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Abstract

Generating grasp poses is a crucial component for any

robot object manipulation task. In this work, we formu-

late the problem of grasp generation as sampling a set of

grasps using a variational autoencoder and assess and re-

fine the sampled grasps using a grasp evaluator model.

Both Grasp Sampler and Grasp Refinement networks take

3D point clouds observed by a depth camera as input. We

evaluate our approach in simulation and real-world robot

experiments. Our approach achieves 88% success rate on

various commonly used objects with diverse appearances,

scales, and weights. Our model is trained purely in simu-

lation and works in the real world without any extra steps.

The video of our experiments can be found here.

1. Introduction

Grasp selection is one of the most important problems

in robot manipulation. Here, a robot observes an object

and needs to decide where to move its gripper (3D posi-

tion and 3D orientation) in order to pickup the object (see

Fig. 1). Grasp selection is complex since the stability of

grasps depends on object and gripper geometry, object mass

distribution, and surface frictions. The geometry around an

object poses additional constraints on which grasp points

are reachable without causing the robot manipulator to col-

lide with other objects in a scene (see Fig. 2). Typically,

this problem is approached by geometry-inspired heuristics

to select promising grasp points around an object, possi-

bly followed by a more in-depth geometric analysis of the

stability and reachability of a sampled grasp [31]. Many

of these approaches rely on the availability of complete 3D

models of an object, which is a severe limitation in real-

istic scenarios where a robot only observes a scene with a

noisy depth camera, for example. To overcome this limi-

tation, one could move the camera to generate a full object

model or perform shape completion, followed by geometry-

based grasp analysis. However, moving the camera might

be impossible in constrained spaces, and shape completion

might not be sufficiently accurate for grasp generation and

Figure 1. The Franka Panda manipulator used in our experiments.

Our approach is able to efficiently generate diverse sets of grasps

that lead to successful pickups of unknown objects.

evaluation.

Recently, several groups have introduced deep learning

techniques to evaluate the quality of grasps from raw point

cloud data [21, 19, 31, 15]. While these approaches provide

good grasp assessments, they still use manually designed

heuristics to sample grasps for evaluation or rely on black-

box optimization techniques such as CEM [19, 34]. Ad-

ditionally, they do not provide efficient means for improv-

ing sampled grasps. In this paper, we introduce the first

learning-based framework for efficiently generating diverse

sets of stable grasps for unknown objects. Our approach

introduces two network architectures that sample, evaluate,

and improve grasps. The key contributions of this paper are:

• A variational auto-encoder (VAE) that can be trained

to map the partial point cloud of an observed object

to a diverse set of grasps for the object. Importantly,

our VAE provides high coverage of all possible, func-

tioning grasps while generating only a small number

of failing grasps.
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Figure 2. Visualization of the predicted grasps for the mug. (middle) All the grasps that are generated by our method. (right) Grasps that

are both kinematically feasible and collision free color-coded by the predicted scores. Green is the highest and red is the lowest.

• To improve the precision of the VAE samples, we in-

troduce a grasp evaluator network that maps a point

cloud of the observed object and the robot gripper to a

quality assessment of the 6D gripper pose. Crucially,

we show that the gradient of this network can be used

to improve grasp samples, for instance moving grip-

per out of collision or ensuring that the gripper is well

aligned with the object.

• We demonstrate that our approach outperforms previ-

ous approaches and enables a robot to pickup 17 ob-

jects with a success rate of 88%. Generating diverse

grasps is quite important because not all the grasps are

kinematically feasible for the robot to execute. We fur-

thermore show that our approach generates diverse sets

of grasp samples while maintaining high success rate.

The paper is organized as follows. We first contrast re-

lated approaches to grasping that use deep learning, and

then explain the different components of our approach:

grasp sampling, evaluation, and refinement. Finally, we

evaluate our method on a real robotic platform and show

the effect of different hyperparameters in various ablation

studies.

2. Related Work

Learning 6-DOF Grasps The prevailing approaches to

solve the robot grasping problem are data-driven [2]. While

earlier methods were based on hand-crafted feature vec-

tors [27, 1, 7], recent methods exploit convolutional archi-

tectures to operate on raw visual measurements [13, 25, 21,

19, 14]. Most of these grasp synthesis approaches are en-

abled by representing the grasp as an oriented rectangle in

the image [8]. This 3-DOF representation constrains the

gripper pose to be parallel to the image plane. The draw-

backs of such a representation are manifold: Since it limits

the grasp diversity, picking up an object might be impossi-

ble given additional constraints imposed by the arm or task.

In case of a static image sensor it also leads to a severely

restricted workspace [19].

Our approach tackles the problem of predicting the full

6-DOF pregrasp pose. This is challenging due to occluded

object parts that affect grasp success. Yan et al. [34] circum-

vent this problem by including the auxiliary task of recon-

structing the geometry of the target object. The main task

of predicting the 6-DOF grasp outcome can then use local

geometry that is not part of the measurement. Similar to our

evaluator network, Zhou et al. [37] learn a grasp score func-

tion which they also use for grasp refinement. In contrast

to our approach, both methods [34, 37] are only evaluated

in simulation. Similar to our grasp refinement phase, Lu et

al. [17] use the gradient of a learned grasp success model to

infer the maximum likelihood grasp estimate.

Few methods formulate the problem as a regression to

a single best grasp pose [28, 16]. They inherently lack the

ability to predict a diverse distribution of possible grasps.

Choi et al. [4] classify 24 pre-defined orientations to chose

a 6-DOF pre-grasp pose. Such a coarse resolution of

SO(3) will necessarily lead to a limited diversity of the

predicted grasps. In contrast, the grasp point detection

method (GPD) [31, 15] uses a more dense sampling of can-

didate grasps: A point in the observed point cloud is sam-

pled randomly and a Darboux frame is constructed which

is aligned with the estimated surface normal and the local

direction of the principal curvature. Although this heuristic

creates a quite diverse set of candidate grasps, it fails gen-

erating grasps along thin structures such as rims of mugs,

plates, or bowls since estimating those surface normals from

noisy measurements is challenging. Our learned grasp sam-

pler does not suffer from such bias. As a result our proposed

method finds grasps where GPD is not able to (see Sec. 4.2).

Apart from using supervised learning, grasping has also

been formulated as a reinforcement learning problem [9, 36]

or approximations of it [14]. The learned grasp policies are

more expressive than describing only the final grasp pose.

Still, the action space of these methods is usually se(2),
limiting the diversity to top-down grasps.

Deep Neural Networks for Learning from 3D Data The

success of deep learning on 3D point cloud data started

much later than its huge success on RGB images. In the

early days, 3D data were represented as 3D voxels [20] or

as extracting features from 2.5 depth images [6] and pro-
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cess them similar to RGB image using convolutional neural

networks which oftentimes lead to marginal improvements.

Qi et al. [23, 24] introduced a new architecture, called

PointNet and PointNet++, that is capable of representing

the 3D data and extract the representation efficiently. The

success of PointNet lead to the introduction of different

variations of network architectures [35, 30] that represent

3D data, showing significant improvement on 3D object

pose estimation, semantic segmentation, and part segmen-

tation [30, 24, 22, 33]. In order to estimate a successful

gasp, the 6-DOF pose of the grasps needs to be accurate.

Operating on a single RGB image does not provide the re-

quired accuracy since the input and output are not in the

same domain. Therefore, we use 3D point clouds and Point-

Net++ [24] to generate and evaluate grasps in SE(3).

Variational Autoencoders Variational autoen-

coders [10] (VAE) are one of the main categories of

deep generative models. VAEs can be trained in an

unsupervised manner to maximize the likelihood of the

training data. They have been applied to a variety of tasks

such as future prediction [12, 32], generating novel view

points [11] and object segmentation [29]. In this work, we

use a VAE to sample a diverse set of grasps in SE(3).

The overall architecture of our model is similar to

GANs [5]. The generator module is a VAE that is based on

different samples from a latent space and the observed point

cloud X . It generates different grasp proposals and the

evaluation network (discriminator) accepts or rejects them

based on how likely it is that they are successful. Both gen-

erator and discriminator are taking the 3D point cloud X of

the object as part of the input.

3. 6-DOF Grasp Pose Generation

We formulate grasp pose generation as the process of

producing sets of robot gripper poses such that closing the

gripper at any of these poses results in a stable grasp of an

object. Furthermore, the process should generate diverse

sets of poses that ultimately cover all possible ways an ob-

ject could be grasped. Robot gripper poses are given in

SE(3), specifying the 3D translation and 3D orientation of

the gripper. Here, we focus on generating grasp poses for

single objects, additional constraints due to a manipulator’s

reach and due to other objects in a scene are beyond the

scope of this work and can be handled by trajectory opti-

mization techniques. Grasp pose generation is challenging

due to the narrow subspace of successful grasps in the space

of all possible grasps. Small perturbations in the pose of a

grasp can transform a successful grasp into a failure. To

generate diverse sets of stable grasps, our approach sam-

ples grasp poses using a variational auto-encoder network

followed by an iterative evaluation and refinement process.

The input to our approach is a point cloud of the object the

robot should pickup.

Specifically, we aim to learn the posterior distribu-

tion P (G∗ | X), where G∗ represents the space of all suc-

cessful grasps and X is the partial point cloud of the object

observed by a camera. Each grasp g ∈ G∗ is represented

by (R, T ) ∈ SE(3) where R ∈ SO(3) and T ∈ R
3 are

the rotation and translation of grasp g. Grasps are defined

in the object reference frame, whose origin is X̄ , the center

of mass of the observed point cloud. Its axes are parallel

to those of the camera frame (see Fig. 3-a). The distribu-

tion of successful grasps G∗ can be complex and discon-

tinuous. For example, the distribution of G∗ for a mug has

multiple modes along the rim, handle, and bottom. Within

each mode, the space of successful grasps is continuous but

grasps of different modes can be separated from each other.

The total number of separate modes for each object category

varies based on the shape and scale of objects.

Since the number of modes of G∗ is not known before-

hand, we propose to learn a generator module that maxi-

mizes the likelihood of successful grasps g ∈ G∗. Since the

generator only observes successful grasps during training,

it is possible that it also generates failed grasps g ∈ G−.

In order to detect and refine these negative grasps, an eval-

uation module is trained to predict P (S | g,X), i.e., the

probability of success for a grasp g and the observed point

cloud X . Applied to a sampled grasp, the evaluation mod-

ule predicts grasp success and propagates the success gradi-

ent back through the network to generate an improved grasp

pose. This process can be repeated. Discarding all grasps

that remain below a threshold provides the final set of high

quality grasps. The overview of our method is shown in

Fig. 3-b.

3.1. Variational Grasp Sampler

The grasp sampler, shown in Fig. 4, is a generative model

that maximizes P (G | X), the likelihood of a set of pre-

defined successful grasps g ∈ G∗. Given a point cloud X
and a latent variable z, the sampler is a deterministic func-

tion that predicts a grasp. It is assumed that P (z), the proba-

bility density function of the latent space, is known and cho-

sen beforehand. In our approach, we use P (z) = N (0, I).
Given a point cloud X , different grasps are generated by

sampling different z from P (z). The likelihood of the gen-

erated grasps can be written as follows:

P (G | X) =

∫
P (G | X, z; Θ)P (z)dz (1)

Optimizing Eq. (1) for each positive grasp g ∈ G∗ requires

to integrate over all the values of the latent space, which

is intractable. In order to make Eq. (1) tractable, the en-

coder Q(z | X, g) maps each pair of point cloud X and

grasp g to a small subspace in the latent space z. Given
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Grasp coordinate frame Overview of our method
Figure 3. (left) Grasps are estimated with respect to the center of mass of the object point cloud, X . The axes of the grasp coordinate frame

are parallel to those of the camera. (right) The object point cloud X is extracted from a depth image using plane fitting. The Grasp Sampler

Network takes the point cloud and proposes different grasps. The evaluator network assesses the grasps based on the object point cloud

and the proposed grasp. Grasps are improved iteratively using the gradient of the evaluator network

the sampled z ∼ Q, the decoder reconstructs the grasp ĝ.

During training, the encoder and decoder are optimized to

minimize the reconstruction loss L(g, ĝ) between ground

truth grasps g ∈ G∗ and the reconstructed grasps ĝ. Fur-

thermore, the KL-divergence DKL between the distribution

Q(·|·) and the normal distribution N (0, I) is minimized to

ensure a normal distributed latent space with unit variance.

The loss function is defined as follows:

Lvae =
∑

z∼Q,g∼G∗

L(ĝ, g)− αDKL [Q(z|X, g),N (0, I)]

(2)

Eq. (2) is optimized using stochastic gradient descent. For

each mini-batch, the point cloud X is sampled for an object

observed from a random viewpoint. For the sampled point

cloud X , grasps g are sampled from the set of ground truth

grasps G∗ using stratified sampling. To combine the orien-

tation and translation loss, we define the reconstruction loss

as follows:

L(g, ĝ) =
1

n

∑
||T (g; p)− T (ĝ; p)||1 (3)

where T (·; p) is the transformation of a set of predefined

points p on the robot gripper. During training, the decoder

learns to decode the latent value z that is sampled from

N (0, I) and generates grasps while the encoder learns to

output z such that it contains enough information to recon-

struct the grasp pose while maintaining the normal distribu-

tion. During inference, the encoder Q is removed and latent

values are sampled from N(0, I).
Both encoder and decoder are based on the Point-

Net++ [24] architecture. In this architecture, each point

has a 3D coordinate and a feature vector. The features at

each layer are computed based on the features of each point

and the 3D relation of the points with respect to each other.

The features of each input point x ∈ X are concatenated

to g = [R, T ]. In the decoder, each point feature is concate-

nated with the latent variable z. The encoder learns to com-

press the relative information of point cloud X and latent

Figure 4. During training, the encoder maps each grasp to a point z

in a latent space. The distribution of the latent space is minimized

toward a normal distribution. The decoder takes the point cloud

and latent values and reconstructs the 6D grasps, visualized here

as gripper poses.

variable grasp g in such a way that it can be reconstructed

by the decoder.

3.2. Grasp Pose Evaluation

The grasp sampler trains the continuous posterior distri-

bution P (G | X, z) using only positive grasps. As a result,

it might contain failed grasps that are in between the modes

of the distribution. These transitional grasps and other false

positives need to be identified and pruned out. To do so, we

need a grasp evaluation network that assigns a probability

of success P (S|g,X) to each grasp. This network needs

to reason about grasps relative to the observed point cloud

X , but it must also be able to extrapolate to unobserved

parts of the object. Other methods learn to classify grasps

based only on local observed parts of an object [31, 19]. In

practice, the observed point cloud of an object has imper-

fections such as missing or noisy depth values. To mitigate

this problem, previous methods resort to use high quality

depth sensors [19] or using multiple views [31] which limits

the deployment of the system outside of controlled environ-

ments. In this work, we classify each grasp using only the

imperfect observed point cloud X of the object.

Success of a grasp pose depends on the relative pose of
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the grasp with respect to the object. The inputs to the eval-

uator network are point cloud X and grasp g. Similar to

the Grasp Sampler, we use the PointNet [23] architecture

for the Grasp Evaluator. There are multiple ways for classi-

fying grasps. The first, simple approach is to associate the

6D pose of the grasp g to the features of each point x ∈ X
in the first layer. Our experiments showed that such a rep-

resentation leads to poor accuracy in grasp classification.

Instead, we propose to represent a grasp g in a way more

closely tied to the object point cloud: We approximate the

robot gripper by a point cloud, Xg , rendered according to

the 6D grasp pose g. The object point cloud X and gripper

point cloud Xg are combined into a single point cloud by

using an extra binary feature that indicates whether a point

belongs to the object or to the gripper. In the PointNet archi-

tecture, the features for each point are functions of features

of the point itself and its neighbors plus the relative spatial

relation of the points. Using the unified point cloud X ∪Xg

makes it natural to use all the relative information between

grasp pose g and object point cloud X for classifying the

grasps. The grasp evaluator is optimized using the cross-

entropy loss by optimizing

Levaluator = − (ylog(s) + (1− y)log(1− s)) (4)

where y is the ground truth binary label of the grasps in-

dicating whether the grasp is successful or not and s is the

predicted probability of success by the evaluator.

In order to train a robust evaluator, the model needs to

be trained with both positive and negative grasps. Since

the space of all possible 6D grasp poses is combinatorially

large, it is not possible to sample all the negative grasps.

Instead, we do hard negative mining to sample negative

grasps. The set of hard negative grasps G− is defined as

the grasps that have similar pose to a positive grasp but that

are either in collision with the object or are too far from the

object to grasp the object. More formally G− is defined as:

G− = {g− | ∃g ∈ G∗ : L(g, g−) < ǫ} (5)

where L(·, ·) is defined in Eq. (3). During training, g− is

sampled from a set of pre-generated negative grasps and by

randomly perturbing positive grasps to make the mesh of

the gripper either collide with the object mesh or to move

the gripper mesh far from the object.

3.3. Iterative Grasp Pose Refinement

Although the evaluation network rejects implausible

grasps, a large portion of the rejected grasps can be close to

successful ones. This insight can be exploited by searching

for a transformation ∆g ∈ SE(3) that turns an unsuccessful

grasp into a successful one. More formally, we are looking

for a refining transformation ∆g that increases the proba-

bility of success, i.e., P (s = 1 | g +∆g) > P (s = 1 | g).

Figure 5. Iterative Grasp Refinement: (left) Image of the object.

(right) Grasps colored according to refinement iteration. Dark blue

are grasps initially generated from the VAE and yellow are final,

refined grasps. Note that even though there are no points between

the gripper fingers for the initial bowl grasp (blue), the evaluation

network is able to push the gripper to a successful grasp pose.

The evaluation network represents a differentiable function

of success s based on the point cloud X and grasp g. The

refinement transformation that leads to maximum improve-

ment in success probability can be computed by taking the

derivative of success with respect to the grasp transforma-

tion: ∂S/∂g. The partial derivative ∂S/∂g provides the

transformation for each point in the gripper point cloud Xg

so as to increase the probability of success. Since the deriva-

tive is computed with respect to each point on the gripper in-

dependently, it can lead to non-rigid transformations for Xg .

To enforce the rigidity constraint, the transformed gripper

point cloud Xg is defined as a function of orientation of the

grasp defined in Euler angles Rg = (αg, βg, γg) and trans-

lation Tg . Using the chain rule, ∆g is computed as follows:

∆g =
∂S

∂g
= η ×

∂S

∂T (g; p)
×

∂T (g; p)

∂g
(6)

Since the partial derivative ∂S/∂g is only a valid approx-

imation in the local neighborhood, we use hyper-parameter

η to limit the magnitude of updates at each step. In practice,

we choose η in such a way that the maximum translation

update of the grasp does not exceed 1. Fig. 5 shows the

refinement of estimated grasps at different iterations.

4. Experiments

Training Data for Grasping To generate reference sets

of successful grasps, we use the physics simulation

FleX [18], which provides realistic simulation of grasps

for arbitrary object shapes. Candidate grasps are sampled
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Figure 6. We use training data generated with a physics simulator.

The colored dots around the objects depict successful grasps for a

bowl (left) and a box (right). For each continuous grasp subspace

an exemplary gripper pose is shown.

based on the object geometry. We sample random points on

the object mesh surface and align the gripper’s z-axis (see

Fig. 3-a) with the surface normal. The distance between

the gripper and the object surface is sampled uniformly be-

tween zero and the gripper’s finger length. The orientation

around the z-axis is also drawn from a uniform distribu-

tion. We only simulate grasps that are not in collision and

whose closing volume between the fingers intersects the ob-

ject. In total we use 206 objects from six categories in

ShapeNet [3]: boxes and cylinders (randomly generated), as

well as bowls, bottles and mugs. A total of 10,816,720 can-

didate grasps are sampled of which we simulate 7,074,038

(65.4%), i.e., those that pass the non-empty closing volume

test. The simulation consists of a free-floating parallel-jaw

gripper and the free-floating object without gravity (similar

to [37]). Surface friction and object density are kept con-

stant. After closing its fingers the gripper executes a pre-

defined shaking motion. A grasp is labeled successful if

the object is kept between both fingers. Overall, we gen-

erate 2,104,894 successful grasps (19.4%). The resulting

positive grasp labels are densely distributed as shown in the

examples in Fig. 6.

Training Both grasp generator and evaluator networks

are using PointNet++[24] and have similar architectures.

Both modules consist of three set-abstraction layers fol-

lowed by fully connected layers. Each batch of the train-

ing data for the generator network consists of a rendering

of the object from a random view and 64 grasps that are

sampled using stratified sampling to make sure the sam-

pled grasps have enough diversity. The weight for KL-

Divergence loss (α in Eq. (2)) is set to 0.01. Each batch of

training data for the evaluator network consists of 30% pos-

itive, 30% negative grasps, and 40% hard negative grasps.

Hard negative grasps are selected from perturbed positive

grasps by applying ±0.6 radians in each axis and ±3cm to

translation. Both models are trained with the Adam opti-

mizer using a learning rate of 0.0001. All the grasps are

generated in simulation and no real data was used to train

any of the models (see Sec. 4).

Evaluation Metrics We used two metrics to quantita-

tively evaluate grasping methods: success rate and cov-

erage rate. Success rate is the ratio of successful grasps

among all predicted grasps. This metric only considers the

grasp that is executed and does not contain any informa-

tion about the other grasps. Predicting only one grasp is

not suitable for 3D grasping, because the predicted grasp

may lead to collision of the robot with other objects in the

environment or there may not be any possible valid robot

joint configuration that can reach the predicted grasp. In or-

der to achieve an executable successful grasp, we need to

generate a diverse set of grasps from different translations

and directions to check for kinematic feasibility and colli-

sion avoidance. As a result, we introduce the coverage rate

which captures the diversity of the grasps and measures how

well the space of positive grasps G∗ is covered by the gen-

erated grasps. A positive grasp g ∈ G∗ is covered by the set

of predicted grasps, Ĝ, if there exists a grasp ĝ ∈ Ĝ that is

at most 2 away from the grasp g. Positive grasps that have

similar translation in object frame, have similar orientation.

As a result, we chose to use the distance in translation of

the grasps as the criterion for evaluating whether a grasp is

covered or not. Since grasps are defined in SE(3), G∗ is

uncountably infinite. As a result, G∗ is approximated by

sampling grasps while generating data. Success rate and

coverage rate are analogous to precision and recall in the

context of binary classification. Similar to precision-recall

curves, we use the curves of success rate and coverage rate

for analyzing and evaluating our method. We use the AUC

of success-coverage rate for ablation studies and analysis.

4.1. Analysis and Ablation Studies

We evaluate the effect of different parameters and mod-

ules quantitatively using the same physics simulation as in

the generation of training data (Sec 4). For the ablation

studies, we generate 86 object point cloud observations for

10 different objects that are held out during training. For

each point cloud, 200 latent values are sampled and refined

over 10 iterations, resulting in 2200 grasps per view point

and 182,600 grasps in total.

Dimensionality of the Latent Space There is an inherent

tension when deciding the dimensionality of the latent space

which affects the quality of the generated grasps. The latent

space needs to have enough capacity to allow the VAE to re-

construct the grasps. At the same time, a high-dimensional

latent space leads to over-fitting and requires significantly

more training data to be covered. It also deteriorates the

quality of sampled grasps during inference, especially when

the sampled latent values during inference are not seen by

the generator network during training. To analyze this ef-

fect, we evaluate the generator network with increasing

numbers of dimensions for the latent space. Fig. 7 shows

the resulting success-coverage curves for grasps generated

at all the refinement iterations. As can be seen, a dimension-

2906



Figure 7. Effect of latent space dimensionality on success rate and

coverage of the grasps. Number in the box provide AUC values.

Figure 8. Effect of number of refinement steps on improving the

accuracy and coverage of generated grasps.

ality of one has the least AUC because the latent space does

not have enough capacity. Although 3-dimensional and 4-

dimensional latent spaces lead to a slightly better Lvae on

the training data they perform worse during inference be-

cause the VAE cannot cover the latent space densely during

training. Given these results, we choose a two-dimensional

latent space for all subsequent evaluations.

Effect of Refinement on Grasp Quality While the grasp

refinement increases the probability of success based on the

evaluator network, it does not necessarily mean that the re-

fined grasps succeed during test time. To analyze the actual

improvement induced by each refinement step, we evaluate

the grasps in simulation. Fig. 8 shows the success-coverage

curve of the grasps that are computed at each refinement

iteration. As is shown, not only does the success rate of

the generated grasps increase, the coverage rate increases

as well. This is because when grasps are improved they get

closer to the sampled positive grasps in G∗. The AUC of

the curves plateaus after the 10th iteration of refinement.

Effect of Sampled Grasps on Coverage In previous sec-

tions, we conducted ablation studies using 200 random la-

tent values because that was the maximum batch size that

fits in GPU memory and it is the same setting that we used

for our robot experiments. Consequently, the coverage rate

in Fig. 8 was less than 0.5 even after 10 refinement steps.

In order to investigate how the number of sampled grasps

Figure 9. Left: Effect of number of sampled grasps on coverage

rate. Right: VAE Sampler vs. Geometric Sampler

effect the coverage, 2000 grasps are sampled in 10 different

batches on the same point clouds that were used in previous

ablation studies. Fig. 9 shows how more samples increase

the coverage rate.

Learned Grasp Sampler vs. Geometric Grasp Sampler

In order to verify the effectiveness of using VAE for grasp

sampling, we used the same geometric sampling method

that was used to generate the training grasps. The baseline

sampler estimates the surface normal from a point cloud and

applies a random standoff and random planar rotation to the

grasp and the evaluator takes the generated grasps, evalu-

ates, and refines them. Fig. 9 shows that VAE with latent

size 2 is significantly better than the non-learning sampling

scheme both for success and coverage. The surface normals

rarely generate any grasps around the rims or thin struc-

tures. Also, this approach does not extrapolate to missing

depths and occluded parts.

4.2. Robot Experiments

The ultimate test of the generated grasps is to execute

them in the real world and deal with imperfect perception,

robot joint limits, control errors, and physical phenomena

such as friction that are difficult to model. We want to show

that: (1) our method scales to the real world despite being

trained purely in simulation; (2) the generated grasp distri-

bution is diverse enough to find successful grasps even after

discarding those that violate robot kinematics and collision

constraints; (3) our method’s diverse grasp sampling leads

to higher success rate in comparison to a state-of-the-art 6-

DOF grasp planner [31] (GPD).

All experiments are done using a 7-DOF Franka Panda

manipulator with an Intel RealSense D415 camera mounted

on its parallel-jaw gripper. We choose a set of commonly-

used objects that are challenging visually and physically.

The weights of the objects are between 42g (pepper shaker)

and 618g (mustard bottle). The hardware setup and ob-

ject test set is shown in Fig. 10. The forward pass of

VAE+Evaluator takes 0.04 seconds and each refinement it-

eration takes 0.3 seconds on batch size of 200 latent values

using NVIDIA Titan XP.
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Box Cylinder Bowl Mug Average Success Rate Success Rate

6-DOF GraspNet 83% 89% 100% 86% 90% 88%

GPD [31] 50% 78% 78% 6% 52% 47%
Table 1. Grasping results in real world experiments.

Figure 10. Each object is evaluated on three different poses. The

3D models of these objects are unknown. The training data con-

sists of mugs, bowls, boxes, cylinder, and bottles with random

scales. See the supplements for videos of the grasping trials.

Protocol Each object is placed in three different stable

poses on a table in front of the robot. The robot’s end-

effector is moved such that the hand-mounted depth camera

has an unobstructed view of the table top. A grasp is consid-

ered successful if the robot can lift the object 10cm without

dropping it. We filter the measured point cloud, remove the

table plane and cluster the remaining points [26]. This ex-

tracted object point cloud is the input to our approach and

GPD. Both methods return a list of scored grasps. We use

a motion planner to check for a collision-free path to each

grasp pose and execute the one with the highest score. If

no grasp in the returned set can be executed we consider the

trial a failure. In total we run 51 trials per method.

Results Table 1 shows that our method outperforms

GPD [31] on success rate across all objects. One of the

reasons is that our method generates diverse grasps which

facilitates finding kinematically feasible ones. In contrast,

GPD does not generate many different grasps which some-

times leads to situations in which no kinematically feasible

grasp can be found. Mugs are particularly difficult for GPD

because it does not generate any grasps from the rim (see

Fig 11).

5. Conclusions

In this work, we introduced 6-DOF GraspNet for gener-

ating diverse grasps for unknown objects. Our method con-

sists of a trained VAE that samples a variety of grasps for an

object. While the VAE is able to capture the complex distri-

butions of successful grasp poses, it does not quite provide

the accuracy required for highly robust grasp generation. To

Figure 11. Visualization of generated grasps by our method vs

GPD [31] using 200 samples. (left) Generated grasps using 6-DOF

GraspNet on a mug. (right) Generated grasps by GPD. Note that

our method generates significantly more samples along the mug

rim (and handle in other views). The object would slide out of the

gripper for the side grasps.

overcome this limitation, we additionally introduce a grasp

evaluator network that assesses grasp quality and can refine

grasps in an iterative process. To the best of our knowledge,

neither a learned grasp sampler nor a gradient-based refine-

ment process have been introduced before.

The training of our model is done using synthetic grasp

data generated by a physics simulator. Therefore, our model

can scale to large sets of objects without requiring the col-

lection of data in the real world. We demonstrated that our

method can transfer to the real world on objects with un-

known 3D models by deploying the method on a real robot

platform and an on-board RGB-D camera. We performed

robot experiments on 17 objects with unknown 3D mod-

els and achieved state-of-the-art results in 3D grasping. We

also performed a thorough analysis of the generated grasps

in terms of success rate and coverage via ablation studies in

a realistic physics simulator.

This approach opens up a number of interesting direc-

tions in computer vision and robotics. In our method, all

the latent values are sampled uniformly and then grasps are

removed based on collision checks and kinematically feasi-

ble solutions. Potential extensions are to train the sampler

or the evaluator in a way that not only considers the ob-

ject of interest but also considers the surrounding objects

to directly avoid generating colliding or infeasible grasps.

Other interesting directions are toward using the evaluator

not only to refine sampled grasps but to provide real-time

feedback guidance for a manipulator approaching an object.

Our experiments provide evidence that our gradient-based

approach could succeed in moving a manipulator closer and

closer to a successful grasp.
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