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Abstract

Automatic data abstraction is an important capability

for both benchmarking machine intelligence and support-

ing summarization applications. In the former one asks

whether a machine can ‘understand’ enough about the

meaning of input data to produce a meaningful but more

compact abstraction. In the latter this capability is ex-

ploited for saving space or human time by summarizing the

essence of input data. In this paper we study a general re-

inforcement learning based framework for learning to ab-

stract sequential data in a goal-driven way. The ability to

define different abstraction goals uniquely allows different

aspects of the input data to be preserved according to the ul-

timate purpose of the abstraction. Our reinforcement learn-

ing objective does not require human-defined examples of

ideal abstraction. Importantly our model processes the in-

put sequence holistically without being constrained by the

original input order. Our framework is also domain agnos-

tic – we demonstrate applications to sketch, video and text

data and achieve promising results in all domains.

1. Introduction

Abstraction is generally defined in the context of spe-

cific applications [5, 20, 39, 7, 23, 27]. In most cases it

refers to elimination of redundant elements, and preserva-

tion of the most salient and important aspects of the data.

It is an important capability for various reasons: compres-

sion [12] and saving human time in viewing the data [29];

but also improving downstream data analysis tasks such as

information retrieval [2], and synthesis [14, 27].

We present a novel goal-driven abstraction task for se-

quential data (see Fig. 1). Sequential refers to data with

temporal order – we consider video, sequentially drawn

sketches, and text. Goal-driven refers to preservation of a

certain aspect of the input according to a specific abstrac-

tion objective or goal. The same input may lead to differ-

ent abstracted outputs depending on the abstraction goal.

For example, prioritizing preserving sentiment vs. helpful-

ness in product review text could lead to different sum-

AU AU AU AU AU AU

   I love that the inside is set up like shelves.    My son loves to 

organize his trains in it.    I don't like how thin the metal is.    It 

dents as easy as a cola can.    If it were made better, it would 

be worth the money.     Save your money on this.

Sequential data input

Goal-driven abstraction

 
Goal - attribute (eyes/tail)

Goal - category (owl/rabbit)

Sketch

Goal - category (toys)

Goal - sentiment (negative)

Text

Goal - attribute (humans)

Goal - category (parade)

Videos

AU: atomic unit

Figure 1. An illustration of our goal-driven abstraction task. Each

input (video, sketch or text) consists of a sequence of atomic units

(AUs) corresponding to video-segments, strokes and sentences for

the three input domains, respectively. The AUs are color coded.

Depending on the abstraction goal, different AUs are preserved in

each abstracted output.

maries. It is important not to confuse our new goal-driven

abstraction setting with traditional video/text summariza-

tion [15, 16, 42, 51, 37, 6, 28, 30, 46]. The aims are dif-

ferent: the latter produces a single compact but diverse and

representative summary, often guided by human annota-

tions, while ours yields various goal-conditional compact

summaries. Our problem setting is also more amenable

to training without ground-truth labels (i.e., manual gold-

standard but subjective summaries) commonly required by

contemporary video/text summarization methods.

To tackle this novel problem, new approaches are

needed. To this end, we propose a goal-driven sequen-

tial data abstraction model with the following key proper-

ties: (1) It processes the input sequence holistically rather

than being constrained by the original input order. (2) It is

trained by reinforcement learning (RL), rather than super-

vised learning. This means that expensively annotated data

in the form of target abstractions are not required. (3) Dif-

ferent goals are introduced via RL reward functions. Be-

sides eliminating the annotation requirement, this enables
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preserving different aspects of the input according to the

purpose of the abstraction. (4) Finally, the RL-based ap-

proach also allows abstracted outputs of any desired length

to be composed by varying the abstraction budget.

We demonstrate the generality of our approach through

three very different sequential data domains: free-hand

sketches, videos and text. Video and text are sequential data

domains widely studied in the past. While sketch may not

seem obviously sequential, touchscreen technology means

that all prominent sketch datasets now record vectorized

stroke sequences. For instance, QuickDraw [17], the largest

sketch dataset to date, provides vectorized sequence data

in the form of (x, y) pen coordinates and state p (touch-

ing or lifting). For sketch and video, we train two reward

functions based on category and attribute recognition mod-

els. These drive our abstraction model to abstract an in-

put sketch/video into a shorter sequence, while selectively

preserving either category or attribute related information.

For text, we train three reward functions on product re-

views, based on sentiment, product-category and helpful-

ness recognition models. These drive our model to sum-

marize an input document into a shorter paragraph that pre-

serves sentiment/category/helpfulness information respec-

tively.

The main contributions of our work are: (1) Defining a

novel goal-driven abstraction problem, (2) a sequential data

abstraction model trained by RL, that processes the input

holistically without being constrained by the original input

order, and (3) demonstrating flexibility of this model to di-

verse sequential data domains including sketch, video and

text.

2. Related work

Video/text summarization Existing models are either

supervised or unsupervised. Unsupervised summarization

models in video [9, 31, 40, 41, 43, 50, 52, 54, 55] and

text [10, 26, 25, 3] domains aim to identify a small subset

of key units (video-segments/sentences) that preserve the

global content of the input, e.g., using criteria like diver-

sity and representativeness. In contrast, supervised video

[13, 15, 16, 42, 49, 51] and text [37, 6, 28, 30, 46] sum-

marization methods solve the same problem by employing

ground-truth summaries as training targets. Both types of

models are not driven by specific goals and are evaluated

on human annotated ground-truth summaries – how humans

summarize a given video/text is subjective and often am-

biguous. Neither of these models thus address our new goal-

driven abstraction setting.

A recent work [53] trains video summarization model in

a weakly supervised RL setting using category level video

labels. The aim is to produce summaries with the added cri-

teria of category level recognizability along with the usual

criteria of diversity and representativeness. The core mech-

anism is to process video-segments in sequence and make

binary decisions (keep or remove) for each segment, fol-

lowing the above criteria. In this work we introduce a

goal-driven approach to explicitly preserve any quantifiable

property, whether category information (as partially done in

[53]), attributes, or potentially other quantities such as in-

terestingness [11]. We show that our model is superior to

[53] thanks to the holistic modeling of the sequential input

without restriction by its original order (see Sec. 4.2).

Sketch abstraction Comparing to video and text, much

less prior work on sketch abstraction exists. This problem

was first studied in [4] where a data-driven approach was

used to study abstraction in professionally drawn facial por-

traits. Sketches at varying abstraction levels were collected

by limiting the time (from four and a half minutes to fifteen

seconds) given to an artist to sketch a reference photo. In re-

cent work [27], automatic abstraction was studied explicitly

for the first time in free-hand amateur sketches. The abstrac-

tion process was defined as a trade-off between recogniz-

ability and brevity/compactness of the sketch. The abstrac-

tion model, also based on RL, processed stroke-segments

in sequence and made binary decisions (keep or remove)

for each segment, but otherwise output strokes in the same

order as they were drawn. In this work we also optimize

the trade-off between recognizability and compactness (if

the goal is recognizability). However, crucially, our method

benefits from processing the input holistically rather than in

its original order, and learns an optimal stroke sequencing

strategy. We show that our approach clearly outperforms

[27] (see Sec. 4.1). Further, we demonstrate application to

diverse domains of sketch, video and text, and uniquely ex-

plore the ability to use multiple goal functions to obtain dif-

ferent abstractions.

Sketch recognition Early sketch recognition methods

were developed to deal with professionally drawn sketches

as in CAD or artistic drawings [18, 22, 36]. The more

challenging task of free-hand sketch recognition was first

tackled in [8] along with the release of the first large-

scale dataset of amateur sketches. Since then the task

has been well-studied using both classic vision [34, 21] as

well as deep learning approaches [48]. Recent successful

deep learning approaches have spanned both primarily non-

sequential CNN [48, 47] and sequential RNN [19, 33] rec-

ognizers. We use both CNN and RNN-based multi-class

classifiers to provide rewards for our RL based sketch ab-

straction framework.

3. Methodology

Our aim is to input a data sequence and output a shorter

sequence that preserves a specific type of information ac-

cording to a goal function. To this end, a goal-driven se-

quence abstraction (GDSA) model is proposed. GDSA pro-

cesses the input sequence data holistically by first decom-
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Figure 2. A schematic illustration of the proposed GDSA agent. The agent iteratively chooses AUs from the candidate pool so as to

maximize the recognizability goal of the abstracted sketch/text/video. Solid arrows represent trainable weights.

posing it into a set of atomic-units (AUs), which form a

pool of candidates for selection. GDSA is trained by RL to

produce abstractions by picking a sequence of AUs from the

pool. The output sequence should be shorter than the input

(controlled by the budget) while preserving its information

content (controlled by the RL reward/goal function).

3.1. Goal­driven sequence abstraction (GDSA)

The sequential data abstraction task is formalized as a

Markov decision process. At each step, our GDSA agent

moves one atomic unit (AU) from a pool of candidate AUs

to a list of chosen AUs, and it stops when the number of

chosen AUs is larger than a fixed budget. The agent is

trained via RL [38] using a reward scheme which encour-

ages it to outperform the efficiency of the original input or-

der in terms of preserving goal-related information in the se-

quence given a limited length budget. Concretely, we have

two data-structures: the candidate AU pool and the chosen

AU list. The chosen AUs list starts empty, and the candi-

date AUs pool contains the full input. AUs are then picked

by the agent from the candidate pool, one at a time, to be

appended to the current chosen AU list.

A schematic of the GDSA agent is shown in Fig. 2. The

core idea is to evaluate the choice of each candidate AU in

the context of all previously chosen AUs and the category

to which the input sequence belongs. We do this by learn-

ing embeddings for candidate AUs, chosen AUs, and the

input sequence category label respectively. Based on these

embeddings, the GDSA agent will iteratively pick the next

best AU to output given those chosen so far.

Candidate AU embedding At each iteration, every AU

in the candidate pool is considered by GDSA as a candidate

for the next output. To this end, first each AU is: (1) En-

coded as a fixed-length vector. Note that each AU may itself

contain sequential sub-structure (sketch strokes formed by

segments, video segments formed by frames, or sentences

formed by words), so we use a domain-specific pre-trained

RNN to embed each AU. The hidden RNN cell state cor-

responding to the last sub-entry of the AU is extracted and

used to represent the AU as a fixed-length vector. (2) As-

signed a time-stamp from 1 to 10 based on the relative posi-

tion in the original input sequence w.r.t the total number of

AUs. This is introduced so that during training our model

can leverage information from the input sequence order.

This one-hot time-stamp vector is then concatenated with

the fixed-length RNN encoding vector above, and these are

fed into a fully-connected (FC) layer to get the candidate

AU embedding.

Chosen AU embedding To represent the output se-

quence so far, all the AUs of the chosen AU list are fed

sequentially to an RNN. Each AU corresponds to a time-

step in the RNN. The output of the last time-step is then fed

into a FC layer to get the chosen-AU list embedding. At the

first time step the list is empty, represented by a zero vector.

Category embedding There are often multiple related

abstraction tasks within a domain, e.g., the object/document

category in sketch/text abstraction. We could train an inde-

pendent GDSA model per category, or aggregate the train-

ing data across all categories. These suffer respectively

from less training data, and a mixing of category/domain-

specific nuances. As a compromise we embed a category

identifier to allow the model to exploit some information

sharing, while also providing guidance about category dif-

ferences [44].

Action selection At each iteration, our agent takes an ac-

tion (pick an AU from the candidate pool) given the cate-

gory and chosen AUs so far. To this end, it considers each

candidate AU in turn and concatenates it with the other two

embeddings, before feeding the result into a FC layer to

get a complete state-action embedding. This is then fed

into a FC layer with 1 neuron (i.e. scalar output) to pro-

duce the final logit. Once all candidate AUs are processed,

their corresponding logit values are concatenated and form

a multinomial distribution via softmax. During training, we
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sample this multinomial, and during testing the largest logit

is always chosen. The picked AU is then removed from the

candidate pool and appended to the list of chosen AUs. This

process is repeated until a budget is exhausted.

Domain specific details We apply our framework to

sketch, video and text data. Each sketch is composed of a

sequence of AUs corresponding to strokes. For video, each

input is a video-clip and segments in the clip are AUs. For

text, each input is a document containing a product review,

and sentences are AUs. Another domain specific property is

on how to present the agent-picked AUs as the final output

of the abstraction. In the case of video and text, the selected

AUs are kept in the same order as in the original input order,

to maintain the coherence of output sequence. While for

sketch, we keep the order in which AUs are picked, since

the model can potentially learn a better sequencing strategy

than the natural human input.

3.2. Goal­driven reward function

The objective of our GDSA agent is to choose AUs that

maximally preserve the goal information. In particular, we

leverage the natural input sequence, along with the random

AU selection, to define a novel reward function rt as

rt = (at − (δ ht + (1− δ) gt))b, (1)

where t is the time step1, at is agent performance (at goal

information preservation), ht is the performance obtained

by picking the AUs following the original input order, and

gt is the performance of random order policy. The perfor-

mance is evaluated according to the recognizability of the

goal information to be preserved after adding the selected

AU to the chosen AUs list. δ is an annealing parameter that

balances comparison against human and random-policy per-

formance. It is initialised to 0, so the agent receives positive

reward as long as it beats the random policy. During train-

ing δ is increased towards 1, thus defining a curriculum that

progressively requires the agent to perform better in order to

obtain a reward. In detail, δ is increased from 0 to 1 linearly

in K steps, where K is the total number of episodes used

during training. So by the end of training, the agent’s selec-

tion has to beat the original input sequence to obtain positive

reward. Finally, b is a reward scaling factor. For example,

given a 100-stroke sketch and budget of 10%, GDSA has to

pick 10 strokes more informative than a random selection

to obtain reward at the start, and more informative than the

first 10 strokes of the input to obtain reward at the end.

Goals For sketches, one abstraction goal is the recogniz-

ability of the output sequential object sketch. We quantify

this by the resulting classification accuracy under a multi-

class classifier (thus defining at, ht and gt in the reward

1A time step means a pass through the candidate AU pool, leading to

the selection of a chosen AU.

function). To demonstrate driving abstraction by different

goals, we explore rewarding preservation of other informa-

tion about the sketch. Specifically, we train a sketch at-

tribute detector to define an attribute preservation reward.

For videos, the main target information to be preserved is

the recognizability of the video category. To guide training

we employ a multi-class classifier, which is plugged into the

reward function to compute at, ht and gt values at each time

step. We also consider another abstraction goal of preserv-

ing attributes in videos by employing an attribute detector

to define the reward. For text, the main goal is sentiment

preservation in product reviews, and the reward is given by

probability of the review summary being correctly classi-

fied by a binary sentiment classifier. As different abstraction

goals, we also explore the preservation of product-category

and helpfulness information by training separate classifiers

for these goals.

3.3. Training procedure

Variable action space In a conventional reinforcement

learning (RL) framework, the observation and action space

dimensions are both fixed. In our framework, because the

number of candidate AUs is decremented at each step, the

action space shrinks over time. In contrast, the number of

chosen AUs increases over time, but their embedding di-

mension is fixed, due to the use of RNN embedding. Our

RL framework deals with these dynamics by rebuilding the

action space at every time-step. This can be efficiently im-

plemented by convolution over available actions (i.e., the

candidate AU pool).

Objective The objective of RL is to find the policy π that

produces a trajectory τ of states and actions leading to the

maximum expected reward. In our context the trajectory is

the sequence of extracted AUs. The policy is realized by

a neural network parametrized by θ, i.e., πθ, where θ is the

set of parameters for all modules mentioned in Sec. 3.1. The

optimization can be written as

θ⋆ = argmax
θ

Eτ∼πθ(τ)

[

∑

t

r(st, at)

]

, (2)

where r(st, at) is the reward for taking action at in state

st, and τ = [s1, a1, s2, a2, . . . , sT , aT ]. We employ policy

gradient for optimization using the following gradient:

1

N

N,T
∑

i,t=1

(∇θ log(πθ(ai,t|si,t))(

T
∑

t′=t

γt
′
−tr(si,t′ , ai,t′))),

(3)

with a discount factor γ = 0.9, and N = 2. We summa-

rize the pseudo code for RL training of the GDSA agent in

Algorithm 1.

A synthetic illustration We apply our method to a syn-

thetic example for illustration. We introduce a simple 3× 3
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Algorithm 1 Training GDSA agent

1: Input: D = [(x1, y1), (x2, y2), . . . ]
2: Initialise model parameters: θ
3: for epoch index in [1, 2, . . . , num epochs] do

4: Gradients: G = [ ]
5: Sample a random input x∗ with its label y∗
6: Split x∗ into AUs [x

(1)
∗ , x

(2)
∗ , . . . ]

7: Get AU rep.: f = [[g(x
(1)
∗ ), τ1], [g(x

(2)
∗ ), τ2], . . . ]

8: Get the category embedding: ψθ(y∗)
9: for play index in [1, 2, . . . , N ] do

10: Candidate-AU: La = f
11: Chosen-AU: Lb = [ ]
12: Gradient-buff: G = [ ]
13: Reward-buff: R = [ ]
14: for pass index in [1,2,. . . ,T] do

15: Get chosen AU embed. using RNN: ωθ(Lb)

16: Concatenate feats: [[ω,L
(1)
a , ψ], . . . ]

17: π = softmax(φθ([ω,L
(1)
a , ψ]), . . . ])

18: Draw an AU a from discrete distribution π
19: Move the a-th AU from La to Lb

20: Calculate gradient ∇θ log π[a] & add it toG
21: Calculate reward using Eq. 1 & add it to R
22: end for

23: Calculate reweighed gradients using Eq. 3

24: Add the sum of reweighed gradients to G
25: end for

26: Do gradient ascent using the average of G
27: end for

28: Output: θ

Figure 3. Samples in a synthetic dataset. The first column is the

class prototype, and the remainders are observed samples.
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Figure 4. Synthetic data GDSA agent. X-axis: train iterations. Y-

axis: test accuracy (recognition of 2-pixel image sequences).

image format, generated as a sequence of 9 binary samples

in raster scan sequential order. Each AU is one pixel, and

there are 29 unique image categories. We choose 3 classes,

corresponding to the first column in Fig. 3, denoted as ‘×’,

‘+’, and ‘o’ respectively. To introduce intra-class variabil-

ity, observed samples are perturbed by Gaussian noise. A

key observation in Fig. 3 is that, to recognize a category,

not all AUs (pixels) are necessary. For example, in a se-

quence of only two AUs, if one is the corner and other is

the centre, then it must be the ’×’ category. This creates

room for simplification and re-ordering of the AU sequence

to produce a shorter but information-preserving sequence.

Training the RL agent for this problem, we expect it to

pick few AUs that maximize recognizability. We limit the

AU selection budget to 2 (i.e., two pixel output images). As

shown in Fig. 4, the agent produces output sequences with

∼ 90% probability of being correctly classified by a linear

classifier. This is is significantly better than its randomly

initialized state (a policy that picks two strokes at random),

for which the performance is about 50% ∼ 70%.

4. Experiments

Generic implementation details Our model is imple-

mented in Tensorflow [1]. The RNN used in the GDSA

framework to process the chosen AU sequence is imple-

mented with single layer gated recurrent units (GRU) with

128 hidden cells. The GRU output of dimension 1 × 128
is fed to a fully connected layer to get the chosen-strokes

embedding of dimension 1 × 18. The candidate AU em-

bedding, obtained by feeding the AU representation (fixed

length feature vector concatenated with time-stamp) into a

fully connected layer, is of dimension 1× 9. The class em-

bedding is of dimension 1 × 3. The complete embedding,

obtained by concatenating the three previous embeddings

and feeding into a fully connected layer, is sized 1 × 15.

Both the code and trained models will be made public.

Setting discussion As mentioned earlier, we proposed a

new problem setting and associated solution for abstraction

learning. While contemporary learning for summarization

requires annotated target summaries [4, 6, 29, 35, 49], we

require instead a goal function. The goal function is it-

self learned from metadata that is often already available

or easier to obtain than expensive gold-standard summaries

(e.g., sentiment label for text). Since the goal (task-specific

vs. generic summaries) and data requirements (weak. vs

strongly annotated) of our method are totally different, we

cannot compare to conventional summarization methods.

4.1. Sketch abstraction

Dataset We train our GDSA for sketch using Quick-

Draw [17], the largest free-hand sketch dataset. As in [27],

we choose 9 QuickDraw categories namely: {cat, chair,

face, fire-truck, mosquito, owl, pig, purse and shoe}; us-

ing 70,000 sketches per category for training and 5,000 for
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Attributes: Whiskers, Tail

Category: Cat

Attributes: Big eyes

Category: Owl

Attributes: Big eyes

Category: Panda

Attributes: Long legs, Stripes, Whiskers, Tail

Category: Tiger

Figure 5. Qualitative comparison of goal-driven stroke sequencing strategies for QuickDraw sketches using the budget size of 25% (light

background). In each section: the top row depicts the stroke sequence obtained using GDSA with category-goal, and the bottom row

depicts the stroke sequence obtained using GDSA with attribute-goal.

testing. The average number of strokes in the 9 chosen cat-

egories are {9.8, 4.9, 6.4, 8.3, 7.2, 9.1, 9.5, 3.6, 3.0}.

Implementation details We train our agent with K =
50, 000 episodes, reward scaling factor b = 100 and learn-

ing rate η = 0.0001. We set the budget B to 25% and

50% of the (rounded) average number of strokes per cat-

egory. For reward computation, at each step the list of

strokes chosen by our agent is fed into a classifier to de-

termine the probability of the ground truth class. The same

is done for the strokes chosen following original input and

random order. To this end, we employ two different clas-

sifiers: (1) A state-of-the-art convolutional neural network

(CNN) - Sketch-a-Net 2.0 [47], fine-tuned on the 9 Quick-

Draw categories. The stroke data is rendered as an image

before CNN classification. (2) A three-layer LSTM with

256 hidden cells at each layer, employed in [27]. It takes an

input list of (x, y, p) (coordinates and pen-state) and feeds

its last time-step output to a fully-connected layer with soft-

max activation which provides the probability distribution

for the prediction of the sketch class. After training, this

RNN is also used to extract the 256 dimensional feature

vector for each stroke in the candidate stroke pool which

is concatenated with one-hot time-stamp vector to get the

final AU representation of dimension D = 266. Note that

we do not use Sketch-a-Net for this purpose, due to the spar-

sity of rendered single strokes images, with which the CNN

cannot generate a meaningful representation.

Results We evaluate the performance of our GDSA

model by sketch recognition accuracy when using a bud-

get B of 25% and 50% of the average number of strokes for

each category. This evaluation is performed on the testing

set of 45,000 sketches. Sketch recognition is achieved using

two different classifiers (RNN [27] and Sketch-a-Net [47])

described previously. We compare our abstraction model

with: (1) First B strokes in the original human drawing or-

der. This is a strong baseline, as the data in QuickDraw is

Budget 25% 50%

Method RNN Sketch-a-Net RNN Sketch-a-Net

Human 36.66 62.08 66.73 75.90

Random 22.67 41.06 45.65 65.47

DSA [27] 38.36 65.05 67.89 81.50

DQSN [53] 38.11 64.58 67.50 80.31

GDSA 50.50 71.92 71.75 86.15

Upper bound 87.77 91.99 87.77 91.99

Table 1. Category recognition (acc. %) of the abstracted sketches.

obtained by challenging the player to draw the object (ab-

stractly) in a time-limited setting - the first few strokes are

thus those deemed important for recognizablity by humans.

(2) Random selection of B strokes. (3) DSA [27], the state-

of-the-art deep sketch abstraction model. Note that to make

a fair comparison we adapt [27] to perform abstraction at

stroke level, as the original paper dealt with stroke-segments

(five consecutive (x, y, p) elements). (4) DQSN [53], an

abstraction model originally proposed for videos. We adapt

this model to our setting by plugging in stroke AU represen-

tations instead of video-frame features. We also report the

performance of the full input sequence without abstraction,

which represents the upper bound. The results in Table 1

show that our GDSA agent outperforms all the other meth-

ods. The improvement in performance is most evident for

the harder B = 25% budget, confirming the ability of our

GDSA model to learn an efficient selection policy. In par-

ticular, both DSA and DQSN are restricted by the original

input AU order with a fixed 2-state action space, resulting

in sub-optimal selection.

Abstraction with a different goal A key feature of our

approach is the ability to select different input properties

that should be preserved during the abstraction. In this

experiment, we demonstrate this capability by contrasting

attribute preservation with the category-preservation. We

do this by selecting 9 animal categories from QuickDraw

(cat, mouse, owl, panda, pig, rabbit, squirrel, tiger and ze-

bra) and defining 5 animal attributes: whiskers (cat, mouse,
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segments

Category: Bee Keeping Attributes: Animals

segments

Figure 6. Qualitative comparison of goal-driven stroke sequencing strategies for TVSum videos using the budget size of 25%. Grey: Full

video clip. Pink: GDSA with category preservation goal. Yellow: GDSA with attribute preservation goal.

rabbit, tiger), tail (cat, mouse, pig, rabbit, squirrel, tiger,

zebra), stripes (tiger, zebra), long-legs (tiger, zebra), big-

eyes (owl, panda). We train two separate Sketch-a-Net 2.0

models to recognize the above mentioned categories and at-

tributes. These are then plugged in the reward generator to

train GDSA, with budget B = 25%. Qualitative compar-

ison of the results of category vs attribute preservation are

shown in Fig. 5. We can see clearly that changing the goal

has a direct impact on the abstraction strategy. E.g., pre-

serving the salient cat category cue (ears) vs. the requested

attribute (whiskers).

4.2. Video abstraction

Dataset We train GDSA for video using the TVSum

dataset [35], with the primary objective of preserving video

category information. This dataset contains 10 categories:

{changing vehicle tire, getting vehicle unstuck, groom an-

imal, making sandwich, parkour, parade, flash mob gather-

ing, bee keeping, bike tricks, and dog show}. We use 40

video samples for training, and 10 for testing. The video

length vary from 2 to 10 minutes. Following the common

practice [49, 53] we down-sample videos to 1 fps, and then

use shot-change data to merge 5 consecutive shots to form

coarse segments. After this, the average number of seg-

ments per video in each category are {13.5, 8.9, 10.4, 9.3,

7.8, 11.0, 10.4, 10.5, 12.1, 9.9} respectively.

Implementation details We train our agent with K =
100 episodes, reward scaling factor b = 100 and learning

rate η = 0.0001. We set the budget B to 25% and 50%
of the average number of segments for each category. Ad-

ditionally, we test a budget of one segment to find the sin-

gle most relevant segment in each video. For reward com-

putation we use a multi-class bidrectional GRU classifier,

originally proposed in [53]. This classifier, after training, is

also used to extract the fixed dimension (512) feature vector

which is concatenated with the time-stamp vector to obtain

the final AU representation (D = 522) for each segment in

the candidate pool.

Results The performance of GDSA is evaluated by cate-

gory recognition accuracy, at three budget values of 1 seg-

ment, 25% and 50% of the average number of segments per

category. Following [53] this evaluation is performed by

Budget 1 segment 25% 50%

Method RNN RNN RNN

Original 28.0 28.0 28.0

Random 28.0 32.0 34.0

DSA [27] 42.0 62.0 72.0

DQSN [53] 44.0 64.0 72.0

GDSA model 68.0 74.0 76.0

Upper bound 78.0 78.0 78.0

Table 2. Category recognition (accuracy %) of video samples.

doing 5-fold cross-validation. Category recognition is per-

formed using the aforementioned classifier. We compare

with: (1) FirstB segments in the original order. (2) Random

B segments. (3) DSA [27], adapted to videos by substitut-

ing stroke AU vector with video-segment AU. (4) The state-

of-the-art DQSN [53], which is adapted to be trained with a

category-recognition based reward for fair comparison. We

also compute the upper bound of the input video without ab-

straction. The results in Table 2 show that our GDSA agent

outperforms all competitors by significant margins.

Abstraction with a different goal In order to demon-

strate the goal-driven abstraction capability of our model,

we first define 5 category level attributes: animals (dog

show, grooming animals, bee keeping), humans (parkour,

flash mob gathering, parade), vehicles (changing vehicle

tire, getting vehicle unstuck), food (making sandwich), bi-

cycle (attempting bike tricks)}. Using the same classifier

architecture used for category classification, we train the at-

tribute classifier. This is then plugged in the reward func-

tion to guide training, with B = 25%. Some qualitative

results are shown in Fig. 6. We can clearly observe that ab-

stracted output varies according to the goal function. E.g.,

preserving parade related segments (category) vs. segments

depicting humans (attribute).

4.3. Text abstraction

Dataset We train our GDSA model for text using the

Amazon Review dataset [24]. We aim to preserve posi-

tive/negative review sentiment (1-2 stars as negative, 4-5

stars as positive). We choose 9 categories: {apparel, books,

dvd, electronics, kitchen and houseware, music, sports and

outdoors, toys and games, and video}, based on the avail-

ability of equal number of positive and negative reviews.

The average number of sentences per category are {3.5, 8.2,
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T

Once again, in a 90's hollywood horror flick, it is dissappointing. The 

actors within the movie are actually pointless and show no effect,but, 

there not to blame. The blame is the poor script writing for this movie. 

The movie has you going until about half way through, when they 

introduce the ghost to you. Now, unlike any other ghost in hollywood 

history, this ghost is literally a black blob. It contains some invisible 

bodies and haunts people with its face, which in turn, reveals the face 

of whom it kills. But, literally, when you put a 100 foot ghost into a 

movie, you better make sure its in the right one. This movie should 

probably been called the blob, not house on haunted hill. It is a 

horrible re-make and a waste of about 2 hours. Please, for your own 

sake, rent some good genre horror, like halloween or when a stranger 

calls. Not some crappy remake that wants to make you leave the room 

your watching it in. Better luck next time to the director, producer, co- 

producer, and writer of this film, because of all the people that took 

part, probably just wanted to make some cheap money, so they made 

a movie. Better luck next time.

Category - dvd. Sentiment - negative. Budget - 3 sentences

The actors within the movie are actually pointless and show no 

effect,but, there not to blame. The blame is the poor script writing for 

this movie. It is a horrible re-make and a waste of about 2 hours.

This movie should probably been called the blob, not house on haunted 

hill. Once again, in a 90's hollywood horror flick, it is dissappointing. It is 

a horrible re-make and a waste of about 2 hours.

The blame is the poor script writing for this movie. It is a horrible re-

make and a waste of about 2 hours. Please, for your own sake, rent 

some good genre horror, like halloween or when a stranger calls.

T

It has a nice feel to it. The bathrobe is made of japanese yarn and the 

yarn is made of cotton so the bathrobe is made of 100% cotton. 

Cotton of course strinks in the wash but the strinkage is tolerable. I 

purchased the expresso color and after a few washes the color faded 

but that is to expected. Overall i am satisfied with this purchase and 

would purchase it over again if i had the choice to do so.

Category - apparel. Sentiment - positive. Budget - 1 sentence

Overall i am satisfied with this purchase and would purchase it over 

again if i had the choice to do so.

Overall i am satisfied with this purchase and would purchase it over 

again if i had the choice to do so.

The bathrobe is made of japanese yarn and the yarn is made of cotton 

so the bathrobe is made of 100% cotton.

T

I also had an expensive japanese cd but all this would not prepare me 

for what i discover here. Over these cds one discovers the original 

sessions from which the record was made. This is simply wonderful. Ok 

sometimes it takes quite a bit of patience to sit trhough all this but it is 

worth the time.

Category - music. Sentiment - positive. Budget - 2 sentences

This is simply wonderful. Ok sometimes it takes quite a bit of patience 

to sit trhough all this but it is worth the time.

Over these cds one discovers the original sessions from which the 

record was made. This is simply wonderful.

Over these cds one discovers the original sessions from which the 

record was made. This is simply wonderful.

T

I love that the inside is set up like "shelves". My son loves to organize 

his trains in it. I don't like how thin the metal is. It dents as easy as a 

cola can. If it were made better, it would be worth the money. Save 

your money on this one and find something better made.

Category - toys&games. Sentiment - negative. Budget - 2 sentences

My son loves to organize his trains in it. It dents as easy as a cola can.

I love that the inside is set up like ‘shelves’. It dents as easy as cola can. 

If it were made better, it would be worth the money. Save your money 

on this one and find something better made.

T

We went to check it out after my 4 year old saw it on tv and liked it 

because the bear had glasses just like him. The product seemed 

decent in the store, so we bought it. He has only played with it once or 

twice since christmas. The only time he had fun with it was when I got 

mad and yelled at the thing because it wouldn't do what it is supposed 

to. Save your money and don't buy this junk.

Category - toys&games. Sentiment - negative. Budget - 2 sentences

The only time he had fun with it was when I got mad and yelled at the 

thing because it wouldn't do what it is supposed to. Save your money 

and don't buy this junk.

We went to check it out after my 4 year old saw it on tv and liked it 

because the bear had glasses just like him. The product seemed decent 

in the store, so we bought it.

The only time he had fun with it was when I got mad and yelled at the 

thing because it wouldn't do what it is supposed to. Save your money 

and don't buy this junk.

Figure 7. Qualitative comparison of goal-driven summarization for Amazon product reviews with budget 25%. Grey: Full review. Pink:

GDSA for sentiment. Yellow: GDSA for category. Green: GDSA for helpfulness.

8.9, 5.6, 4.8, 6.8, 5.4, 4.9, 7.7} respectively. We use 1400

reviews per category for training and 600 for testing.

Implementation details We train our agent with K =
10000 episodes, reward scaling factor b = 100 and learning

rate η = 0.0001. We set the budget B to 25% and 50% of

the average number of sentences for each category. Addi-

tionally, we have a budget of one sentence to find the single

most relevant sentence in each review. We use two differ-

ent sentiment classifiers, both using Glove embedding [32]

to represent each word as fixed dimension vector: (1) A

state-of-the-art hierarchical attention network (HAN) [45]

for text classification, trained for binary sentiment analysis

on the 9 review categories. (2) A RNN built with a single

layer LSTM of 64 hidden cells. It takes as input the list

of word embeddings and feeds its last time-step output to a

fully-connected layer with softmax activation to predict the

sentiment. These classifiers, once trained, are also used to

extract a fixed dimension (256/64) feature which is concate-

nated with the time-stamp vector to get the final AU repre-

sentation (D = 266/74) for each sentence in the candidate

sentence pool, for the respective GDSA models.

Results We evaluate the performance of our GDSA

model by sentiment recognition accuracy with three bud-

gets of 1 sentence, 25% and 50% of the average number

of sentences per category. This evaluation is performed on

the testing set of 5,400 reviews. Sentiment recognition uses

the two classifiers (RNN and HAN [45]) described above.

We compare with: (1) First B sentences in the original or-

der. (2) Random B sentences. (3) DSA [27] and (4) DQSN

[53], both adapted to text by plugging in the sentence AU

representation instead of stroke and frame AU representa-

tion. Upper bound represents the performance of the full

review without abstraction. The results in Table 3 show that

Budget 1 sentence 25% 50%

Method RNN HAN RNN HAN RNN HAN

Original 59.70 67.47 66.57 76.06 70.73 80.27

Random 61.16 69.04 66.44 77.14 70.98 81.57

DSA [27] 66.37 72.42 71.58 80.02 73.36 83.47

DQSN [53] 65.70 71.40 71.93 80.25 73.20 83.77

GDSA model 70.64 83.77 73.39 86.08 74.11 86.12

Upper bound 76.41 86.66 76.41 86.66 76.41 86.66

Table 3. Sentiment recognition (accuracy %) of review summaries.

our GDSA agent again outperforms all competitors.

Abstraction with different goals We next demonstrate

the GDSA model’s goal-driven summarization capability

by training instead to preserve (1) product-category (multi-

class), and (2) helpfulness (binary) data. HAN classifier and

B = 25% are used. Some qualitative results are shown in

Fig. 7. We can observe that depending on the abstraction

goal, the output varies to preserve the information relevant

to the goal.

5. Conclusion

We have introduced a new problem setting and effec-

tive framework for goal-driven sequential data abstraction.

It is driven by a goal-function, rather than needing expen-

sively annotated ground-truth labels, and also uniquely al-

lows selection of the information to be preserved rather than

producing a single general-purpose summary. Our GDSA

model provides improved performance in this novel abstrac-

tion task compared to several alternatives. Our reduced data

requirements, and new goal-conditional abstraction ability

enable different practical summarization applications com-

pared to those common today.
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