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Abstract

The last decade has shown a tremendous success in

solving various computer vision problems with the help of

deep learning techniques. Lately, many works have demon-

strated that learning-based approaches with suitable net-

work architectures even exhibit superior performance for

the solution of (ill-posed) image reconstruction problems

such as deblurring, super-resolution, or medical image re-

construction. The drawback of purely learning-based meth-

ods, however, is that they cannot provide provable guaran-

tees for the trained network to follow a given data formation

process during inference. In this work we propose energy

dissipating networks that iteratively compute a descent di-

rection with respect to a given cost function or energy at the

currently estimated reconstruction. Therefore, an adaptive

step size rule such as a line-search, along with a suitable

number of iterations can guarantee the reconstruction to

follow a given data formation model encoded in the energy

to arbitrary precision, and hence control the model’s be-

havior even during test time. We prove that under standard

assumptions, descent using the direction predicted by the

network converges (linearly) to the global minimum of the

energy. We illustrate the effectiveness of the proposed ap-

proach in experiments on single image super resolution and

computed tomography (CT) reconstruction, and further il-

lustrate extensions to convex feasibility problems.

1. Introduction

In the overwhelming number of imaging applications,

the quantity of interest cannot be observed directly, but

rather has to be inferred from measurements that contain

implicit information about it. For instance, color images

have to be restored from the raw data captured through a

color filter array (demosaicking), suboptimal foci or cam-

era movements cause blurs that ought to be removed to ob-

tain visually pleasing images (deblurring), and non-invasive

medical imaging techniques such as magnetic resonance

imaging (MRI) or computed tomography (CT) can faith-

fully be modeled as sampling the image’s Fourier transform

and computing its Radon transform, respectively. Mathe-

matically, the above problems can be phrased as linear in-

verse problems in which one tries to recover the desired

quantity û from measurements f that arise from applying

an application-dependent linear operator A to the unknown

and contain additive noise ξ:

f = Aû+ ξ. (1)

Unfortunately, most practically relevant inverse problems

are ill-posed, meaning that equation (1) either does not de-

termine û uniquely even if ξ = 0, or tiny amounts of noise

ξ can alter the naive prediction of û significantly. These

phenomena have been well-investigated from a mathemat-

ical perspective with regularization methods being the tool

to still obtain provably stable reconstructions.

At the heart of all regularization methods is the idea not

to determine a naive estimate like u = A†f for the pseudo-

inverse A†. Instead, one determines an estimate u for which

‖Au− f‖ ≤ δ, (2)

holds for a suitable norm ‖ · ‖ and some δ ∈ R proportional

to ‖ξ‖. The actual u is found by some iterative procedure

that is stopped as soon as (2) is met, or by explicitly enforc-

ing a desired regularity via a penalty term or constraint in

an energy minimization method.

Motivated by the success of deep learning in classifica-

tion and semantic segmentation tasks [30, 36], researchers

have proposed to tackle a wide variety of different linear

inverse problems with deep learning techniques, e.g., de-

blurring [52, 50], super-resolution [16], demosaicking [19],

MRI- [53], or CT-reconstruction [26]. All the aforemen-

tioned results are based on acquiring or simulating exem-

plary pairs (ûi, fi) of ground-truth images ûi and data fi
and training a network G which, for suitable parameters θ,

accomplishes a mapping G(fi; θ) ≈ ûi. While such meth-

ods show truly remarkable reconstruction quality in practi-

cal applications, there is no mechanism to provably guar-

antee that the solutions G(f ; θ) predicted by the network

actually explain the measured data in accordance with the

(known) data formation process (1), i.e., no a-priori prox-

imity bound in the form of (2) can be guaranteed. The latter
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ground truth gradient descent, PSNR 27.5 learned, PSNR 40.2 energy dissipating, PSNR 33.0

Figure 1: Illustrating the danger of learning safety-critical reconstruction algorithms: When overfitting a network to recon-

struct a walnut image without a simulated pathology and using it to predict the reconstruction of a walnut with such an artifact

(left image, white blob in the green circle), the reconstruction (middle right) is extremely clean, but the most important aspect

is entirely lost, despite being contained in the data as illustrated in the plain gradient descent reconstruction (middle left). Our

energy dissipating networks (right image) are able to benefit from the power of learning-based techniques while allowing to

provably guarantee data fidelity constraints such as (2).

can pose a significant risk in trusting the networks predic-

tion, particularly if little, or biased training data is provided.

We illustrated such a risk in a toy example in Fig. 1: A CT

scan is simulated on the ground truth image shown on the

left, which is a slight modification of the walnut image from

[21] with an additional small blob in the upper right. The

simplest reconstruction, unregularized gradient descent, is

very noisy, but the anomaly (our blob), is clearly visible.

A network that has been trained on reconstructing the wal-

nut without the blob is noise-free and has the highest peak-

signal-to-noise-ratio (PSNR). However, it completely re-

moved the important pathology (middle right). This is par-

ticularly disconcerting because the measured data clearly

contains information about the blob as seen in the gradient

descent image, and a purely learning-based approach may

just decide to disrespect the data formation process (2) dur-

ing inference.

Our proposed approach (illustrated in Fig. 1 on the right)

is a learning-based iterative algorithm that can guarantee

the solution u to meet the constraint (2) for any predefined

(feasible) value of δ. Despite also training our network on

reconstructing the walnut without the anomaly only, it is

able to reconstruct the blob, allowing its use even in safety

critical applications like medical imaging.

The key idea is to train a neural network G for predict-

ing a descent direction dk for a given model driven (dif-

ferentiable) energy E such as E(u) = 1
2‖Au − f‖2. The

network takes the current iterate uk, the data f , and the gra-

dient ∇E(uk) as inputs and predicts a direction:

dk = G(uk, f,∇E(uk); θ). (3)

The output of the network is constrained in such a way that

for a fixed parameter ζ > 0 the following condition prov-

ably holds for arbitrary points uk:

〈dk,∇E(uk)〉 ≥ ζ‖∇E(uk)‖. (4)

This property allows us to employ a descent algorithm

uk+1 = uk − τk dk, (5)

in which a suitable (adaptive) step size rule for τk, such

as a line-search, can guarantee the convergence to a min-

imizer of E under weak assumptions. Therefore, the pro-

posed scheme (5) can provably enforce constraints like (2)

on unseen test data, while also benefiting from training data

and the inductive bias of modern deep architectures.

2. Related Work

2.1. Model-based solutions of inverse problems

Two of the most successful strategies for solving inverse

problem in imaging are variational methods as well as (re-

lated) iterative regularization techniques. The former phrase

the solution as a minimization problem of the form

û = argmin
u

H(u; f) + αR(u), (6)

for a data fidelity term H , regularization term R and a trade-

off parameter α that has to be chosen depending on the

amount of noise in the data. As an example, a common

choice for the data term is H(u; f) = 1
2‖Au − f‖2 and

R(u) = |∇u| is often the celebrated total variation (TV)

regularizer [48]. Variants include minimizing the regular-

izer subject to a constraint on the fidelity, also know as Mo-

rozow regularization, or minimizing the fidelity term sub-

ject to a constraint on the regularizer, also known as Lavren-

tiev regularization. Other popular regularizers include ex-

tensions of the TV, for example introducing higher-order
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derivatives [9, 10], sparsity priors for certain representa-

tions, such as wavelets or dictionaries [37], or application-

driven penalties [23].

Closely related iterative approaches construct sequences

{uk} that decrease the fidelity term monotonically along a

suitable path (for instance steered by an appropriate regu-

larizer as in [43]), and become a regularization method via

stopping criteria such as the discrepancy principle, see [7].

2.2. Data-driven and hybrid methods

While the model-based reconstruction techniques of

Sec. 2.1 admit a thorough mathematical understanding of

their behavior with well defined regularization properties,

see [7] for an overview, the solution quality on common

benchmarks can often be enhanced significantly by turning

to data-driven approaches.

Most frequently, convolutional neural networks (CNNs)

[18, 31] are used to solve such image reconstruction prob-

lems, e.g. for deblurring [52], single image super resolution

[42, 16], or CT reconstruction [25]. Another line of works

pioneered in [20] is to take algorithms used to solve the

model-based minimization problem (6), unroll them, and

declare certain parts to be learnable [49, 56, 29, 13]. Al-

though such architectures are well motivated and often yield

excellent results with rather few learnable parameters, they

do not come with any provable guarantees.

Alternatively, researchers have considered learning the

regularizer in (6) [47, 2, 22, 12]. This typically results

in difficult bilevel optimization problems or requires addi-

tional assumptions such as sparsity. Moreover, the consid-

ered penalties are rather simple, such that they do not quite

reach the performance of fully data-driven models.

Other approaches have proposed algorithmic schemes

that replace proximal operators of the regularizer by a CNN,

but don’t come with any provable guarantees [38, 11, 55] or

impose restrictive conditions on the network [46].

In order to obtain guarantees, the recent approaches

[34, 35] propose convergent energy minimization meth-

ods that incorporate update steps based on deep networks.

The fundamental difference to our approach is, that in

these works the data-driven updates are considered an error,

which is then controlled by an interleaving with sufficiently

many standard optimization steps. In our approach, every

update is solely based on the neural network, and each up-

date provably reduces the energy. Furthermore, the models

in [34, 35] are trained on auxilliary tasks (such as image

denoising), while we propose a training procedure that is

more in line with the actual task of energy minimization.

More general approaches on learning to optimize are based

on recurrent neural networks [4] or reinforcement learning

[33]. However, it still remains challenging to provide a rig-

orous convergence analysis.

Some recent approaches have considered to regularize

the reconstruction by the parametrization of a network, e.g.,

deep image priors in [51], or deep decoders [24]. This

requires to solve a large nonconvex optimization problem

which is rather expensive and due to local optima may also

prevent a provable satisfaction of (2).

Finally, another line of works train generative models

and represent the variable u to be reconstructed as the trans-

formation of a latent variable z. While these approaches

yield strong results, see e.g., [8], the nonconvex optimiza-

tion can not necessarily guarantee a constraint like (2).

Current methods for imposing constraints directly in the

network architecture [3, 17] are limited to low-dimensional

linear inequality constraints or polyhedra with moderate

numbers of vertices. Therefore, directly incorporating (and

differentiating through) projections onto complex constraint

sets as (2) currently seems infeasible. Nevertheless, the pro-

posed technique, which we present in the following section,

can ensure difficult constraints such as (2) within a data-

driven approach.

3. Energy Dissipating Networks

3.1. Paths in the energy landscape

As presented in Eq. (5), we propose a simple technique

that uses a data-driven neural network G to iteratively pre-

dict descent directions with respect to a given problem de-

pendent cost function or energy E, which we assume to be

continuously differentiable. While the idea of learning the

gradient descent update in inverse problems has been con-

sidered under the framework of unrolled algorithms [1], our

architecture is conceptually different: Instead of training an

unrolled architecture in an end-to-end fashion, we merely

train the network on separate iterations by minimizing an

objective of the form

Eu∗∼YEu∼Xθ
[ℓ (u− G(u, f,∇E(u); θ), u∗)] , (7)

with respect to the model parameters θ. In the above equa-

tion, ℓ is a loss function and Y the distribution of the

”ground truth” data. A novelty in our approach is to con-

sider an input distribution Xθ, which depends on the model

parameters itself. We will make the above more precise

later on, but Xθ can be thought of as a distribution over

iterates which are visited when running a descent method

with directions provided by the model. While an objective

of the form (7) seems daunting to optimize, we show that

a simple ”lagged” approach in which the parameters of Xθ

are updated sporadically and otherwise fixed works well in

practice. Another novelty of our approach is to use the Eu-

clidean projection onto the set

C(ζ, g) = {d | 〈d, g〉 ≥ ζ‖g‖} (8)

for g being the gradient of the energy (or Lyapunov func-

tion) E at the current iterate as a last layer of the network.
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Figure 2: Two dimensional illustration of the proposed energy dissipation network for solving the (underdetermined) inverse

problem of finding u such that u1 + u2 = f : The left plot shows the path gradient descent takes when initialized with

zero, along with the magnitude and direction of the gradient at various points in the 2D plane. The middle plot shows the

same visualization determined with our energy dissipating networks and additional training data. The right plot shows the

results of an energy dissipating network with a more aggressive enforcement of descent directions via scaling ζ in (4) with

an additional ‖∇E(uk)‖. As we can see, in both cases the network learned to create paths that lead towards the provided

training data while provably guaranteeing non-increasing data-fidelity costs. The depicted networks even move solutions

within the subspace Au = f towards the clustered data points.

By additionally utilizing a backtracking line-search detailed

in Alg. 1 to determine suitable step-sizes τk, we can state the

following convergence result:

Proposition 1. Consider the iterates given by Alg. 1 for

an arbitrary starting point u0, a continuously differentiable

and coercive energy E, and a continuous (in the inputs)

model G([u, f,∇E(u)]; θ) that satisfies

G(u, f,∇E(u); θ) ∈ C(ζ,∇E(u)) ∀u. (9)

Then the while-loop of Alg. 1 always terminates after

finitely many iterations. The energy of the iterates is mono-

tonically decreasing, i.e.

E(uk+1) ≤ E(uk), (10)

and the sequence of ‖∇E(uk)‖ converges to zero, i.e.

lim
k→∞

‖∇E(uk)‖ = 0. (11)

Moreover, if E is strictly convex, then the sequence of uk

converges with

lim
k→∞

uk = argmin
u

E(u). (12)

Proof. The result is a conclusion of the descent direction,

e.g. utilizing standard results like [41, Thm. 3.2].

Due to property (10) we refer to our approach as energy

dissipating networks. Our intuition is that such networks,

which are trained on (7) but provably satisfy (9), allow to

predict paths in a given energy landscape that monotoni-

cally decrease the energy, but at the same time attract the

Algorithm 1 Learned energy dissipation with line-search

1: Inputs: Starting point u0, energy dissipating network

G(·, ·,∇E(·); θ), constants c ∈ (0, 0.5), ρ ∈ (0, 1)
2: while not converged (e.g. based on ‖∇E(uk)‖) do

3: dk = G(uk, f,∇E(uk); θ)
4: τk ← 1
5: uk+1 ← uk − τkd

k

6: while E(uk+1) > E(uk)− cτk〈dk,∇E(uk)〉 do

7: τk ← ρ τk
8: uk+1 ← uk − τkd

k

9: end while

10: end while

iterates to locations which are more probable according to

the training examples. We have illustrated this concepts for

E(u) = ‖Au− f‖2 and A = [1 1] in the two-dimensional

toy example shown in Fig. 2. While plain gradient descent

merely drives the iterates towards the subspace of solutions

in a direct way, the proposed energy dissipation networks

have the freedom to exploit training data and learn a vec-

tor field that drives any initialization to solutions near the

training data at u =
[

0 5
]⊤

for f = 5.

Besides the possibility of reconstructing solutions that

reflect properties of the training examples in underdeter-

mined cases as illustrated in Fig. 2, the intuition of taking a

more favorable path extends to energies E(u) = ‖Au−f‖2
where A is invertible, but severely ill-conditioned: As we

will illustrate in the results (Sec. 5), a typical gradient de-

scent iteration on energies E(u) = ‖Au − fδ‖2 for noisy

observations fδ typically improves the results up to a cer-
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tain iteration before the ill-conditioned matrix A leads to the

introduction of heavy noise and a degradation of the results.

Thus, early stopping, or discrepancy principles are used to

stop the iteration once ‖Au − fδ‖ ≈ ‖f − fδ‖. Again, a

favorable path hopefully allows to stop at a better overall

solution. As discrepancy principles are frequently used in

the analysis of (continuous / infinite dimensional) inverse

problems, our framework possibly allows to derive a regu-

larization method from (5) in the sense of [7, Def. 4.7].

3.2. Ensuring global linear convergence

While Prop. 1 establishes convergence, in applications

an upper bound on the number of iterations required to

reach a certain optimality gap can be desirable. To estab-

lish such a bound, we will make the following assumptions,

which are standard in literature:

Assumption 1. The energy E is L-Lipschitz differentiable,

i.e., it satisfies the inequality

E(v) ≤ E(u) + 〈∇E(u), v − u〉+ L

2
‖u− v‖2, (13)

and furthermore satisfies the Polyak-Łojaciewicz inequality

with modulus µ > 0,

1

2
‖∇E(u)‖2 ≥ µ(E(u)− E∗), (14)

where E∗ = minu E(u) is the global minimum.

We remark that functions satisfying the Polyak-

Łojaciewicz inequality (14) include strongly convex func-

tions, possibly composed with a linear operator that has a

non-trivial kernel. Notably, convexity is not a required as-

sumption, but rather invexity [27, 39]. All examples we

consider in the numerical experiments fulfill Asm. 1.

To establish a linear convergence result, we constrain the

output of the network to a slightly different constraint set as

the one considered in (8). For ζ1 ≥ ζ2 > 0 we define it as:

C(ζ1, ζ2, g) =
{

d | 〈d, g〉 ≥ ζ1‖g‖2, ‖d‖ ≤ ζ2‖g‖
}

. (15)

To give an intuition about (15), note that the two condi-

tions imply that the angle θ between d and g is bounded

by cos θ ≥ ζ1/ζ2. Therefore, by choosing appropriate ζ1
and ζ2 one can control the angular deviation between the

predicted direction of the network and the actual gradient

direction. The linear convergence result is made precise in

the following proposition.

Proposition 2. Assume that the energy E satisfies Asm. 1

and that the update directions given by the network meet

dk ∈ C(ζ1, ζ2,∇E(uk)). Then (5) with constant step size

τk ≡ ζ1/((ζ2)
2L) converges linearly,

E(uk+1)− E∗ ≤
(

1− γ2µ

L

)k

(E(u0)− E∗), (16)

where γ = ζ1/ζ2.

Proof. Combining (13) and the descent iteration (5) we

have the following bound on the decrease of the energy:

E(uk+1)− E(uk) ≤ −τ〈∇E(uk), dk〉

+
Lτ2

2
‖dk‖2.

(17)

Using dk ∈ C(ζ1, ζ2,∇E(uk)) we can further bound this

E(uk+1)− E(uk) ≤
(

Lτ2(ζ2)
2

2
− τζ1

)

‖∇E(uk)‖2

= − γ2

2L
‖∇E(uk)‖2.

(18)

Finally, by (14) we have

E(uk+1)− E(uk) ≤ −γ2µ

L
(E(uk)− E∗), (19)

and rearranging and subtracting E∗ on both sides gives

E(uk+1)− E∗ ≤
(

1− γ2µ

L

)

(E(uk)− E∗), (20)

which yields the above result.

Therefore, the required number of iterations to

reach an ε-accurate solution is in the order of

O
(

γ−2(L/µ) log(1/ε)
)

. By giving the network more

freedom to possibly deviate from the true gradient

(θ → ±90◦, i.e., γ → 0), more iterations are required

in the worst-case. As an example, the above analysis

tells us that if we allow the directions predicted by the

network to deviate by at most 45◦ from the true gradient,

then in the worst case we might require twice as many

(cos 45◦ = 1/
√
2) iterations to find an ε-accurate solution

as standard gradient descent. Nevertheless, we want to

stress that there are also directions which dramatically

improve the rate of convergence (for example the Newton

direction), which is not captured by this worst-case analy-

sis. As in practice the training data could coincide with the

model, it is to be expected that the learned direction will

lead to much faster initial convergence than the gradient

direction. The above analysis should therefore be only

seen as a bound of what could theoretically happen in case

the network systematically picks the worst possible (in the

sense of energy decay) direction. Therefore, we use Alg. 1

which performs a line-search instead of choosing the very

conservative step-size from Prop. 2, to benefit from the

scenario when the direction predicted by the model is good.

We remark that the factor in the above iteration complex-

ity could possibly be improved using accelerated variants of

gradient descent [40, 39].
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4. Implementation

4.1. Satisfying the descent constraints

As discussed in the previous section, for the convergence

results in Prop. 1 and Prop. 2 to hold, we either have to

provably satisfy the constraints (9) or (15). The constraint

(8) is a half-space, and can be satisfied by the projection:

z 7→ z +max{ζ − 〈z, n〉, 0} · n, n = g/‖g‖, (21)

which merely consists of linear operations and a rectified

linear unit (ReLU), so that it is readily implemented in any

deep learning framework. For simplicity, for the set (15) we

propose to merely use a parametrization.

Proposition 3. A surjective map onto (15) is given by

z 7→ η̂g +ΠB(z − ηg), (22)

where η = 〈z, g〉/‖g‖2, η̂ = Π[ζ1,ζ2](η) and ΠB is the

projection onto B = {d | ‖d‖ ≤
√

(ζ2)2 − η̂2‖g‖}.

Proof. To see this, first note that since 〈z − ηg, g〉 = 0 also

holds after the projection, the first constraint in (15),

〈η̂g +ΠB(z − ηg), g〉 ≥ ζ1‖g‖2, (23)

is satisfied since η̂ ≥ ζ1. For the second condition, we have

due to orthogonality:

‖η̂g +ΠB(z − ηg)‖2 = η̂2‖g‖2 + ‖ΠB(z − ηg)‖2

≤ (ζ2)
2‖g‖2, (24)

so that η̂g +ΠB(z − ηg) ∈ C(ζ1, ζ2, g).

To avoid problems with the division by ‖g‖, we approx-

imate it using max
{

‖g‖, 10−6
}

, but also note that Alg. 1

stops once ‖g‖ becomes small.

4.2. Lagged updating of the training distribution

For training, a first idea might be to incorporate a loss of

the form (7) where u ∼ X is sampled from the uniform dis-

tribution over the entire space of possible inputs. The latter

is very high dimensional in most applications, and due to

the curse of dimensionality it is unreasonable to aim at cov-

ering it exhaustively. Therefore we propose to introduce a

dependency on the model parameters u ∼ Xθ and consider

only inputs which are visited when running descent with

the current model. To optimize such an objective, where

the training distribution also depends on the model param-

eters, we propose the following iterative ”lagged” strategy,

which is an essential component of our approach.

The method is bootstrapped by fixing Xθ to be the dis-

tribution of inputs obtained by running regular gradient de-

scent on E (up to a maximum number of iterations). After

−2 0 2 4 6
−2

0

2

4

6
Au = f

Network flow field

Path of network

Training examples

Figure 3: Motivation for the proposed “lagged” iterative

scheme: Training only on iterates which are visited in gra-

dient descent leads to a rough first guess. To arrive at a

more refined result as shown on the right in Fig. 2, we pro-

pose an iterative scheme in which the training distribution

is updated based on the current parameters.

a certain number of epochs, we update the distribution to

also contain iterates obtained by the algorithm (5) with the

current parameters to generate new (network-based) paths.

As the path of energy dissipating networks can differ from

plain gradient descent significantly, such an iterative strat-

egy is vital for the success of the training.

Returning to our two dimensional toy example of Fig. 2

we show in Fig. 3 the network’s descent vector field after

only training on the gradient descent iterates (left plot in

Fig. 2). The results are reasonable (as the network recog-

nized that the iterations have to be further to the top left), but

of course unsatisfactory for practical purposes as the iterates

are pushed beyond the set of exemplary points (marked by

red crosses). After only two additional iterations of updat-

ing the training distribution via the models’ current path, we

obtain the results shown in Fig. 2 on the right.

4.3. Choosing a suitable energy

In many imaging applications suitable data fidelity terms

of model-driven approaches are well-known, or can be de-

rived from maximum a-posteriori probability estimates for

suitable noise models. While only using a suitable data fi-

delity term as an energy or Lyapunov function E allows to

predict solutions that approximate the measured data to any

desired accuracy, energy dissipating networks could further

be safeguarded with a classical regularization term, mak-

ing a classical regularized solution the lower bound on the

performance of the method. We will demonstrate numeri-

cal results for both such approaches in Sec. 5. Moreover,

although our main motivation stemmed from linear inverse

problems in the form of (1), the idea of energy dissipating

networks extends far beyond this field of application.

By choosing the distance to any desired constraint set as
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Table 1: Quantitative evaluation on the task of single image super resolution (4× upscaling). The proposed energy dissipating

approach simulatenously improves upon the baseline in terms of mean PSNR, SSIM and reconstruction error ‖Au− f‖2.

Gradient Descent Baseline Network Energy Dissipating

PSNR SSIM ‖Au− f‖2 PSNR SSIM ‖Au− f‖2 PSNR SSIM ‖Au− f‖2

BSD100 25.09 0.6440 9.5 · 10−3 26.67 0.7237 2.8 · 10−1
27.12 0.7297 9.8 · 10−3

Urban100 22.19 0.6230 6.8 · 10−2 24.44 0.7292 1.9 · 10−0
24.83 0.7460 6.4 · 10−2

Set5 26.80 0.7448 1.3 · 10−2 29.94 0.8548 2.5 · 10−1
31.16 0.8726 8.5 · 10−3

Set14 24.74 0.6684 1.6 · 10−2 27.22 0.7642 4.3 · 10−1
27.74 0.7709 1.3 · 10−2

a surrogate energy, one can provably constrain the predicted

solutions to any desired constrained set (at least if the some

measure of distance to the desired set can be stated in closed

form). We will illustrate such an extension to convex feasi-

bility problems in Sec. 5.3 and Sec. 5.4.

5. Applications

We implemented the experiments from Sec. 5.1 and

Sec. 5.4 using the PyTorch framework. The CT reconstruc-

tion experiments in Sec. 5.2 are implemented in Matlab. All

models were trained using the Adam optimizer [28]. In all

experiments ℓ in Eq. (7) was chosen as the square loss.

5.1. Single image super resolution

As a first application, we train an energy dissipating net-

work on the task of single image super resolution. The lin-

ear operator in the energy E(u) = 1
2‖Au − f‖2 is chosen

as a 4× downsampling, implemented via average pooling.

The architecture both for the energy dissipating and

baseline approach is based on [54], which consists of 20
blocks of 3 × 3 convolutional filters with 64 channels, Re-

LUs, and batch normalization layers, before a final 3 × 3
convolutional layer reduces the output to a single channel.

For the energy dissipating approach, the result is fed into the

layer given by (22) with ζ1 = 25, ζ2 = 10000. Following

[54], we initialize with the “DnCNN-B” model pretrained

on the task of image denoising, which we found important

for the baseline to achieve good performance but had no ef-

fect on our approach. Starting from that initialization, we

train on the specific task of 4× super resolution on 52× 52
patches from images in the BSD100 training set. For the en-

ergy dissipating network, the training data is updated every

100 mini-batches according to Sec. 4.2, choosing uniformly

0–10 descent steps to generate the iterates. As the data is

generated in an online fashion, samples of a previous model

or from the gradient descent initialization are discarded due

to efficiency reasons.

During testing, we used a fixed number of 15 iterations

in the descent with our network direction. For the gradient

descent baseline (corresponding to simple up–sampling) we

used 75 iterations to reach a similar reconstruction error.

For both methods, running more iterations did not signifi-

cantly effect the result. Note that in principle one can run

both convergent descent methods until the forward model

is satisfied to an arbitrary accuracy. A quantitative evalua-

tion on a standard super resolution benchmark is given in

the above Table 1. Note that our goal was not necessarily

to achieve high PSNR results, but rather demonstrate in a

controlled experiment that our approach can be used to in-

troduce provable guarantees into existing models without

significantly worsening (here even improving) the quality.

5.2. CT Reconstruction

Next, we consider reconstructing CT images using the

(sparse matrix) operator provided in [21]. The architecture

is the same as for the super resolution experiment, but us-

ing 17 blocks and the projection layer given by (21). In the

lack of highly accurate CT scans, we simulate training data

using phantoms from [14, 15] (despite being MRI phan-

toms), also include random crops of natural images from

BSD68 [47], and reconstruct in 2D (slices only). We use

E(u) = 1
2‖Au− f‖2 + αTVǫ(u) (with TVǫ being a Char-

bonnier total variation regularization) as our surrogate en-

ergy and start with the first 10 gradient descent iterates as

the initial distribution of the training data for the lagged up-

dating scheme described in Sec. 4.2.

We test the resulting model by simulating a CT-scan of

a walnut image from [21]. We compare our scheme 1 to

plain gradient descent on the data term as well as to regular-

ized reconstructions for different regularization parameters

α. Fig. 4 shows the PSNR values as well as the decay of the

data fidelity term over the number of iterations for two dif-

ferent noise levels. As we can see, after only 5-10 iterations,

the energy dissipating networks have reached significantly

higher PSNR values than their model-based counter parts,

before converging to the same solution (at least in the regu-

larized cases) as predicted by Prop. 1. The energy dissipat-

ing network with α = 0 reaches ‖Au− f‖ ≤ σ after 8 (for

σ = 0.3) and 15 (for σ = 0.15) iterations, indicating that

a discrepancy principle can be useful. Moreover, the data

term decays quicker than for the respective gradient meth-

ods, indicating that the trained networks can even represent

fast optimizers. All plots have been generated with a single
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Figure 4: Comparing gradient descent (GD) with energy dissipating networks: the first two plots show the PSNR value over

the number of iterations, and illustrate that the energy dissipating networks peak very quickly before (provably) converging

to the same minimizer as their surrogate energies. As shown in the right plots, they quickly decrease the data discrepancy

term and plateau in the regularized case, or keep decaying when using the data term as a surrogate energy only. Note that

all curves of our approach were generated with the same energy dissipating networks, merely changing the surrogate energy

during testing, which demonstrates an ability to generalize beyond the specific scenario used during training.

network, hinting at an ability to generalize to different noise

levels and regularization parameters.

5.3. Imposing convex constraints

In this section we consider convex feasibility problems,

in which the task is to find a point in the non-empty intersec-

tion of N closed convex sets {C1, . . . , CN}. A formulation

as a differentiable energy minimization problem is given by:

E(u) =
1

2N

N
∑

i=1

d2Ci
(u), (25)

where d2C(u) = minv∈C ‖u−v‖2 is the squared Euclidean

distance of the point u to the set C. The energy (25) is non-

negative and reaches zero if and only if u satisfies all con-

straints. By standard results in convex analysis [6, Corol-

lary 12.30] it follows that ∇d2C = 2(id − ΠC) so that the

gradient of (25) is 1-Lipschitz and can be implemented if

the projections onto the sets Ci are available. Under mild

regularity assumptions (which even hold for some noncon-

vex sets) the energy (25) satisfies the Polyak-Łojaciewicz

inequality, see [32, Prop. 8.6], and therefore also Asm. 1.

5.4. Sudoku

To demonstrate the previous application we tackle the

problem of solving 9 × 9 Sudokus, which has emerged as

a benchmark for learning based methods [3, 44]. Note that

OptNet [3] only considers 4× 4 due to scalability issues as

remarked in [44]. We use a convex relaxation of the binary

feasibility problem on {0, 1}9×9×9 from [5]. Specifically,

we have N = 5 in (25), where C1, . . . C3 contain simplex

constraints for each dimension of the tensor, C4 constraints

on the 3×3 fields in the Sudoku and C5 encodes the givens.

Table 2: Evaluation on a test set of 50 easy Sudokus.

GD (100 it.) Baseline Net. En. Diss. (100 it.)

Acc. Solve Acc. Solve Acc. Solve

76.9% 2.0% 82.6% 4.0% 87.1% 52.0%

We consider the same architecture as for the previous

experiments and train on a dataset of one million Sudokus

[45]. For the energy dissipating approach, we constrain the

output to be in the constraint set (15) and use the scheme

from Sec. 4.2 with 15 iterations to update the training data.

In the above table we compare 100 iterations of gradi-

ent descent (equivalent to averaged projections), a base-

line which performs a forward pass through a (seperately

trained) network and 100 iterations of energy dissipation.

We improve upon the baseline which indicates that it is pos-

sible to learn directions which reduce the energy of feasibil-

ity problems faster than the steepest descent direction.

6. Conclusion

We constrained the outputs of deep networks to be de-

scent directions for suitably chosen energy functions. Com-

bined with a line-serach algorithm, this yields (linear) con-

vergence to minimizers of the underlying energy during in-

ference. We further proposed an iterative training scheme

to learn a model which provides descent directions that bias

the optimization into the direction of the training data. In

experiments, we demonstrated that this approach can be

used to control networks via model-based energies, and at

the same time improve over standard end-to-end baselines.
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