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Abstract

Implicit shape representations, such as Level Sets, pro-

vide a very elegant formulation for performing computa-

tions involving curves and surfaces. However, including im-

plicit representations into canonical Neural Network formu-

lations is far from straightforward. This has consequently

restricted existing approaches to shape inference, to sig-

nificantly less effective representations, perhaps most com-

monly voxels occupancy maps or sparse point clouds.

To overcome this limitation we propose a novel formu-

lation that permits the use of implicit representations of

curves and surfaces, of arbitrary topology, as individual lay-

ers in Neural Network architectures with end-to-end train-

ability. Specifically, we propose to represent the output as

an oriented level set of a continuous and discretised embed-

ding function. We investigate the benefits of our approach

on the task of 3D shape prediction from a single image and

demonstrate its ability to produce a more accurate recon-

struction compared to voxel-based representations. We fur-

ther show that our model is flexible and can be applied to a

variety of shape inference problems.

1. Introduction

This work concerns the use of implicit surface represen-

tations in established learning frameworks. More specifi-

cally, we consider how to integrate and treat Level Set rep-

resentations as singular and individual layers in Neural Net-

works architectures. In canonical Neural Networks the out-

put of each layer is obtained as the composition of basic

function primitives, i.e. matrix multiplication, vector addi-

tion and simple non-linear activation functions, applied to

its input. By allowing the use of a more expressive surface

model, such as Level Sets, our proposed formulation will

permit end-to-end trainable architectures capable of infer-

ring richer shapes with much finer details than previously

possible, with comparable memory requirements, figure 1.

As a research field, 3D understanding & reconstruction

has achieved great progress trying to tackle many categories

of problems such as structure from motion [14], multi-view

Figure 1. Examples of different 3D shape representations. (left)

Ground-truth (polygon mesh), (middle) Voxels occupancy map,

(right) Level Set representation. Here the latter two representa-

tions are both defined on a discrete Cartesian grid with a resolution

of 203.

stereo [11] and reconstruction from a single image [5]. The

application domain includes, but is not limited to, robotic-

assisted surgery, self-driving cars, intelligent robots, and

helping visually impaired people to interact with the sur-

rounding world via augmented reality.

A majority of existing learning-based approaches involv-

ing 3D shape or structure are based on voxel occupancy

[3, 12, 29, 30], but a considerable amount of attention has

also been put on point clouds [10, 28] and explicit shape

parameterisation [21]. Each of these representations come

with their own advantages and disadvantages, in particular

for the application of shape inference in a learning frame-

work, see figure 2. Explicit representations, such as triangle

meshes are exceedingly popular in the graphics community

as they provide a compact representation able to capture

detailed geometry of most 3D objects. However, they are

irregular in nature, not uniquely defined, and they cannot

be easily integrated into learning frameworks. Voxel occu-

pancy maps on the other hand are defined on fixed regular

grids making them exceptionally well suited for learning

applications, in particular convolutional approaches. How-

ever, unless the resolution of the tessellated grid is high this

class of representations typically result in coarse reconstruc-

tions. Point clouds are also commonly used to describe

the shape of 3D objects. However, this approach suffers

from many of the same drawbacks as polygon meshes and

is, in addition, only able to provide sparse representations

of shapes. In this work we instead argue that implicit rep-

resentations, or level sets, constitutes a more appropriate

choice for the task of learned shape inference. Similar to

voxels, level sets are defined on regular grids, making them
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Figure 2. Four common representations of 3D shape along with some of their advantages and disadvantages.

directly suitable for the use with convolutional neural net-

works. However, this formulation is also more expressive

and able to capture more geometrical information of 3D

shapes resulting in higher quality inferences. Furthermore,

level sets are also equipped with a very refined mathemati-

cal formulation that permits the inclusion of additional ge-

ometric quantities, such as surface orientation, smoothness

and volume, in a very elegant manner [4,26]. To the best of

our knowledge such a direct level set formulation and its ge-

ometrical properties have not yet been exploited in previous

works.

Convolutional neural networks [9,12,16,22,29] and gen-

erative adversarial models (GANs) [3, 24] have been suc-

cessfully applied to 3D reconstruction problems by using

either volumetric or point cloud representations. The suc-

cess is mainly due to the availability of large-scale datasets

of 3D objects such as Shapenet [2] and ObjectNet3D [34].

All aforementioned approaches require additional step

of applying meshing techniques such as SSD or marching

cubes to extract the actual 3D mesh. More specifically,

one of the main limitation of the existing deep learning ap-

proaches for 3D reconstruction is that they are unable to

classify pixels lying on the boundary of the object accu-

rately. Thus, the generated boundaries are fuzzy and inac-

curate resulting in a coarse and discrete representation of

3-dimensional object. This is specifically due to the fact

that a more efficient representations of 3D objects such as

polygon mesh do not fit well to deep neural architectures

and poses problems in performing back propagation.

In the light of above discussion, we propose to gener-

ate a continuous representation of the reconstructed object

by integrating level set methods in deep convolutional neu-

ral networks. The level set method introduced in [8, 27],

and successfully applied in segmentation and medical im-

age analysis [18, 33], is a mathematically elegant way of

implicitly representing shape of an object and its boundary

evolution in time, which can be represented as a zero level

set of an embedding function. To the best of our knowledge,

incorporating a level set methods in a deep end-to-end train-

able model and representing the 3D output as a level set of

a continuous embedding function has never been studied in

the literature.

We demonstrate that incorporating the level set repre-

sentation in an end-to-end trainable network can lead to a

more accurate reconstruction. To evaluate this, we used the

ShapeNet dataset along with its labeled subset ShapeNet-

Core, and compared our approach against three existing

voxel-based approaches. We deliberately chose a sim-

ple deep architecture which encodes 3-dimensional objects

into 64-dimensional vectors and decodes that representation

back into the 3-dimensional object. As evidenced in the ex-

periments, our reconstruction is much more accurate than

that of using voxel representations, clearly showing that the

improvement in representation is due to the level set incor-

poration, rather than to complex deep architectures. More-

over, representing the output as a level set of a continuous

embedding function enables our model to introduce various

regularisers, providing further flexibility over classical vol-

umetric methods.

2. Learning Based 3D Shape Inference - Re-

lated Work

3D reconstruction is a fundamental problem in computer

vision with many potential applications such as robotic ma-

nipulation, self-driving cars, and augmented reality. Ex-

isting 3D reconstruction methods can be divided into two

broad categories: reconstruction from a single image [5],

and from multiple images (e.g. structure from motion [14]).

One of the important challenges in stepping towards

solving this problem is the limited access to the large

amount of data required for an accurate reconstruction.

Recently, large-scale datasets of 3D objects such as

ShapeNet [2] and ObjectNet3D [34] have been made avail-

able which allowed the field to make great progress. There

have also been attempts on using prior knowledge about the

shape of 3D objects [6] in the absence of large amounts of

data. Despite its effectiveness, the described approaches re-

lies on hand-crafted features which limits its scalability.

With the advent of deep learning architectures, convo-

lutional neural networks have found to be very useful in

3D reconstruction using only a single image [22]. Re-

cently, [12] and [9] proposed the use of shape and camera

features along with the images, respectively. Despite their

success, these methods rely on ground truth which is not a

realistic scenario.

To tackle this problem, different CNNs-based ap-

proaches have been introduced which require only weak su-
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pervision [29, 35], and they are able to handle more shape

variations. However, they do not scale well when increasing

the resolution of the input image. Moreover, more efficient

representations of 3D objects like polygon meshes do not

easily fit into DNNs architectures.

Recurrent neural networks have recently been proposed

to infer 3D shapes. [3] introduced generative adversarial

models (GANs) using long short-term memory (LSTM) for

reconstructing voxels or point clouds achieving state-of-the-

art results. [29] proposed the use of conditional GANs in an

unsupervised setting and [32] proposed the use of octrees.

An important drawback of GAN-based methods is that they

are computationally expensive and not accurate when using

metrics such as the Chamfer distance, Earth Mover’s dis-

tance or intersection over union (IoU). Another drawback of

such methods is that they do not allow multiple reconstruc-

tion which is sometimes needed when dealing with single

image reconstruction. As a response to these shortcomings

Delaunay Tetrahydration or voxel block hashing [24] were

introduced.

Even though great progress has been achieved in the 3D

reconstruction field, the aforementioned approaches suffer

from the lack of geometry due to its poor shape representa-

tion. In this paper, we propose the use of a continuous 3D

shape representation by integrating level sets into CNNs.

Our aim is to infer embedding functions to represent the ge-

ometry of a 3D shape where we can then extract its level set

to have a continuous shape representation, i.e. a 3D surface.

3. Preliminaries

Level Set Surface Representations. The Level Set

method for representing moving interfaces was proposed

independently by [27] and [8]. This method defines a time

dependent orientable surface Γ(t) implicitly as the zero iso-

contour, or level set, of a higher dimensional auxiliary scalar

function, called the level set function or embedding func-

tion, φ(x, t) : Ω× R 7→ R, as,

Γ(t) = {x : φ(x, t) = 0} , (1)

with the convention that φ(x, t) is positive on the interior

and negative on the exterior of Γ. The underlying idea of

the level set method is then to capture the motion of the

isosurface through the manipulation of the level set function

φ.

Given a surface velocity v, the evolution of the isosurface

Γ is particularly simple, it is obtained as the solution of the

partial differential equation (PDE) (known as the level set

equation)

∂φ

∂t
= v|∇φ|. (2)

In practice, this problem is discretised and numerical com-

putations are performed on a fixed Cartesian grid in some

domain. This formulation also permits a natural way to cal-

culate additional interface primitives, i.e. surface normals,

curvatures and volumes. Such primitives are typically used

in applications involving entities with physical meanings,

to impose specific variabilities of the obtained solution, for

instance to favour smoothness of the surface Γ.

One additional advantage of the level set formulation

is that it allows complex topologies as well as changes in

topology in a very elegant and simple manner without the

need for explicit modelling. This is typically not the case

in most parametric approaches, where topological varia-

tions needs to be handled explicitly through dedicated pro-

cedures.

Minimal Oriented Surface Models. Here we formu-

late the task of fitting an implicitly defined closed surface

Γ to a given oriented surface S ⊂ R
3 as that of simul-

taneously minimising the distance to a discrete number of

points xi ∈ S as well as the difference between the orien-

tation of the unit-length surface normals ni (at xi) and the

normals of Γ. Note that S does not necessarily have to be a

closed surface, hence the orientation of the normals ni are

not uniquely defined and only determined up to a sign am-

biguity (i.e. ni ∼ ±ni). Let S be given as a collection of

m data points of X = {xi}
m
i=1

and their corresponding nor-

mals N = {ni}
m
i=1

, and let dX (x) denote as the distance

function to X ,

d(x,X ) = inf
y∈X

‖x− y‖. (3)

As in [37], we then define the following energy functional

for the variational formulation,

EX (Γ) =

(
∫

Γ

d(s,X )pds

)1/p

, 1 ≤ p ≤ ∞. (4)

The above functional measures the deviation as the Lp-

norm of the distance from the surface Γ from the point set

X .

Similarly, for the normals N we define an energy func-

tional that quantifies the difference between the normal of

the estimated surface Γ and the desired surface normals of

the given surface S . The measure we propose is the Lp-

norm of the angular distance between the normals of Γ and

those of N .

EN (Γ) =

(
∫

Γ

(1− |N(s) · nΓ(s)|)
p
ds

)1/p

, 1 ≤ p ≤ ∞,

(5)

where N(s) = ni when xi is the closest point to s. With

the outward unit normal of Γ given by

nΓ(s) =
∇φ(s)

‖∇φ(s)‖
, (6)
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we can write EN (Γ) as

EN (Γ) =

(
∫

Γ

(

1−

∣

∣

∣

∣

N(s) ·
∇φ(s)

‖∇φ(s)‖

∣

∣

∣

∣

)p

ds

)1/p

. (7)

Note that since both (5) and (7) are defined as surface inte-

gral over Γ they will return decreased energies on surfaces

with smaller area. Consequently, both these energy func-

tionals contain an implicit smoothing component due to this

predilection towards reduced surface areas.

Shape Priors & Regularisation. Attempting to impose

prior knowledge on shapes can be a very useful proposi-

tion in a wide range of applications. A distinction is typi-

cally made between generic (or geometric) priors and object

specific priors. The former concerns geometric quantities,

generic to all shapes, such as surface area, volume or sur-

face smoothness. In the latter case, the priors are computed

from set of given samples of a specific object of interest.

Formulations for incorporating such priors in to the level

set framework has been the topic of considerable research

efforts, for an excellent review see [4].

For the sake of simplicity and brevity, in this section

we limit ourselves to two of the most fundamental generic

shape priors, surface area and volume. They are defined as,

Earea =

∫

Γ

ds, (8) Evol =

∫

intΓ

ds. (9)

However, many of the additional shape priors available

can presumably be directly incorporated in to our proposed

framework as well.

Embedding functions and Ill-Conditioning. It has

been observed that in its conventional formulation the level

set function often develop complications related to ill-

conditioning during the evolution process, [13]. These com-

plications may in turn lead to numerical issues and result in

an unstable surface motion. Many of these conditioning is-

sues are related to degraded level set functions, ones that are

either too steep or too flat near its zero level set. A class of

functions that do not display these properties are the signed

distance functions. They are defined as

f(x) = ± inf
y∈Γ

‖x− y‖, (10)

where f(x) is > 0 if x is in the interior of Γ and nega-

tive otherwise. Signed distance functions have unit gradi-

ent, |∇f | = 1, not only in the proximity to Γ by its entire

domain. Consequently, a common approach to overcoming

these stability issues is to regularly correct or reinitialise the

level set function to be the signed distance function of the

current zero level set isosurface.

However, in our intended setting of shape inference in a

learning framework, such a reinitialisation procedure is not

directly applicable. Instead we propose the use of an energy

functional, similar to the work of [20], that promotes the

unit gradient property,

Esdf (φ) =

∫

(‖∇φ(x)‖ − 1)2dx. (11)

4. Implicitly Defined Neural Network Layers

In this section we show how an implicit representation

of 3D surfaces (or more explicitly the isosurface operator)

can be introduced as a distinct layer in neural network ar-

chitecture through a direct application of the variational for-

mulations of the previous section. We begin by defining the

loss function and the structure of the forward pass of our

proposed formulation.

Given a set of n training examples Ij and their corre-

sponding ground truth oriented shapes Sj = {X j ,N j},

here represented as a collection of discrete points with asso-

ciated normals, see section 3. Let θ denote the parameters of

some predictive procedure, a neural network, that from an

input I estimates shape implicitly through a level set func-

tion, φ̃(I; θ). At training, we then seek to minimise (with

respect to θ) the dissimilarity (measured by a loss function)

between the training data and the predictions made by our

network. The general variational loss function we propose

in this work is as follows,

L(θ) =
∑

j∈D

EX j (Γ̃(Ij ; θ)) + α1

∑

j∈D

EN j (Γ̃(Ij ; θ))

+ α2

∑

j∈D

Esdf (φ̃(I
j ; θ)) + α3

∑

j∈D

Earea(Γ̃(I
j ; θ))

+ α4

∑

j∈D

Evol(Γ̃(I
j ; θ)). (12)

Here Γ̃ denotes the zero level set of the predicted level set
function φ̃ given input I , that is Γ̃(I; θ) = {x : φ̃(I; θ) =
0}, D = {1, ..., n} and α1 − α4 are weighting parameters.

By introducing the Dirac delta function δ and the Heavi-

side function H we can write the individual components of

(12) as,
∑

j∈D

EX j (Γ̃(Ij ; θ)) =

=
∑

j∈D

(
∫

R3

δ(φ̃(x, Ij ; θ))d(x,X j)pdx

)1/p

,

(13)

∑

j∈D

EN j (Γ̃(Ij ; θ)) =
∑

j∈D

(

∫

R3

δ(φ̃(x, Ij ; θ))

(

1−
∣

∣

∣
N j(x) ·

∇φ̃(x; Ij , θ)

‖∇φ̃(x, Ij ; θ)‖

∣

∣

∣

)p

dx

)1/p

, (14)

∑

j∈D

Esdf (φ̃(I
j ; θ)) =

∑

j∈D

∫

R3

(‖∇φ̃(x, Ij ; θ)‖ − 1)2dx,

(15)
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∑

j∈D

Earea(Γ̃(θ, I
j)) =

∑

j∈D

∫

R3

δ(φ̃(x, Ij ; θ)) dx, (16)

∑

j∈D

Evol(Γ̃(θ, I
j)) =

∑

j∈D

∫

R3

H(φ̃(x, Ij ; θ)) dx. (17)

In practise the above loss function is only evaluated on a

fixed equidistant grid Ω in the volume of interest. It is then

also necessary to introduce continuous approximations of

the Dirac delta function and Heaviside function, Following

the work of [36] we use the following C1 and C2 approxi-

mations of δ and H respectively,

δǫ(x) =

{

1

2ǫ

(

1 + cos(πxǫ )
)

, |x| ≤ ǫ,
0, |x| > ǫ,

(18)

and

Hǫ(x) =







1

2

(

1 + x
ǫ + 1

π sin(πxǫ )
)

, |x| ≤ ǫ,
1, x > ǫ,
0, x < −ǫ,

(19)

note that here H ′
ǫ(x) = δǫ(x). Inserting (18)-(19) in

(13)-(17) we obtain an approximated loss function Lǫ ex-

pressed entirely in φ̃. With the simplified notation φ̃j(x) =
φ̃(x, Ij ; θ)) and dj(x)p = d(x,X j)p, we arrive at,

Lǫ(θ) =
∑

j∈D

(

∑

x∈Ω

δǫ(φ̃
j(x))dj(x)p

)1/p

+ α1

∑

j∈D

(

∑

x∈Ω

δǫ(φ̃
j(x))

(

1−
∣

∣

∣
N j(x) ·

∇φ̃j(x)

‖∇φ̃j(x)‖

∣

∣

∣

)p
)1/p

+ α2

∑

j∈D

∑

x∈Ω

(‖∇φ̃j(x)‖ − 1)2 + α3

∑

j∈D

∑

x∈Ω

δǫ(φ̃
j(x))

+ α4

∑

j∈D

∑

x∈Ω

Hǫ(φ̃
j(x)). (20)

To form the backward pass of a neural network we re-

quire the gradient of each individual layer with respect to

the output of the previous layer as well as for the resulting

loss function. With the above derivation, it proves conve-

nient to calculate the gradient of the isosurface operator and

the loss function jointly. That is, we differentiate Lǫ with

respect to φ̃ on the discrete grid Ω, yielding

∂Lǫ

∂φ̃
=
∑

j∈D

1

p

(

∑

x∈Ω

δǫ(φ̃
j(x))dj(x)p

)

1−p

p

δ′ǫ(φ̃
j(x))dj(x)p

+
α1

p

∑

j∈D

(

∑

x∈Ω

δǫ(φ̃
j(x))

(

1−
∣

∣

∣

N j(x) · ∇φ̃j(x)

‖∇φ̃j(x)‖

∣

∣

∣

)p
)

1−p

p

(

δ′ǫ(φ̃
j(x))

(

1−
∣

∣

∣

N j(x) · ∇φ̃j(x)

‖∇φ̃j(x)‖

∣

∣

∣

)p

+

δǫ(φ̃
j(x))

∂

∂φ̃

(

1−
∣

∣

∣

N j(x) · ∇φ̃j(x)

‖∇φ̃j(x)‖

∣

∣

∣

)p
)

+ α2

∑

j∈D

∑

x∈Ω

(‖∇φ̃j(x)‖ − 1) ∇ ·

(

∇φ̃j(x)

||∇φ̃j(x)||

)

+ α3

∑

j∈D

δ′ǫ(φ̃
j(x)) + α4

∑

j∈D

δǫ(φ̃
j(x)). (21)

Obtaining the shape for a given level set function φ̃, is

straightforward, only requiring the isosurface Γ̃ to be ex-

tracted from φ̃. This can be done using any of a number of

existing algorithms, see [15]. Note that, as a consequence,

our proposed framework is entirely agnostic to the choice

of isosurface extraction algorithm. This is an important dis-

tinction from work such as [21] which is derived from a

very specific choice of algorithm.

5. Experimental Validation

In this section we present our empirical evaluation of the

proposed formulation applied to the task of 3D shape infer-

ence from single 2D images. These experiments were pri-

marily directed at investigating the potential improvement

obtained by an implicit representation over that of more

conventional representation. This paper was not intended

to study the suitability of different types of networks for the

task of shape inference. In fact, as discussed further down in

this section, we deliberately chose a rather simple network

architecture to conduct this study on.

5.1. Implementation Details

We begin by discussing some of the practical aspects of

the experimental setup we used in this section.

Dataset & Preprocessing. We evaluated the proposed

formulation on data from the ShapeNet dataset [2]. We

chose a subset of 5 categories from this dataset: ’bottles’,

’cars’, ’chairs’, ’sofas’ and ’phones’. As ShapeNet models

often do not have an empty interior, we used the manifold

surface generation method of [17] as a preprocessing stage

to generate closed manifolds of those models and used them

as ground truth.

We ended up with approximately 500 models for ’bot-

tles’ and 2000 models each for the remaining categories.

Each model is rendered into 20 2D views, (input images)

using fixed elevation, and equally spaced azimuth angles.

This data was then randomly divided into 80/20 train-test

splits. The ground-truth manifolds are also converted to a

voxel occupancy map, for training and testing the voxel-

based loss functions, using the procedure of [25].

Network Architecture. Motivated by [12], we use a

simple 3D auto-encoder network which predicts 3D rep-

resentation from 2D rendered image, and consists of two

components: an auto-encoder as a generator and a CNN as
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Table 1. Performance comparison between voxel occupancy and level set representations on test data with two different resolutions, 203

and 32
3, measured by IoU (in %). Here ∆ denotes the difference in IoU.

IoU [%] 203 323

Category voxels φ ∆ R2N2 Matr voxels φ ∆

Bottle 65.7 78.4 (+12.7) 64.0 76.3 71.9 78.4 (+6.5)

Car 73.0 86.6 (+13.6) 78.5 80.8 81.9 86.0 (+4.1)

Chair 57.2 63.7 (+6.5) 58.0 61.0 59.2 61.9 (+2.7)

Sofa 62.1 68.9 (+6.8) 64.3 68.7 68.0 72.9 (+4.9)

Telephone 60.5 73.5 (+13.0) 63.3 63.2 67.8 71.9 (+4.1)

Table 2. Performance comparison between voxel occupancy and level set representations on test data with two different resolutions, 203

and 32
3, measured by the Chamfer distance. Here ∆ denotes the difference in Chamfer distance.

Chamfer 203 323

Category voxels φ ∆ R2N2 Matr voxels φ ∆

Bottle 0.0895 0.0593 (-0.0302) 0.0877 0.0564 0.0669 0.0520 (-0.0149)

Car 0.0917 0.0411 (-0.0506) 0.0675 0.0517 0.0623 0.0430 (-0.0193)

Chair 0.1003 0.0885 (-0.0118) 0.0975 0.0768 0.0829 0.0899 (+0.0070)

Sofa 0.0936 0.0649 (-0.0287) 0.0887 0.0648 0.0709 0.0595 (-0.0114)

Telephone 0.0963 0.0510 (-0.0453) 0.0799 0.0709 0.0658 0.0530 (-0.0128)

Figure 3. An overview of the network architecture used.

a predictor connected by a 64-dimensional vector embed-

ding space.

Specifically, the autoencoder network with convolution

and deconvolution layers, projects a 3D shape to the 64-

dimensional space, and decodes it back to a 3D shape. The

encoder composed of four convolutional layers and a fully

connected layer to project the data to the 64D embedding

vector. The decoder consists of five 3D convolutional lay-

ers with stride 1 connected by batch norm and ReLU non-

linearities to map the embedding vector back to 3D space.

Similar to MobileNetV2 [31] architecture, the CNN

comprised of five convolutional layers, two fully connected

layers, and an added 64 dimensional layer, initialised with

the ImageNet [7] weights, and projects a 2D image to the

64 dimensional space.

The two components are jointly optimised at training

time, taking the 3D CAD model along with its 2D image. At

test time, the encoder part of the auto-encoder is removed,

and then the ConvNet and the decoder are used to obtain a

3D representation and images in the shared latent space.

Note that the reason behind our choice of such a simple

architecture is to demonstrate that the improvement in the

representation is due to our representation of shape, rather

than adopting complex deep architectures.

Comparison. We compare the proposed implicit shape

representation to that of a voxel-based occupancy map rep-

resentation. This is done by training the network using two

distinct loss functions: the variational loss function, defined

in section 4 (with p = 2, ǫ = 0.15, α1 = 0.8, α2 = 1
and α3 = α4 = 0.1)1, and the voxel-based cross-entropy

loss defined in [12], Both formulations were trained with

2D images as inputs, for 3000 epochs using a batch size

of 64 and a learning rate of 10−6, the ground-truth shapes

are represented as manifolds and voxel occupancy maps re-

spectively. We observed the training times and convergence

behaviour of the two methods to be comparable. It is im-

1 A more thorough ablation study of the effect of these parameters is in

progress but is considered out of scope for this work.
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portant to note that the architecture is identical in both in-

stances, consequently so is the memory requirements and

computational costs at evaluation. The only difference is

that the ground truth for the voxel-based approach is binary

as opposed to real-valued (a polygon mesh) for the varia-

tional formulation. For comparison we also include results

from two additional existing methods, R2N2 [3] and Ma-

tryoschka networks [30], code provided by the authors.

It is important to note that our proposed formulation

should not be viewed as a competitor to existing algorithms

but rather as a complement. The use of implicit shape rep-

resentations could readily be incorporated into many of the

existing approaches currently in use (such as R2N2 and Ma-

tryoschka networks).

Evaluation Metrics. Here we considered two separate

metrics for evaluating shapes inferred by our network, the

Intersection over Union (IoU), also known as the Jaccard

Index [19], and the Chamfer distance [1].

The IoU measures similarity between two finite sample

sets, A and B. It is defined as the ratio between the size of

their intersection and union,

IoU(A,B) =
|A ∩B|

|A ∪B|
. (22)

This metric ranges between 0 and 1, with small values indi-

cating low degrees of similarity and large values indicating

high degrees of similarity.

The Chamfer distance is a symmetric metric, here used

to measure distance between a pair of surfaces, or more ac-

curately between two finite point clouds (P1 and P2) sam-

pled from a pair of surfaces.

dch(P1,P2) =
∑

x∈P1

min
y∈P2

||x− y||+
∑

y∈P2

min
x∈P1

||y − x||.

(23)

Note that these two measures are defined on distinctly dif-

ferent domains, sets and point-clouds/surfaces for IoU and

Chamfer distance respectively. As we are comparing dif-

ferent shape representations, the ground truth and level set

representations are available as surfaces and the voxel oc-

cupancies as sets, we need to be attentive to how these mea-

sures are applied.

The IoU is measured by first applying a voxelization pro-

cedure [25] to the ground truth as well as the level sets in-

ferred by the trained network. To ensure that all the finer

details of these surfaces are preserved, this voxelization

should be performed at a high resolution.2 Correspondingly,

surface representations can be extracted from occupancy

grids by means of the Marching Cubes algorithm [23].

2We empirically observed that going beyond a resolution of 1283 did

not impact the results noticeably.

5.2. Results

We evaluated the efficiency of our proposed variational-

based implicit shape representation both quantitatively and

qualitatively. Quantitatively, we measured the similar-

ity/distance between the ground-truth and the inferred

shapes using both a voxel and a level set representation.

The results are shown in tables 1 and 2. The R2N2 and

Matryoschka networks were only evaluated on 323 resolu-

tion as the publicly available implementations for these two

methods did not readily permit a 203 resolution.

These results appear very promising and supports our ar-

gument that in learning frameworks implicit shape repre-

sentations are able to express shape more accurately and

with more detail than voxel based representations can. We

can further see that, as expected, the difference between

these two representations is reduced as the resolution in-

creases. Voxels does appear to perform on par with, or even

slightly better than level sets in one instance, on the class

’chair’. We believe this can be explained by the topology

of that specific class. Many chairs typically have very long

thin legs, structures that are difficult to capture at a low res-

olution, both for voxels and level sets. The area and vol-

ume regularisation terms Earea and Evol might also explain

this reduction in performance, as they inherently discourage

long thin structures.

Examples of the qualitative results are shown in figure

4 and it clearly demonstrates the higher quality of the 3D

shapes inferred by our proposed approach over those ob-

tained from volumetric representations.3

6. Conclusion and Future Work

We proposed a novel and flexible approach for 3D shape

inference by incorporating an implicit surface representa-

tion into a deep end-to-end neural network architecture. We

showed that level set functions in its conventional formu-

lation can become ill-conditioned during the evolution pro-

cess, resulting in numerical and surface motion instabilities.

To alleviate this, we made use of an energy functional to

promote the unit gradient property as a regulariser in our

learning model. Our experiments demonstrated the ability

of our approach to infer accurate 3D shapes with more ge-

ometrical details compared to voxel-based representations.

In future work, we plan to investigate the the flexibility of

our approach to accommodate higher resolution shape in-

ference and segmentation problems; as well as ways of in-

corporating the proposed implicitly defined layers in graph

convolutional neural networks.

Acknowledgements. This work has been funded by the

Australian Research Council through grant FT170100072.

3These examples were chosen to be representative of the typical pre-

dictions generated by the different networks.
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(a) GT (b) Input image (c) Level set 203 (d) Voxel 203 (e) Level set 323 (f) Voxel 323

Figure 4. 3D shape inference from a single 2D image. The columns are (a) ground-truth shape, (b) input image, (c) predicted shape, level

set, 203, (d) predicted shape, voxels, 203, (e) predicted shape, level set, 323, (f) predicted shape, voxels, 323.
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