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Abstract

Modern deep networks have proven to be very effective

for analyzing real world images. However, their applica-

tion in medical imaging is still in its early stages, primarily

due to the large size of three-dimensional images, requiring

enormous convolutional or fully connected layers – if we

treat an image (and not image patches) as a sample. These

issues only compound when the focus moves towards lon-

gitudinal analysis of 3D image volumes through recurrent

structures, and when a point estimate of model parameters

is insufficient in scientific applications where a reliability

measure is necessary. Using insights from differential geom-

etry, we adapt the tensor train decomposition to construct

networks with significantly fewer parameters, allowing us to

train powerful recurrent networks on whole brain image vol-

ume sequences. We describe the “orthogonal” tensor train,

and demonstrate its ability to express a standard network

layer both theoretically and empirically. We show its ability

to effectively reconstruct whole brain volumes with faster

convergence and stronger confidence intervals compared to

the standard tensor train decomposition. We provide code

and show experiments on the ADNI dataset using image

sequences to regress on a cognition related outcome.

1. Introduction

Recurrent Neural networks (RNNs) and its variants are

the de facto tool of choice for modeling sequential data

in machine learning and vision. But until only recently,

these models have been limited in their ability to model

high-dimensional data. Part of the reason is that recurrent

structures often lead to large model sizes dependent on se-

quence length, and thus also require an equivalent number of

increased computation. While RNNs have been successfully

applied to video data in some cases, the strategy requires

problem specific innovations because of the large mapping

necessary from inputs to hidden representations. It is fair to

say that the growth in the number of model parameters in

various types of recurrent models remains a bottleneck for

high dimensional datasets. Convolutional neural networks

(CNNs), on the other hand, handle high dimensional data far

better and can reduce the dimension of an input significantly

by deriving rich feature maps. Most computer vision tasks

involve some form of a CNN within the architecture, but

incorporating CNNs within recurrent structures seamlessly

to mitigate the RNN specific model size issues described

above is not always straightforward. Notice that a direct

replacement of input and output layers with CNNs leads to a

shrinkage of the sequence length considerably [24], and pre-

training CNN layers may lead to poor local minima when we

train without using an end-to-end pipeline [7]. Some recent

works suggest the use of dilated convolutional networks for

sequence modeling [28] to partly mitigate these issues, but

this line of work is still developing [31]. For model-size

reduction, both for RNN style networks and otherwise, PCA

or random projections [2,27] style “compression” ideas have

also been used with varying degrees of success.

An interesting perspective on the effective degrees of free-

dom afforded by a given network, a surrogate for the actual

“size” of the architecture, is provided by tensor methods. Ten-

sor decomposition based methods have recently been shown

to enable low dimensional representations of very high di-

mensional data [13], and while these ideas were known to be

effective in the “shallow” regime much earlier, new results

also demonstrate their applicability for deep neural networks.

In particular, in the last year, we see a number of tensor based

methods being successfully adapted for deep neural network

design and compression [4, 25, 29, 30]. Specifically, [26]

shows that these compression methods can be very effective

in reducing the parameter cost of weight layers in RNNs,

enabling simple video analysis tasks that previously would

have been computationally prohibitive.

There are a number of key reasons why the size of the

model, especially in the context of formulations for sequen-

tial data, is central to this paper. Our goal is to design rich

sequential or recurrent models to analyze a longitudinal se-

quence of high dimensional 3D brain images. This task
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raises two issues. First, unless the model size is parsimo-

nious, we find that merely instantiating the model with data

involving 3D images over multiple time points, even on mul-

tiple high end GPU instances, is challenging. Second, the

eventual goal of medical image analysis is either scientific

discovery or generating actionable knowledge for the patient.

Both goals require evaluating a model’s confidence via clas-

sical or contemporary statistical techniques: for instance,

how confident is the model of its prediction? Most, if not all,

available tools for assessing model uncertainty of deep neu-

ral network models have a strong dependence on the number

of parameters in the model. Therefore, even if the first issue

above could be mitigated by clever implementation ideas,

purely as a practical matter, the design of rich and expressive

models with a small number of parameters yields immense

benefits for calculating model uncertainty.

This paper and its contributions. We tackle the prob-

lem of modeling sequential 3D brain imaging data using

recurrent/sequential models. Our development starts from

well known results on tensor decomposition. In particular,

we make use of the tensor train representation, which has

been shown to be effective in several applications in vision

and machine learning. We derive a reformulation of the de-

composition using orthogonality constraints and show that

while this makes the estimation slightly more challenging,

it reduces the number of parameters by as much as half.

We present a novel parameter estimation scheme based on

Stiefel manifold optimization and demonstrate how the end

to end construction yields benefits for convergence and un-

certainty estimation. Finally, from the empirical side, we

discuss how we enable analysis of and prediction using se-

quential 3D brain imaging datasets, which to our knowledge

is the first such result using deep recurrent architectures.

2. Preliminaries

2.1. Tensor Decompositions and Tensor Trains.

Let X ∈ R
n1×···×nd be a d-dimensional array, or tensor,

with each mode having length ni. To store a full rank tensor,

nd storage would be required. A number of tensor factoriza-

tions have been developed to reduce this storage cost. The

CANDECOMP/PARAFAC (CP) [3, 10] decomposition re-

duces the storage to O(dnr), but finding the exact CP-rank

r is NP-hard. Hierarchical tensor methods have also proven

to be effective in tensor compression [4, 5].

A more recent decomposition, the Tensor Train decompo-

sition (TT) [22], defines an element of the tensor as

X (x1, . . . , xd) = A1(x1) · · ·Ad(xd) (1)

where xi ∈ {1, . . . , ni}, and Ai(xi) ∈ R
ri−1×ri for each

i ∈ {1, . . . , d} are called the cores of the tensor train, with

r0 = rd = 1. Equivalently, the full tensor is written as:

X =

r0∑

k0=1

· · ·
rd∑

kd=1

A1(k0, :, k1)⊗ · · · ⊗Ad(kd−1, :, kd)

(2)

where Ai ∈ R
ri−1×ni×ri . This format requires O(dnr2)

storage, but has two major advantages over the CP format.

First, finding the TT-rank (the smallest set of ri’s that satisfy

the decomposition with equality) of any arbitrary tensor is

tractable, and as such all tensors can be efficiently rewrit-

ten in the TT format. Second, projecting arbitrary tensors

onto the TT format of a fixed rank requires only a set of

QR and singular value decompositions [22]. This projection,

TT-rounding, additionally allows for a given TT tensor of

some rank to be projected onto the space of TTs with lower

rank, and requires O(dr3) computational complexity. Sepa-

rately, specific tensor train constructions have recently been

identified as forms of general recurrent networks [15].

We denote a tensor operator G as a grouping of ten-

sor modes into an “input” and “output” list, such that

G ∈ R
(nin

1 ,×...×,nin

d
)×(nout

1 ,×...×,nout

d
). This operator G

can be seen as the TT representation of a matrix W ∈

R
(ni

1···n
i

d
)×(no

1···n
o

d
). In [20], authors use this formula-

tion to directly compress the weight layers in neural net-

works. Cores in the operator are indexed by both an in-

put and output index, i.e., Ai(xi, yi) ∈ R
ri−1×ri , where

xi ∈ [1, . . . , nin
i ], yi ∈ [1, . . . , nout

i ].
Common operations on tensor trains require matricizing

the cores of the TT format. Here, we define the left matri-

cization of core Ai(xi) as AL
i ∈ R

ri−1ni×ri and the right

matricization similarly.

2.2. Differential Geometry of Tensor Trains

Tensor trains with fixed TT-ranks form a Riemannian

submanifold of Rn1×···×nd [12, 18]:

Mr := {X ∈ R
n1×···×nd with TT-ranks r0, . . . , rd} (3)

A Riemannian manifold is a differentiable manifold with

a smoothly varying inner product. The tangent space is a

vector space defined at a specific point on the manifold, con-

sisting of all possible tangent vectors of all possible curves

along the manifold passing through that point. The tangent

bundle, the disjoint union of all tangent spaces for all points

on the manifold, is canonically equipped with a projection

map: Π : TM → M. The Exponential Map defines a

local map from the tangent space at a specific point on the

manifold Exp(x, ·) : TxM → M. With these definitions,

optimizing a function with respect to a Riemannian manifold-

valued variable amounts to computing a free derivative in the

ambient space, projecting the gradient to the tangent space

of the current iterate, and using the (retraction) exponential
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map to compute the next iterate on the manifold. The authors

in [21] use this procedure to more effectively learn a model

of all exponentially many interactions in a linear model.

Orthogonal matrices of fixed size and rank also form

a manifold, the (compact) Stiefel Manifold: St(p, n) ={
Y ∈ R

n×p|Y TY = Ip, p ≤ n
}

. An arbitrary X ∈ R
n×p

matrix can be projected onto the Stiefel manifold St(p, n)
using X 7→ UV T where X = UΣV T is the (thin) singular

value decomposition of X .

3. Orthogonal Tensor Trains

As described above, a number of TT operations with re-

spect to approximation and projection require computing the

QR decomposition of matricized cores. In the applications

for which tensor trains were originally developed, these op-

erations were necessary [17,22]. For modern neural network

applications, where the tensor operator may be our target of

learning, it may be sufficient to treat each matrix product as

its own variable, and through the standard TT decomposition

learn the cores along the product of Stiefels.

A naı̈ve approach may orthogonalize the reshaped cores,

and progressively push the upper triangular part of the core

decomposition into the next core, resulting in the following

exact formulation with appropriate reshaping:

X = AL
1A

L
2 · · ·A

L
d

= QL
1R1A

L
2 · · ·A

L
d = QL

1

(
R1A

L
2

)
· · ·AL

d

= QL
1Q

L
2R2 · · ·A

L
d

= QL
1 · · ·Q

L
dRd (4)

where [QL
1 , R1] = qr(AL

1 ), [Q
L
i , Ri] = qr(Ri−1A

L
i ), i ∈

{2, . . . , d}, and QL
i ∈ R

ri−1ni×ri , Ri ∈ R
ri×ri . Each

QL
i is on a Stiefel given by St(ri, ri−1ni). Here, the num-

ber of components in the product space of Stiefels is d,

with the ‘residual’ Rd ∈ R. This decomposition is exact

and only requires a reshaping of the tensor cores. If all

ri = r, ni = n, then the total number of parameters needed

is dnr2−(d−1) r
2+r
2 , compared to the full format with dnr2

total parameters. It is important to note that in this formu-

lation, the cores themselves are not orthogonal. Reshaping

is required to bring the matricized form back to TT-cores

of size ri−1 × ri, and in practice it is not easy to perform

simple TT-tensor multiplication in this form. Additionally,

we now need to optimize over Stiefel manifolds of a larger

size, namely O(nr2).

3.1. A Nicer Tensor Train Approximation

Ideally, we would prefer a construction which keeps the

standard TT-core format and involves optimization over

“smaller” Stiefel manifolds. Consider the following represen-

tation, in which each TT-core itself is orthogonal.

Definition 1. (Orthogonal Tensor Train) The Orthogonal

Tensor Train is defined as

X (x1, . . . , xd) = Q1(x1) · · ·Qd(xd), (5)

where each Qi(xi) lies on the Stiefel St(mi,Mi), where

mi = min(ri−1, ri), Mi = max(ri−1, ri).

While in this formulation the total number of components

in the product space of Stiefels is nd, the dimension of each

manifold is significantly smaller, dependent only on the

core rank as opposed to the mode size. The total number of

parameters, if ni = n, ri = r, is

n

d∑

i=1

[
r2 −

r2 + r

2

]
= dnr2 − dn

r2 + r

2
. (6)

When compared to the full TT representation, the Orthogo-

nal Tensor Decomposition (OTT) requires (r+1)/2r ≈ 1/2
as many parameters. If ri = ri+1, then St(mi,Mi) =
SO(mi), where SO is the special orthogonal group.

This construction can be seen as an approximation to the

full tensor train format, in which the upper triangular part of

each core is set to identity:

X (x1, . . . , xd) = A1(x1) · · ·Ad(xd)

= Q1(x1)R1(x1) · · ·Qd(xd)Rd(Xd)

≈ Q1(x1) · · ·Qd(xd) (7)

Is this useful? It is not obvious that this construction is

useful at all. How much is lost through this approximation?

What is gained by using this construction? In what follows,

we demonstrate that we can approximate any tensor with

bounded norm using an OTT, and that with a full rank as-

sumption and a trainable constant, our formulation admits a

solution with ǫ error.

3.2. Theoretical Analysis

We start by reshaping any tensor X to a matrix XM by

grouping the modes into two groups, XM ∈ R
n×m. We

may fix this arbitrary matrix as XM = A ∈ R
n×m.

Proposition 1. Given a 2D tensor A ∈ R
m×m, Aij ∈

[−1, 1], there exists sets of unit vectors, {xi}
m
i=1 ⊂ R

m,

{yj}
m
j=1 ⊂ R

m such that, ∀ǫ > 0, ‖A − Ã‖ < ǫ, where,

∀i, j, Ãij = xt
iyj .

Proof. Let A = USV T be the SVD of A. Let ǫ > 0, we

will perturb S along the diagonal to generate S̃ such that,

‖S− S̃‖ < ǫ. Let X = [xi] and Y = [yi]. We will first give

an algorithm to generate X̃ and Ỹ with each of its column

being orthonormal such that, X̃T Ỹ = S. Then, X = X̃UT

and Y = Ỹ V T .

We begin with an algorithm for m = 3. Choose {x̃i} to

be unit vectors and assign ỹ3 = x̃1 × x̃2, ỹ2 = x̃3 × x̃1.

10573



Stochastic OTT Optimization

for t=1,. . . ,T do

gt :=
df
dW f(Xmini−batch)

for Core Qi
t ∈ Wt and Core Gradient git ∈ gt do

Gi
t = PTWt

M (git) ⊲ Projection Step

Qi
t+1 ← Exp(Qi

t, G
i
t) ⊲ Retraction Step

end for

end for

(a)

SO(n)

xt

gt

SO(n)

R
n×n

xt+1

Retract

Project

(b)

Figure 1: Algorithm (a) and visualization (b) of the gradient descent update using the projection and retraction on the Stiefel manifold. The update is

applied to each core individually, allowing for smaller manifold operations that would otherwise scale poorly with dimension.

Then, make ỹ2 and ỹ3 to be of unit length. Now, rotate x̃2

in the plane spanned by {x̃1, x̃2} such that, x̃t
2ỹ2 = S̃22.

Similarly, rotate x̃3 in the plane spanned by {x̃3, x̃1} such

that, x̃t
3ỹ3 = S̃33. Now, assign, ỹ1 = x̃2 × x̃3 and make

it unit length. Now, fixing x̃2 and x̃3, the above steps are a

continuous mapping, F from S2 to [−1, 1], i.e., by changing

different x̃1 ∈ S2, we will get different values for x̃t
1ỹ1.

Also, notice that, if, for a particular choice of {x̃i}, x̃
t
1ỹ1 >

0, then, for the choice of
{
−̃xi

}
, the above construction

returns −ỹ2 and −ỹ3 and F returns, −x̃t
1ỹ1 < 0. Thus

if a ∈ F
(
S2
)
, −a ∈ F

(
S2
)
. Furthermore, 1 ∈ F

(
S2
)

and hence, −1 ∈ F
(
S2
)
. As S2 is connected and F is

continuous, F
(
S2
)

is connected, and so, ∃ {xi}
m
i=1 ⊂ R

m

and {yj}
m
j=1 ⊂ R

m, s.t., (∀ {i, j}), x̃t
iỹj = S̃ij . Since

‖S− S̃‖ < ǫ and the choice of ǫ > 0 is arbitrary, we can see

that ‖A− Ã‖ < ǫ.
Using the generalization of cross product by exterior al-

gebra, the above procedure can be naturally extended to

arbitrary m > 3.

A direct corollary of the above result allows approximat-

ing an arbitrary 2D matrix,

Corollary 1. Given a 2D tensor A ∈ R
m×m, there exists

sets of unit vectors, {xi}
m
i=1 ⊂ R

m, {yj}
m
j=1 ⊂ R

m and

fixed constant c such that, ∀ǫ > 0, ‖A − Ã‖ < ǫ, where,

∀i, j, Ãij = cxt
iyj .

Proof. Given any arbitrary matrix A, define A′ = A/|A|∞.

Then A′
ij ∈ [−1, 1], and by Proposition 1 we can construct

unit vectors xi, yj such that ∀ǫ > 0, ‖A′
ij − xT

i yj‖ < ǫ.
Then immediately ∀Aij , we have Aij = cA′

ij where c =
|A|∞.

We also have the following directly from Proposition 1.

Corollary 2. Given a 2D tensor A ∈ R
m×m, with ‖A‖F ≤

1, there exists a set of orthonormal matrices {Bi} ⊂ SO(m)

and a set of unit vectors {yj}
m
i=1 ⊂ R

m such that ∀ǫ > 0,

‖A− Ã‖ < ǫ, where, ∀i, j, Ãij = 1tBt
iyj .

Example 3.1. Applying the above result to OTT, equiva-

lence is relatively straightforward to show. Consider the

problem of approximating a 4 dimensional tensor X with

n1,2,3,4 = n = r. Let Q1(x1) ∈ R
1×n, Q2(x2), Q3(x3) ∈

R
n×n, and Q4(x4) ∈ R

n×1. By Corollary 2 we can write

two vectors indexed by x1, x2 and x3, x4 as XA(x1, x2) =
Q1(x1)

⊤Q2(x2) and XB(x3, x4) = Q3(x3)Q4(x4) respec-

tively. The multiplication of these vectors XA, XB again

yields a single element indexed by x1, x2, x3, x4, which

can take any value between [−1, 1] by Proposition 1. Then

clearly the cores Q form an equivalent definition of X .

We can then apply Corollary 2 and find that the product

of indexed orthonormal matrices and orthonormal vectors

with full rank can approximate any matrix with bounded

norm. Applying this to our OTT format, it immediately

follows that with the addition of at most dn constants in R

we can approximate any arbitrary tensor. While this addition

would put the format well over the number of parameters in

the standard format, this provides sufficient evidence that,

in typical learning settings in which our model is already

overparameterized, we can still capture the full expressive

power of the model class in which an OTT format is inserted.

Remark. It also important to note that the above cal-

culation of dimensionality is the intrinsic dimension. The

number of actual allocated variables is indeed dn3 for an

exact formulation. It remains open to theoretically analyze

the degradation of the approximation as r < n.

3.3. Efficient Stiefel Optimization

Here, we describe how to compute an OTT approxima-

tion of a tensor W , which can be posed as the following

minimization problem.

min
{Qi(xi)}

d

i=1

E =
∑

{xi}

‖W(x1, . . . , xd)−Q1(x1) · · ·Qd(xd)‖

s.t. Qi(xi)
⊤Qi(xi) = Ip ∀i, xi (8)
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Notice that this optimization is difficult because of the or-

thogonality constraint [6, 8]. An efficient way to solve this

is by doing the optimization on the product of (compact)

Stiefel manifolds: let it be denoted by PS . We will use the

product ℓ2 metric on this product space. Given x1, · · ·xd, we

perform an optimization on the product of Stiefel manifolds

to solve for {Qi(xi)} for i ∈ [1 . . . d]. We use a Riemannian

gradient descent technique on this product of Stiefel mani-

folds PS . Given {Qt
i(xi)} as the solution of the tth step, the

(t+ 1)th solution, {Qt+1
i (xi)}, can be computed using

{
Qt+1

i (xi)
}
= Exp

(
{
Qt

i(xi)
}
,

∂E

∂
{
Qt

j(xj)
}
)
, (9)

where Exp is the Riemannian Exponential map on PS . On

PS , computation of Riemannian Exponential map is not

tractable and needs an optimization, hence we use a Rieman-

nian retraction map as proposed in [14].

Figure 1 summarizes this procedure. For each orthogonal

core, the gradient is computed with respect to the Euclidean

ambient space and projected to the tangent space at the

current iterate. The update is constructed by moving back to

the Stiefel with the Riemannian exponential map.

3.4. Square Stiefels/SO(n)

In practice, when learning an OTT operator, we will pri-

marily be setting the rank to be fixed for all cores. The

Stiefel manifold, St(n, n) with n = p is equal to the special

orthogonal group SO(n). The Riemannian Exponential map

on SO(n) is the matrix exponential, computationally inten-

sive to both compute and backpropagate through. Hence,

we use the Cayley map from SO(n) to SO(n), given by

A 7→ (I −A) (I +A)
−1

, where SO(n) (the space of n×n
skew-symmetric matrices) is the tangent space of SO(n) at

identity. Although the Cayley map requires a matrix inverse,

it is much easier to handle using standard tools in modern

toolboxes (e.g., TensorFlow, PyTorch).

Observe that the work in [11] used the Cayley map for

RNNs, but does not make use of the sparse representation

of a skew-symmetric matrix A ∈ SO(n). In contrast, in

our formulation we use the Cayley map as a mapping from

R
n(n−1)

2 to SO(n). This enables a strict reduction in the num-

ber of trainable/learnable variables in a network, and pro-

vides a direct path through which gradients can be computed

and backpropagated. Algorithm 1 describes the procedure

for constructing an OTT-core. The Euclidean variable vector

w is mapped directly to the upper triangular part, defined as

triu(·), of a new matrix R, and by subtracting its transpose,

we arrive at a skew symmetric matrix A. The Cayley map,

as described above, maps to our Orthogonal OTT Core.

Remark. Note that the Cayley map is not a bijective

mapping between SO(n) and SO(n) as the range is not

the entire SO(n). This is because the Cayley map cannot

generate matrices with negative eigenvalue(s). Empirically,

Algorithm 1 Constructing an OTT Variable

function OTT-VARIABLE(d, nin, nout, r)

OTT ← ∅
for i ∈ 1, . . . , d do

for j, k ∈ 1, . . . , nin[i], 1, . . . , nout[i] do

OTT .append(OTT-Core(r))

end for

end for

return OTT
end function

function OTT-CORE(r)

w ← R
r(r−1)/2

R← triu(w)
A← R−R⊤

Q← (I −A)(I +A)−1

return Q
end function

we do not find this to be an issue when learning the OTT

representation directly.

With this efficient approximation in hand, we are able to

directly apply our OTT formulation to architectures for a

variety of applications.

4. Evaluating performance on Simulations,

Moving MNIST and Video data

First, we evaluate how well our OTT formulation per-

forms relative to existing methods, on synthetic datasets

as well as other popular datasets used for sequential deep

models. A Nvidia Titan Xp GPU was used.

(A) OTT vs Riemannian SGD on synthetic data. To

empirically verify the claims in Section 3 and to evaluate the

value of our OTT construction over the existing Riemannian

SGD framework, we simulate a simple least squares problem

with the goal of learning a tensorized weight matrix,

min
WTT

n∑

i=1

||yi −WTTxi||
.2

Here we use the naı̈ve but exact OTT construction, using

the optimization scheme in Section 3.3. A weight matrix W
is initialized to a random matrix with size 784 × 625, and

samples are drawn from y = Wx. The matrix is reshaped as

a tensor with modes [4, 7, 4, 7]× [5, 5, 5, 5].
Results. Figure 2 shows the convergence rates of both

methods with fixed learning rates for various TT-ranks. (a)

Quality and speed. For this toy problem, not only is the

OTT construction able to find a good solution, it is able to

find it significantly faster than Riemannian SGD. (b) Update

steps. Additionally, we note that the time per iteration is

significantly shorter for the OTT construction. OTT allows

for each manifold update step to be performed on a low
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Figure 2: (left) Mean squared error for different TT-ranks, using both the Riemannian formulation (3) and the approximate Stiefel formulation (4). (center)

Effect of TT-rank on per iteration runtime of both methods. OTT is significantly faster (10x) than the Riemannian formulation. (right) Memory Dependence

of both TT and OTT constructions as a function of rank. The OTT formulation allows for models roughly double the size of TT.

dimensional Stiefel, and so retraction and projection is fast.

The Riemannian method requires left orthogonalization and

QR decompositions of larger matrices, leading to a slower,

TT-rank dependent runtime, shown in Figure 2. (c) Memory

footprint. Finally, we see in Figure 2 that the memory

consumption of OTT is quite modest compared to TT (which

already offers significant memory savings over alternative

existing schemes). This may be a beneficial feature when

running a large sequential model on less expensive GPUs.

Given these results, we use a basic SGD update for TT in

subsequent experiments.

(B) Moving MNIST. The moving MNIST dataset [24]

consists of handwritten digits moving within a specified

larger image. We first demonstrate that for simple sequences,

reconstruction under a complete tensor train framework is

possible, and representing fully connected layers with an

OTT layer reduces the number of parameters without image

degradation. Here, we use a vanilla RNN, with a state size

of 4096 and TT-Rank 64.

Results. Figure 3 shows the ground truth and reconstruc-

tion results for images with size 256 × 256, where each

sequence is of length 8, and the direction and orientation

of the digit is random. (a) Reconstruction accuracy and

model size. The entire recurrent network is compressed

with OTT layers for input-to-hidden, hidden-to-hidden, and

hidden-to-output maps. With a large state size of 4096, we

are able to nicely capture and rebuild the entire sequence

with a significantly smaller model size. (b) Scaling to larger

images. This effective compression also allows us to scale

up – to significantly larger images of size 1024× 1024, with

no loss in reconstruction quality, without the need for more

sophisticated convolutional architectures.

(C) Hollywood2. We find that these results extend nicely

to LSTMs/GRUs and for classification tasks as well. The

Hollywood2 dataset [19] consists of video clips from 69

movies labeled with 12 different actions from “answering

the phone” to “driving a car” (Figure 4). Following the

preprocessing steps of [26], we feed resized clips of size

234 × 100 × 3 × T to our model, where the length of a

sequence (number of frames) T ranges from 29 to 1496. We

tensorize the input as 10×18×13×30 for all input sequences

(padded to 1496) and the hidden states as 4×4×4×4, with

TT and OTT ranks set as 4.

Results. Tensor trains here allow us to completely oper-

ate on the entire video sequence. (a) Parameter size. The

number of parameters in our model is a few thousands (1864
for OTT, 3104 for TT) compared to millions needed for a

standard fully connected model. (b) Accuracy compari-

son. Using Mean Average Precision (MAP) as a measure

of accuracy for this multi-label problem, we find that us-

ing an OTT-LSTM or OTT-GRU in place of a TT-LSTM or

TT-GRU leads to no significant difference in MAP.

5. Identifying Differential Progression in AD

Motivation. The Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI, adni.loni.usc.edu) provides a com-

prehensive dataset targeted towards understanding AD. The

goals of the initiative include measuring the development

of the disease as a function of different imaging modalities,

other biological markers, and clinical and neuropsychologi-

cal assessments. Deep learning methods traditionally applied

to this corpus require imaging data to be heavily prepro-

cessed into summary measures, such as regions of interest.

In other cases, based on the needs of the application (e.g.,

segmentation), the approach may operate with 3D image

patches instead of the entire image. The size of the images,

especially when considered longitudinally, can be impracti-

cal for modern deep learning frameworks unless some novel

implementation tricks are utilized.

Data. Our dataset consists of 522 subjects with Magnetic

Resonance Imaging (MRI) scans collected over three years.

For each individual, an MRI was collected annually, along

with a battery of neuropsychological evaluations.

Pre-processing. Full head MRIs were processed using

SPM12 [1]. Each image was segmented/registered using the

MNI152 template. Gray matter probabilities were computed,

and these gray matter density (GMD) images were used as

input to our models. The processed image size was 121 ×
145× 121 (voxel size 1.5mm3), with 3 images per subject.

Model. At this scale, we use convolutional input and de-
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Figure 3: Sample ground truth (top) and reconstruction (bottom) of Moving MNIST digit and fashion sequences of size 256 × 256. We see good

consistency between each upper/lower rows for both datasets.

convolutional output layers to incorporate local information

with respect to reconstruction and prediction. The architec-

ture consists of a straightforward 3-state RNN with input-

hidden, hidden-hidden, and hidden-output layers replaced

with TT and OTT layers. Input volumes are passed through

a 3D convolutional input network, with max-pooling layers

and ReLUs. Hidden states are passed through an output con-

volutional network consisting of max-unpooling layers using

indices saved from the input CNN. Strides were fixed at 1

with a kernel size of 3× 3× 3, with successive convolutions

decreasing (increasing) the number of channels by 2. Max

pooling was applied uniformly to all 3 input channels with a

stride of 2. Adam optimization [16] was used for all ADNI

experiments, with learning rate 1e−3, and decay rate 0.9 and

0.999 for the first and second moments. TT and OTT layers

were fixed with a rank of 64. Batch sizes were fixed at 4.

5.1. Modeling gray matter progression in AD

Our first goal is to predict the next MR image given the

previously seen ones. Importantly, standard RNN construc-

tions cannot easily handle inputs of this size. On a single

NVIDIA Titan Xp, the images must be downsampled by

over 20× to allow for a batch size of 4 in a standard LSTM

model with a hidden state size of 2048 (4.3 billion parame-

ters for a full sized input map).

Results. Fig 5 show the results for a held-out subject in

the study using OTT-RNN on a single representative 2D slice,

with their predicted third timepoint image. While higher

levels of compression (lower OTT ranks) lead to “blocky”

reconstructions, our model is still able to identify boundaries

of edges between low and high probabililty voxels.

5.2. Cognition from gray matter sequence

Based on the results from the above experiment, one may

ask if, in fact, a good model of progression is being learned,

or if only the “average” of all participants is being predicted

by the model.

(A) Predicting Cognition from 3D image sequences.

To answer this question, we can directly try to predict sum-

mary cognition measures which are used in practice. Diag-

noses themselves can often be based on partial information

available to medical experts at that time. Indeed, a small

number of individuals in the ADNI cohort have been di-

agnosed with AD or mild cognitive impairment and have

regressed to a cognitively healthy diagnosis at their next visit.

In these situations, categorical diagnoses can be seen as a

noisy summary measure of decline. We predict a real-valued

measure collected at each timepoint. The Rey Auditory

Verbal Learning Test (RAVLT) evaluates a large variety of

cognitive functions, including short and long term memory,

Figure 4: Sample sequences from the Hollywood2 dataset. Labels are

(Top) Answer Phone, (Middle) Drive Car, and (Bottom) Get Out Car.
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Timepoint 1 Timepoint 2 Timepoint 3 Predicted T3

Figure 5: Ground truth progression and prediction of gray matter probabilities in an individual from our validation set. From the left, the first three images

are the ground truth images at visits 1, 2, and 3, followed by our prediction at visit 3.

cognitive function, and learning ability [23], and has been

identified as a strong indicator for developing AD pathology.

We train both TT and OTT models with dropout for 200

epochs.

Results. Figure 6 (left) shows the results of this analysis.

Here, the advantage of the OTT construction is clear, we

are able to converge significantly faster compared to the TT

construction, with half as many parameters.

(B) Quantifying Model Uncertainty. Broad application

of deep learning models in neuroimaging remains limited,

namely due to sensitivity of black box models to mild per-

turbations in input data or model parameters, leading to un-

reliable predictions. MC Dropout [9], approximates model

(epistemic) uncertainty by using dropout at prediction time.

Simulating an ensemble of networks with different structures

can yield direct estimates of uncertainty. Obtaining good

measures of this uncertainty requires sampling all parameters

a significant number of times: large networks may require

many samples before a reasonable uncertainty estimate. Us-

ing tensor train constructions allows us to feasibly compute

an estimate of uncertainty over all outputs, and with OTT

we can further reduce this required sampling rate.
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Figure 6: Validation losses for reconstruction (left) and confidence

interval widths (right) for uncertainty estimation of RAVLT prediction

(lower is better).

Results. Figure 6 (right) shows 95% interval widths com-

puted over 100 MC Dropout instantiations, averaged over

individuals in the validation set. The advantage of our com-

pressed orthogonal construction is clear, resulting in smaller

confidence intervals compared to the standard TT decompo-

sition.

6. Conclusion

Taking advantage of the structure inherent in tensor train

decompositions, we propose and analyze the Orthogonal

Tensor Train Decomposition, yielding direct benefits in both

parameter efficiency and computation time. This is an impor-

tant step in instantiating recurrent or sequential models for a

set of longitudinal 3D brain images, either in the context of

generating new images in the sequence or for classification.

Using a mapping from Euclidean space, we construct a neu-

ral network variable that can efficiently be learned through

existing deep learning optimization frameworks. Our results

yield promising developments in applying deep learning

methods for analyzing sequential 3D medical imaging data,

and we show that our method can perform favorably in re-

construction and prediction tasks with such image volumes.

While a focus here was brain imaging, we anticipate numer-

ous applications in other medical imaging settings. Code is

available at https://github.com/ronakrm/OTT.
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