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Abstract

TASED-Net is a 3D fully-convolutional network archi-

tecture for video saliency detection. It consists of two

building blocks: first, the encoder network extracts low-

resolution spatiotemporal features from an input clip of sev-

eral consecutive frames, and then the following prediction

network decodes the encoded features spatially while ag-

gregating all the temporal information. As a result, a single

prediction map is produced from an input clip of multiple

frames. Frame-wise saliency maps can be predicted by ap-

plying TASED-Net in a sliding-window fashion to a video.

The proposed approach assumes that the saliency map of

any frame can be predicted by considering a limited num-

ber of past frames. The results of our extensive experiments

on video saliency detection validate this assumption and

demonstrate that our fully-convolutional model with tem-

poral aggregation method is effective. TASED-Net signifi-

cantly outperforms previous state-of-the-art approaches on

all three major large-scale datasets of video saliency detec-

tion: DHF1K, Hollywood2, and UCFSports. After analyz-

ing the results qualitatively, we observe that our model is

especially better at attending to salient moving objects.

1. Introduction

Video saliency detection aims to model the gaze fixation

patterns of humans when viewing a dynamic scene. Be-

cause the predicted saliency map can be used to prioritize

the video information across space and time, this task has a

number of applications such as video surveillance [12, 41],

video captioning [27], video compression [11, 13], etc.

Previous state-of-the-art approaches for video saliency

detection [3, 19, 39] largely depend on LSTMs [16] to

aggregate information temporally. For example, OM-

CNN [19] feeds spatial features from YOLO [31] and tem-

poral features from FlowNet [10] into a two-layer LSTM.

The leading state-of-the-art model, ACLNet [39], also uses

Figure 1: An illustration for the overall flow of TASED-

Net. The encoder network extracts spatiotemporal features

from an input clip of T frames. The prediction network de-

codes spatially and also aggregates temporally the features

to produce a single saliency map of the last input frame.

This process is applied in a sliding window fashion with a

window size of T .

a LSTM to aggregate spatial features guided by frame-wise

image saliency maps. The strong performance of LSTM-

based approaches over non-LSTM based ones suggests that

aggregating information temporally boosts performance on

video saliency detection.

However, all of these LSTM-based, existing video

saliency models fail to jointly process spatial and tempo-

ral information when predicting a saliency map from the

extracted features. Specifically, either spatial decoding and

temporal aggregation are performed separately, or only one

of these two processes is considered for the final prediction.

The existing works are hence unable to leverage the col-

lective spatiotemporal information, which is expected to be

important to video saliency [9, 25].

To this end, we propose a novel 3D fully-convolutional

encoder-decoder network architecture for video saliency de-

tection, which we call the Temporally-Aggregating Spa-

tial Encoder-Decoder Network (TASED-Net). As described

in Figure 1, TASED-Net progressively reduces the tempo-

ral dimensionality within both the encoder and the decoder

subnetworks, which enables it to spatially upsample the en-

coded features and temporally aggregate all the information
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as well. Similarly to other architectures designed for pixel-

level tasks [1, 28, 33], TASED-Net compresses the spatial

dimensions to extract high-level features at a low resolu-

tion, then upscales them to produce a full-resolution pre-

diction map. On top of that, the decoder subnetwork per-

forms temporal aggregation; we refer to it as the prediction

network in our architecture since it jointly processes spa-

tial and temporal information in a fully-convolutional way.

TASED-Net predicts a single saliency map conditioned on

a fixed number of previous frames, thus we apply it in a

sliding-window fashion to predict a saliency map for every

frame in the video.

Just as numerous 2D encoder-decoder architectures

adopt VGG-16 [34] pre-trained on ImageNet [8] as their

encoder network, we choose S3D [40] pre-trained on the

Kinetics dataset [21] as the encoder network for TASED-

Net. It has been shown by Xie et al. [40] that S3D is ef-

ficient and effective in extracting spatiotemporal features,

and by Hara et al. [14] that the Kinetics dataset is suffi-

ciently large for effective transfer-learning. Therefore, we

expect that the encoder network of TASED-Net can fully

benefit from the successful 3D convolutional network ar-

chitecture and extremely large-scale video dataset.

For the prediction network, we first place a series of

transposed convolution layers and max-unpooling layers

for spatial upscaling, and then we use convolution lay-

ers for temporal aggregation. The tricky part is that the

max-unpooling layers cannot reuse the pooling indices or

switches [42] from the corresponding max-pooling layers

since they have larger temporal receptive field than the max-

unpooling layers. We introduce a new type of pooling op-

eration, which we call Auxiliary pooling, that overcomes

this non-trivial problem by adding extra max-poolings that

can produce the properly-sized switches. Auxiliary pool-

ings first reduce the temporal dimension of the input fea-

ture maps, and then obtain the appropriate switches for the

matching max-unpooling layers. We compare Auxiliary

pooling with two common upsampling operations, which

are interpolation and transposed convolution (deconvolu-

tion), to demonstrate its effectiveness and necessity.

We comprehensively evaluate our architecture on

three large-scale video saliency datasets: DHF1K [39],

Hollywood2 [23, 24], and UCFSports [24, 32, 35]. Our

results demonstrate that TASED-Net significantly out-

performs previous state-of-the-art baselines on all three

datasets. We believe that our novel architecture is effec-

tive in predicting video saliency because it jointly per-

forms spatial decoding and temporal aggregation in a fully-

convolutional way, instead of using separate recurrent units

such as LSTM.

In summary, our main contributions are threefold:

• We develop a powerful end-to-end 3D fully-

convolutional network for video saliency detection,

comprised of an encoder network followed by a

prediction network, which we name TASED-Net.

• We propose the novel concept of Auxiliary pooling

which obtains switches with reduced temporal dimen-

sion so that max-unpooling layers of the prediction

network can properly work.

• We comprehensively evaluate our proposed network

on three large-scale datasets for video saliency and

show the effectiveness of our joint modelling of spa-

tial decoding and temporal aggregation.

2. Related Work

Recent Video Saliency Detection Models. Previous

state-of-the-art video saliency models rely on optical flow

or LSTM to utilize temporal information. STSConvNet [2]

adopts a two-stream architecture where temporal informa-

tion from optical flow is processed independently by a tem-

poral stream. RMDN [3] uses spatiotemporal features ex-

tracted from C3D [37] and then aggregates temporal infor-

mation in the long term with a subsequent LSTM. OM-

CNN [19] first extracts spatial and temporal features from

YOLO [31] and FlowNet [10] subnets, which represent ob-

jectness and motion respectively, and feed them into a two-

layer LSTM. ACLNet [39] implements an attention module

pre-trained on SALICON [20], a large-scale dataset for im-

age saliency, and uses the frame-wise attention mask to en-

courage an LSTM to better capture dynamic saliency in the

long term. Comparative results of these previous models

are reported in Wang et al. [39]. Image saliency detection

models can also be used to predict video saliency if used in a

frame-wise manner for each frame of a video. However, un-

surprisingly, even state-of-the-art image saliency detection

models such as SalGAN [29], DVA [38], Deep Net [30], and

SALICON [17] are significantly outperformed by ACLNet

because they does not consider any temporal information.

Relevant 2D ConvNets. Deep 2D ConvNets have

achieved great success in diverse areas of image analy-

sis beyond image classification for the last few years, in-

cluding object detection, instance segmentation, and image

saliency detection. Among such successes, VGG-16 [34]

pre-trained on ImageNet [8] has played a key role as an

effective feature extractor for transfer learning. Another

success in 2D ConvNets has been encoder-decoder net-

works [1, 28, 33]. For example, SegNet [1] improves a

single-stream encoder-decoder architecture by upsampling

the feature maps through max-unpooling with switches

from the encoder network. Switches [42] are latent vari-

ables which record the locations of maximum activation.

These variables are used by unpooling layers to partially-

inverse the max-pooling operation. This method shows that

max-unpooling is more suitable for decoding than other

upsampling operations such as linear upsampling or even
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Figure 2: A detailed illustration of our proposed TASED-Net architecture. Violet boxes are convolutional operation blocks

taken from the S3D [40] network pre-trained on the Kinetics dataset [21]. Pink boxes represent spatial decoding blocks.

Green boxes are temporal convolutions that reduce the temporal dimension; within these blocks, p and q are set to reduce the

temporal size of the output to 1. The 1 × 1 × 1 convolutional operation in orange re-distributes the channel information of

the encoded features. Because the unpooling layers operate only in spatial dimensions, switches [42] from the pooling layers

cannot be reused. Auxiliary poolings are used as extra poolings to obtain properly-sized switches for the unpooling layers.

Dashed arrows represent switch transfer. Note that Auxiliary poolings are not included in the main data stream.

learnable upsampling method through transposed convolu-

tion, which inspires our Auxiliary pooling.

Recent 3D ConvNets. 3D ConvNets have achieved

state-of-the-art results in the action recognition task. Above

all, 3D ConvNets inflated from 2D ConvNets are leading

the field by leveraging successful 2D network architectures

as well as their parameters. Carreira and Zisserman [5]

propose I3D, which inflates the 2D convolutional filters of

Inception [36] to produce a 3D ConvNet with strong per-

formance. Xie et al. [40] further explore inflated 3D Con-

vNets by proposing a more computationally-efficient archi-

tecture called S3D. Hara et al. [14] experimentally show

that various other inflated 3D ConvNets are also effective

and predict that 3D ConvNets pre-trained on the Kinetics

dataset [21] can retrace the success story of 2D ConvNets,

i.e. that they can be used to initialize models for many other

fields of video analysis, just as VGG-16 [34] has been ap-

plied to diverse image-based problems. We adopt S3D as

the encoder network for our approach with the hope that it

takes advantage of the successful architecture and the large-

scale video dataset for effective transfer learning.

3. Approach

3.1. Architecture Overview

The overall flow of our proposed architecture is illus-

trated in Figure 1. We choose this design based on three as-

sumptions: (i) saliency detection of any frame can be done

well by only considering a fixed number of consequent past

frames (we will call this number T throughout this paper);

(ii) given an input of T frames, predicting a single saliency

map for one specific time step is better than predicting maps

for two or more steps at once; and (iii) there are enough

number of frames in a video (specifically, the total number

of frames of a video is not less than 2T − 1).

The encoder network first encodes an input clip of

T frames spatiotemporally; this provides a deep low-

resolution feature representation. Then, the following

prediction network decodes the features spatially while

jointly aggregating temporal information to produce a full-

resolution prediction map for a single time step. We note

that unlike the previous state-of-the-art models that use

LSTM, our method is conditioned on a fixed number of

previous frames when predicting a saliency map. The pre-

diction network is devised to coincide with the second as-

sumption by predicting a single saliency map correspond-

ing to the last frame of an input clip. Frame-wise saliency

maps are predicted by applying the architecture in a slid-

ing window fashion. In other words, St, a saliency map at

t, is predicted given an input clip (It−T+1, ..., It) for any

t ∈ {T, ..., N}, where It is the frame at time step t and N

is the total number of frames in the video.

The problem with this configuration is that the first T −
1 saliency maps are not predicted. Our workaround is to

reverse the chronological order of the first T −1 input clips.

That is, St for t ∈ {1, ..., T−1} is predicted by conditioning

on (It+T−1, ..., It). As a result, our architecture can predict

a frame-wise saliency map for every frame as long as our
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third assumption that N >= 2T − 1 is satisfied.

TASED-Net has a common property with well-known

image encoder-decoder networks that reduce and then up-

sample the spatial resolution [1, 28, 33]. The core differ-

ence of our model comes from temporal aggregation inside

the prediction network, which requires extra operations that

we call Auxiliary pooling. The architecture of TASED-Net,

along with Auxiliary pooling, is explained in detail in the

following sections.

3.2. Architecture specification

A detailed illustration of TASED-Net is depicted in Fig-

ure 2. An input clip is spatiotemporally encoded by 3D con-

volutional operation blocks of the encoder network taken

from the S3D [40] network pre-trained on the Kinetics

dataset [21]. The encoder network takes advantage of

the successful 3D ConvNet architecture and the large-scale

video dataset to extract rich encoded feature maps. We add

a 1× 1× 1 convolution after the convolutional blocks from

S3D to re-distribute encoded information across the channel

dimension.

Next, we describe the prediction network. We spatially

upsample the encoded spatiotemporal features, leaving the

time dimension alone, with a series of transpose convolu-

tional layers and max-unpooling layers. At this point, we

have only upsampled to a quarter of the original spatial res-

olution (quarter-resolution). Afterwards, we apply spatial

transposed convolutions interspersed with temporal convo-

lutions, which finally results in a full-resolution saliency

map. The stride for these transposed convolution layers is

1× 2× 2, so they double the spatial dimensions of the fea-

ture maps. The kernel sizes of the two temporal convolu-

tions are p× 1× 1 and q × 1× 1, where p and q are set to

2 and T

16
respectively to aggregate all temporal information.

Batch normalization [18] and ReLU [26] come after all the

convolutional operations except the last layer. After the last

convolution layer, a sigmoid function is applied to produce

an intensity map of saliency. A more thorough description

of the architecture can be found in Supplementary material.

3.3. Auxiliary pooling

In our architecture, we wish to leverage the effective re-

construction ability of max-unpooling layers, which have

been used in state-of-the-art pixel-level segmentation mod-

els [1, 28]. However, implementing this in our architec-

ture is non-trivial because the decoder (prediction network)

never upsamples along the temporal dimension, which

makes the temporal dimensions of switches [42] from the

encoder incompatible with those from the decoder. Specifi-

cally, switches of the max-unpooling layers and their corre-

sponding max-pooling layers have different temporal sizes.

In order to obtain switches with the proper sizes for the

max-unpooling layers, extra processing steps are required.

Figure 3: One example of how Auxiliary poolings work in

2× 2× 2 input feature map from encoder ze. The first Aux-

iliary pooling P1 applies 2 × 1 × 1 max-pooling to obtain

temporally-reduced pooled map p. The second Auxiliary

pooling P2 applies 1× 2× 2 max-pooling to store switches

s in the reduced temporal dimension. As a result, the corre-

sponding unpooling layer Us with 1× 2× 2 kernel can un-

pool the input feature map from decoder zd spatially, which

produces y.

For each max-unpooling layers, we add two sequential ex-

tra pooling layers, which we call Auxiliary poolings. The

first Auxiliary pooling receives the input feature map from

the encoder and reduces the temporal length of the feature

map. Then, the following Auxiliary pooling, whose ker-

nel works only spatially, stores the proper switches for the

matched unpooling layer which also only works in spatial

dimension. These blocks of two sequential Auxiliary pool-

ings make it possible for the decoder to reconstruct spatial

information effectively by using the stored switches. Note

that Auxiliary poolings are only used for storing switches

and are not included in the main data stream. A detailed il-

lustration of how Auxiliary poolings truly work is described

in Figure 3. A general pooling operation P takes an input

feature map z and produces pooled map p with switches

s which record the location of maximum activation within

the input: [p, s] = P (z). The first Auxiliary pooling is ap-

plied to obtain the intermediate temporally-reduced pooled

map p: [p, -] = P1(ze) (hyphen: variables not in use). The

second Auxiliary pooling is applied to store switches in the

reduced temporal domain: [-, s] = P2(p). The matched un-

pooling operation Us unpools the input feature map from

decoder only spatially using the switches s: y = Us(zd). A

more detailed input and output sizes can be found in Sup-

plementary material. The necessity of Auxiliary pooling in

TASED-Net and its variants are also further discussed in

Section 4.4.

2397



(a)

(b)

(c)

Figure 4: Different temporal aggregation strategies. Pink

boxes are transposed convolutions that double each spatial

dimension of the input feature maps. Green boxes are tem-

poral convolutions that reduce the temporal dimension by a

factor of the number written in each box.

3.4. Temporal aggregation strategy

Temporal aggregation takes a spatiotemporally encoded

feature map, whose spatial resolution is a quarter of the

full video resolution, and performs the following two op-

erations: reducing the time dimension of the input features

to 1, and upscaling the spatial dimensions to full-resolution.

There exist a variety of strategies that perform the required

spatial upsampling and temporal reduction operations in

different orders; we depict a few in Figure 4. The first strat-

egy, late aggregation, performs two spatial upsampling op-

erations followed by one temporal convolutional operation

that performs temporal dimension reduction. The second

strategy, early two-step aggregation, performs one temporal

convolution before each spatial upsampling operation. The

final strategy, late two-step aggregation, performs one tem-

poral convolution after each spatial upsampling operation.

We found that late two-step aggregation performs best (see

Section 4.2), so we implemented it in TASED-Net.

4. Evaluation

4.1. Experiments setup

Datasets. We evaluate our method on three stan-

dard datasets: DHF1K [39], Hollywood2 [23, 24], and

UCFSports [24, 32, 35]. These datasets and some others are

compared in terms of variety, scalability, and generality by

Wang et al. [39], and we choose the DHF1K dataset as our

main benchmark (i.e. we focus our analysis on this dataset)

because it includes the most general and diverse scenes with

various types of objects, motion, and backgrounds out of

the aforementioned datasets. It consists of 1K videos with

around 600K frames; 300 videos are preserved as a test set

with no public ground-truth annotations of human eye fix-

ation points. There is a public server for reporting results

on the test set for fair evaluation. The Hollywood2 dataset

contains 1,707 videos focusing on human actions in movie

scenes, and the UCFSports dataset contains of 150 videos

of human actions in sports. We believe that our selection

of three datasets is sufficient to show the effectiveness and

generality of our approach.

Training/testing process. For training TASED-Net,

clips with T consequent frames are randomly but densely

sampled from a video. Note that this sampling scheme is

valid because our model predicts each saliency map inde-

pendently. Each frame is resized to 224 × 384. We train

our network with a batch size of 40 on 600 videos from the

DHF1K training set through the SGD algorithm with 0.9

momentum in an end-to-end manner. The learning rate is

fixed at 0.001 for the encoder network. For the prediction

network, the learning rate starts at 0.1 and decays twice by

a factor of 10 when the validation loss does not decrease for

a certain number of steps that depends on T . For TASED-

Net with T = 32, the first decaying point is at step 750, the

second one is at step 950. The whole training process of 1K

iterations takes less than 3 hours. Evaluation on the whole

validation set takes a lot of time due to a large number of

frames (60K in the validation set of the DHF1K dataset), so

we uniformly sample 2K clips to approximate the validation

loss. We choose Kullback-Leibler (KL) divergence as the

loss function, which Jiang et al. [20] have shown to be ef-

fective for training saliency models. When testing, we apply

TASED-Net in a sliding-window fashion to predict a frame-

wise saliency map for every frame of all videos within the

dataset. It takes around 0.06s to process each frame.

Evaluation metrics. Following prior work [39], we re-

port our model’s performance using the following metrics:

(i) Normalized Scanpath Saliency (NSS), (ii) Linear Cor-

relation Coefficient (CC), (iii) Similarity (SIM), (iv) Area

Under the Curve by Judd (AUC-J), and (v) Shuffled-AUC

(s-AUC). NSS and CC estimate a linear correlation between

the prediction and ground-truth fixation map. SIM is for

computing similarity between two histograms, and AUC-

J and s-AUC are variants of the well-known AUC metric.

Higher scores on each metric indicate better performance.

4.2. Evaluation on DHF1K

Since the ground-truth annotations for the test set of

DHF1K [39] are hidden for fair comparison, we first evalu-

ate variants of our model on the validation set. The perfor-

mance of TASED-Net with different T and temporal aggre-

gation strategies are compared in Table 1. The results indi-

cate that TASED-Net with T = 32 and late two-step aggre-

gation performs the best since this configuration achieves

the best performance across most metrics (it has 21.2M

Params and 63.2G FLOPs; more results on different T ’s are

provided in Section 4.5). We believe that late two-step ag-

gregation performs better than early two-step aggregation

because the feature maps used in spatial upscaling have a
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Aggregation strategy NSS CC SIM AUC-J s-AUC

Late-aggregation (16) 2.555 0.460 0.340 0.892 0.712

Late-aggregation (32) 2.618 0.467 0.343 0.897 0.713

Early two-step (16) 2.591 0.464 0.343 0.894 0.708

Early two-step (32) 2.673 0.475 0.361 0.891 0.706

Late two-step (16) 2.622 0.469 0.349 0.892 0.713

Late two-step (32) 2.706 0.481 0.362 0.894 0.718

Table 1: Performance comparison of TASED-Net with dif-

ferent T s (shown in parentheses) and temporal aggregation

strategies on the validation set of DHF1K [39]. The late

two-step approach performs the best since it utilizes tempo-

rally rich features while avoiding overfitting.

larger size in the temporal dimension. That is, late two-step

aggregation performs better thanks to temporally richer fea-

ture maps. Interestingly, late aggregation performs poorly

despite having the richest features, probably due to overfit-

ting. In addition, we observe that the scores drop by 0.5

NSS (0.06 CC, 0.04 SIM, 0.015 AUC) without Kinetics

pre-training for most cases. This shows the effectiveness

of Kinetics pre-training. For the rest of the paper, we report

the performance of TASED-Net with T = 32, late two-step

aggregation, and pre-training.

Next, we submitted our results to the DHF1K online

benchmark [39]. The performance of TASED-Net and pre-

vious state-of-the-art methods on the test set of DHF1K is

reported in Table 2. Our model outperforms other methods

by a wide margin across all evaluation metrics. We note

that ACLNet [39], the leading state-of-the-art method, is

arguably better-primed for saliency detection than TASED-

Net—it has a component pre-trained on an image-saliency

dataset, SALICON [20], whereas we pre-train the encoder

network of TASED-Net on an action recognition dataset.

The higher performance of TASED-Net suggests that pre-

training on a large-scale video dataset plays a significant

role in performing well on other tasks in general. We also

want to point out that TASED-Net has a much smaller net-

work size (82MB v.s. 252MB). Interestingly, our AUC-J

score does not increase much compared to the other metrics.

This phenomenon has already been reported by Bylinskii et

al. [4], who suggest that AUC-J is less capable of discrim-

inating between different high-performing saliency models

because it is invariant to monotonic transformations.

To perform a qualitative analysis, we compare the per-

formance of TASED-Net to the leading state-of-the-art

method, ACLNet [39], on videos from the validation set of

the DHF1K dataset. We observe that we can easily recog-

nize the differences between the results of each model when

the difference of NSS scores between the two is greater than

0.5. Based on this gap, TASED-Net outperforms ACLNet

on 37 out of the 100 videos in the validation set, while

ACLNet outperforms TASED-Net only on 7 videos. Qual-

Method
Metric

NSS CC SIM AUC-J s-AUC

GBVS [15] 1.474 0.283 0.186 0.828 0.554

STSConvNet [2] 1.632 0.325 0.197 0.834 0.581

Deep Net [30] 1.775 0.331 0.201 0.855 0.592

SALICON [20] 1.901 0.327 0.232 0.857 0.590

OM-CNN [19] 1.911 0.344 0.256 0.856 0.583

DVA [38] 2.013 0.358 0.262 0.860 0.595

SalGAN [29] 2.043 0.370 0.262 0.866 0.709

ACLNet [39] 2.354 0.434 0.315 0.890 0.601

TASED-Net 2.667 0.470 0.361 0.895 0.712

Table 2: Comparison of TASED-Net with other state-of-

the-art methods on the test set of DHF1K. TASED-Net sig-

nificantly outperforms all the previous methods across all

the evaluation metrics by a large margin.

itative results of our model and ACLNet for the better and

worse cases are given in Figure 5 (see Supplementary mate-

rial for more examples of qualitative results). As shown in

(a) and (b) in Figure 5, TASED-Net seems highly sensitive

to salient moving objects and less sensitive to background

objects, which is consistent with the goal of video saliency

in general. On the other hand, ACLNet seems to put more

weight on spatially conspicuous objects, so sometimes it

attends to distracting background objects. This makes the

saliency map predicted by ACLNet a lot blurrier than ours

in many cases.

We have observed that for videos where the ground-truth

fixation points are scattered across a large area, our model

quantitatively performs worse than ACLNet. This is be-

cause ACLNet generally predicts blurrier maps that bet-

ter fit highly-scattered fixation points. However, we also

find that ground-truth fixation points are unstable for these

videos. For example, in (c) of Figure 5, the fixation points

do not smoothly follow the carp, but instead flicker and

jump between different carp. In (d), because the foreground

object is so large, fixation points tend to move around the

object. Furthermore, different subjects do not fixate on the

same part of a large object. In these cases, it is hard to

say that the ground-truth fixation points represent general

human gaze behavior well. Therefore, we strongly believe

that a larger number of human subjects is needed to prop-

erly annotate videos where the fixation points are frequently

scattered across a large area. We also believe that a larger

and more comprehensive dataset with more diverse scenes

is needed to cover general situations where the salient mov-

ing objects are not the only dominant information. More

qualitative results can be found in Supplementary material.

4.3. Performance on other datasets

We further test our model on two commonly used

public datasets, which are Hollywood2 [23, 24] and
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(a)

(b)

(c)

(d)

Figure 5: Qualitative results of our TASED-Net and the main competitive model ACLNet [39] on the DHF1K validation

set. We observe that the differences between the two results are easily identified when the difference between NSS scores is

greater than 0.5. Our method beats ACLNet by this margin on 37 videos, and ACLNet beats our method by this margin on 7

videos. We show improved results on two clips from the 37 videos ((a) and (b)), and worse results on two clips from the 7

videos ((c) and (d)). As seen in (a) and (b), TASED-Net attends to the salient moving objects very well, even when there are

many background objects. In (c) and (d), it seems that the ground-truth fixation points do not represent general human gaze

behavior well. For example, in (c), the fixation points flicker and jump around on different carp. In (d), only small parts of

the foreground objects (the body of the cat) are fixated on. More examples are available in Supplementary material.

UCFSports [24, 32, 35]. To leverage the relatively large

scale of the DHF1K dataset, we first pre-train TASED-

Net on DHF1K, and then fine-tune on Hollywood2 or

UCFSports. For short videos with fewer than 2T − 1 = 63
frames, we simply loop those videos to fit in with our

method. Table 3 compares our model with various previous

state-of-the-art approaches. TASED-Net again achieves the

best performance on each dataset across most of the metrics.

4.4. Necessity of Auxiliary pooling

As discussed earlier, Auxiliary poolings are needed for

the max-unpooling layers to work in our proposed archi-

tecture. Here, we compare two possible variants of Aux-

iliary pooling. The first variant, which we call TASED-

Net-tri, replaces all the max-unpooling layers with trilin-

ear upsampling (interpolation). The second variant, which

we name TASED-Net-trp, replaces the max-unpooling lay-

ers with transposed convolutions (deconvolution). Note that

these two variants do not require Auxiliary poolings. Table 4

Method
Metric

NSS CC SIM AUC-J s-AUC

H
o

ll
y

w
o

o
d

2

STSConvNet [2] 1.748 0.382 0.276 0.863 0.710

SALICON [20] 2.013 0.425 0.321 0.856 0.711

Deep Net [30] 2.066 0.451 0.300 0.884 0.736

OM-CNN [19] 2.313 0.446 0.356 0.887 0.693

DVA [38] 2.459 0.482 0.372 0.886 0.727

ACLNet [39] 3.086 0.623 0.542 0.913 0.757

TASED-Net 3.302 0.646 0.507 0.918 0.768

U
C

F
S

p
o

rt
s

GBVS [15] 1.818 0.396 0.274 0.859 0.697

Deep Net [30] 1.903 0.414 0.282 0.861 0.719

OM-CNN [19] 2.089 0.405 0.321 0.870 0.691

DVA [38] 2.311 0.439 0.339 0.872 0.725

ACLNet [39] 2.567 0.510 0.406 0.897 0.744

TASED-Net 2.920 0.582 0.469 0.899 0.752

Table 3: Comparison of TASED-Net to state-of-the-art

methods on the test sets of Hollywood2 and UCFSports.

High scores for our model across most of the metrics prove

the effectiveness of our model.
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Method
Metric

NSS CC SIM AUC-J s-AUC

TASED-Net-tri 2.452 0.448 0.337 0.891 0.702

TASED-Net-trp 2.598 0.470 0.353 0.894 0.707

TASED-Net 2.706 0.481 0.362 0.894 0.718

Table 4: Comparison of variants of Auxiliary pooling on

the validation set of DHF1K. TASED-Net-tri and TASED-

Net-trp do not utilize Auxiliary pooling because they replace

unpooling layers with trilinear upsampling (interpolation)

and transposed convolution (deconvolution), respectively.

TASED-Net perform better, which demonstrates the effec-

tiveness of Auxiliary pooling.

compares these variants and shows that TASED-Net with-

out Auxiliary pooling operations performs poorly. In other

words, we discover that replacing max-unpooling layers

does not work well although TASED-Net-tri and TASED-

Net-trp may seem more straightforward. This proves the

effectiveness and necessity of Auxiliary pooling in TASED-

Net.

In addition, we apply our temporally-aggregating

scheme to many other powerful architectures including

FCN [22], U-Net [33], Deeplab [6, 7], which have achieved

great success in dense prediction tasks. The results are re-

ported in Supplementary material. The unsatisfying results

justify our architecture with the proposed Auxiliary pooling.

4.5. Other observations

We observe that stacking multiple transposed convolu-

tion layers with stride 1× 1× 1 within each spatial decod-

ing block in the prediction network does not boost perfor-

mance. To demonstrate this, we augment TASED-Net by

adding two more transposed convolutional layers to each

spatial decoding block. This denser (or deeper) version

approximately increases the network size by 40%, so we

expect that it would yield better performance by finely de-

coding spatial information. However, we found that it ac-

tually yields slightly worse performance (see Supplemen-

tary material). This might be because spatial decoding is

of less importance in video saliency detection than in other

tasks where more precise pixel-wise outputs are required

(e.g. video segmentation). Therefore, video saliency mod-

els may not necessarily benefit from stronger spatial decod-

ing capabilities. Otherwise, it may be due to overfitting.

To better understand how this phenomenon is affected by

dataset size and task formulation, we would have to test the

denser TASED-Net on larger datasets and alternative tasks

like video segmentation.

It is also observed that predicting multiple saliency

maps all at once for each sliding window decreases the

overall performance when compared to predicting a sin-

gle saliency map. We believe that this is because increas-

Method
Metric

NSS CC SIM AUC-J s-AUC

TASED-Net (4) 2.434 0.441 0.327 0.887 0.689

TASED-Net (8) 2.585 0.460 0.348 0.889 0.696

TASED-Net (16) 2.622 0.469 0.349 0.892 0.713

TASED-Net (32) 2.706 0.481 0.362 0.894 0.718

TASED-Net (48) 2.636 0.472 0.348 0.894 0.708

TASED-Net (64) 2.554 0.459 0.336 0.893 0.702

Table 5: Performance of TASED-Net with different T ’s

(number in bracket) on the validation set of DHF1K. The

clear trend is observed. TASED-Net performs well when

T = 32.

ing the prediction space makes it harder for the decoder

(prediction network) to be optimized. It shows that our

temporally-aggregating scheme is more appropriate for the

video saliency detection.

Furthermore, we observe that TASED-Net with T larger

than 32 performs worse than when T = 32 (see Table 5).

These results may indicate that it is sufficient to consider

a fixed number of past frames for video saliency detection.

However, they could also be a result of overfitting. TASED-

Net with T smaller than 32 also performs worse than when

T = 32, which implies that it is necessary to consider

enough number of past frames with a duration of about one

second for video saliency detection. We believe that further

optimization on T is not necessary for this paper.

5. Conclusion

We have presented TASED-Net as a novel fully-

convolutional architecture for video saliency detection. The

main idea is simple but effective: spatially decoding the

features extracted by the encoder while jointly aggregating

all the temporal information in order to produce a single

full-resolution prediction map. We also propose the new

concept of Auxiliary pooling, which enables our architec-

ture to leverage the benefits of max-unpooling layers for re-

construction. TASED-Net significantly outperforms previ-

ous state-of-the-art methods on major video saliency detec-

tion datasets, which demonstrates the benefits of perform-

ing spatial decoding and temporal aggregation in a fully-

convolutional way, as well as the benefits of conditioning on

a limited amount of past information when predicting video

saliency. Finally, we comprehensively analyze TASED-Net

with many variants, and show that our proposed Auxiliary

pooling is necessary and effective.
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