8 ImageNet

Table 5. Comparison with state-of-the-art methods in the literature on the Something-Something-V1 dataset.

tional convolutions after most of its blocks. Instead, our

approach uses a standard ResNet model that doesn’t incur

into this overhead.

Something-Something-V1 (table 5). We compare against

3D CNNs approaches which train on RBG only. Un-

fortunately, the literature reports results on Something-

Something-V1 using different backbone architectures,

which makes a direct comparison difficult, as some archi-

tectures are trivially better than others. In order to present a

fair comparison, we state the backbones used by the differ-

ent approaches in our table. We make the following ob-

servations. First, our approach outperforms our baseline

model considerably, as it improves its Top-1 accuracy from

42.3 to 45.0 using Resnet18. Second, our approach with

a ResNet18 backbone pre-trained on ImageNet improves

over the previous state-of-the art (with the same settings)

by 1% in Top-1 accuracy (45.0 vs 44.0, TrajectoryNet [38]).

Third, we further improve our performance by training on

deeper backbones and substantially increase Top-1 accuracy

by 8.4% with ResNet152 backbone instead of ResNet18.

Also note that TrajectoryNet improves its Top-1 accuracy

by 3.8% by pre-training on the Kinetics-400 dataset. While

we have not tried it, we expect a similar improvement,

which can further boost our performance.

Our state-of-the-art results on these two datasets validate

the strength of our technique and highlight the importance

of modelling action recognition as a fine-grained problem.

7. Conclusions

We showed that the performance of action recognition

can be pushed to a new state-of-the-art by improving the

sensitivity of the network to finer details. Our approach

only changes the later stages of the network, thus not adding

significant computational cost. It is also compatible with

other methods that focus on either adding representational

capacity to the backbone, or improving its computational ef-

ficiency. We achieved state-of-the-art performance on two

major large-scale action recognition benchmark datasets.

Moreover, this improvement is shown to generalize across

different backbones, and for both 2D and 3D networks.

Given these results, we hope that this work will bring atten-

tion to a previously neglected aspect of action recognition,

i.e., how to enable the network to represent and learn the

finer details in human activities.
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