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Abstract

Class imbalance is a long-standing problem relevant to a

number of real-world applications of deep learning. Over-

sampling techniques, which are effective for handling class

imbalance in classical learning systems, can not be directly

applied to end-to-end deep learning systems. We propose

a three-player adversarial game between a convex gener-

ator, a multi-class classifier network, and a real/fake dis-

criminator to perform oversampling in deep learning sys-

tems. The convex generator generates new samples from

the minority classes as convex combinations of existing in-

stances, aiming to fool both the discriminator as well as the

classifier into misclassifying the generated samples. Con-

sequently, the artificial samples are generated at critical lo-

cations near the peripheries of the classes. This, in turn,

adjusts the classifier induced boundaries in a way which

is more likely to reduce misclassification from the minor-

ity classes. Extensive experiments on multiple class imbal-

anced image datasets establish the efficacy of our proposal.

1. Introduction

The problem of class imbalance occurs when all the

classes present in a dataset do not have equal number of

representative training instances [19, 11]. Most of the exist-

ing learning algorithms produce inductive bias favoring the

majority class in presence of class imbalance in the training

set, resulting in poor performance on the minority class(es).

This is a problem which routinely plagues many real-world

applications such as fraud detection, dense object detec-

tion [30], medical diagnosis, etc. For example, in a medi-

cal diagnosis application, information about unfit patients is

scarce compared to that of fit individuals. Hence, traditional

classifiers may misclassify some unfit patients as being fit,

having catastrophic implications [32].

Over the years, the machine learning community has de-

vised many methods for tackling class imbalance [24, 4].

However, only a few of these techniques have been ex-

tended to deep learning even though class imbalance is

fairly persistent is such networks, severely affecting both

(a) (b)

(c) (d)

Figure 1. Illustration using a ‘toy’ dataset: (a) Imbalanced classi-

fication with an unaided classifier network M results in misclas-

sification of the minority class instances (red dots). (b) Artificial

minority points (green ‘+’) generated using conditional GAN help

to improve the result on the minority class but bleed into the ma-

jority class (blue dots), affecting the performance on the latter. (c)

New points are generated by training a convex generator G alter-

natingly with M . This is a two player adversarial game where G

attempts to generate samples which are hard for M to correctly

classify. This results in ideal performance on the minority class,

but at the cost of misclassifying the majority class as G does not

adhere to the distribution of the minority class. (d) Ideal perfor-

mance on both classes is achieved by further incorporating an ad-

ditional discriminator D to induce fidelity to the minority class

distribution and to limit bleeding into majority class territory.

the feature extraction as well as the classification process

[48, 21, 49, 5, 22]. The existing solutions [21, 10, 43,

30, 6] for handling class imbalance in deep neural net-

works mostly focus on cost tuning to assign suitably higher

costs to minority instances. Another interesting class of

approaches [50, 12] focuses on constructing balanced sub-

samples of the dataset. Wang et al. [44] proposed a novel

meta-learning scheme for imbalanced classification. It is in-

teresting to note that oversampling techniques like SMOTE

[8] have not received much attention in the context of deep

learning, despite being very effective for classical systems
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[14]. This is because deep feature extraction and classifi-

cation are performed in an end-to-end fashion, making it

hard to incorporate oversampling which is typically done

subsequent to feature extraction. An attempt to bridge this

gap was made by Ando and Huang [1] in their proposed

deep oversampling framework (DOS). However, DOS uni-

formly oversamples the entire minority class and is not ca-

pable of concentrating the artificial instances in difficult re-

gions. Additionally, the performance of DOS depends on

the choice of the class-wise neighborhood sizes, which must

be determined by costly parameter tuning.

Generative adversarial networks (GANs) are a powerful

subclass of generative models that have been successfully

applied to image generation. This is due to their capabil-

ity to learn a mapping between a low-dimensional latent

space and a complex distribution of interest, such as nat-

ural images [15, 33, 36, 35]. The approach is based on an

adversarial game between a generator that tries to generate

samples which are similar to real samples and a discrimina-

tor that tries to discriminate between real training samples

and generated samples. The success of GANs as generative

models has led Douzas and Bacao [13] to investigate their

effectiveness in oversampling the minority class(es). How-

ever, attempting to oversample the minority class(es) using

GANs can lead to boundary distortion [39], resulting in a

worse performance on the majority class (as illustrated in

Figure 1(b)). Moreover, the generated points are likely to lie

near the mode(s) of the minority class(es) [42], while new

points around the class boundaries are required for learning

reliable discriminative (classification) models [17, 18].

Hence, in this article, we propose (in Section 3) a

novel end-to-end feature-extraction-classification frame-

work called Generative Adversarial Minority Oversampling

(GAMO) which employs adversarial oversampling of the

minority class(es) to mitigate the effects of class imbal-

ance1. The contributions made in this article differ from

the existing literature in the following ways:

1. Unlike existing deep oversampling schemes [1, 13],

GAMO is characterized by a three-player adversarial

game among a convex generator G, a classifier net-

work M , and a discriminator D.

2. Our approach is fundamentally different from the ex-

isting adversarial classification schemes (where the

generator works in harmony with the classifier to fool

the discriminator) [38, 27, 41, 35], in that our convex

generator G attempts to fool both M and D.

3. Unlike the generator employed in GAN [15], we con-

strain G to conjure points within the convex hull of

the class of interest. Additionally, the discriminator

D further ensures that G adheres to the class distribu-

1Codes & data at: https://github.com/SankhaSubhra/

GAMO.

tion for non-convex classes. Consequently, the adver-

sarial contention with M pushes the conditional dis-

tribution(s) learned by G towards the periphery of the

respective class(es), thus helping compensate for class

imbalance effectively.

4. In contrast to methods like [8, 13], G can oversample

different localities of the data distribution to different

extents based on the gradients obtained from M .

5. For applications requiring a balanced training set

of images, we also propose a technique called

GAMO2pix (Section 5) that can generate realistic im-

ages from the synthetic instances generated by GAMO

in the distributed representation space.

We undertake an ablation study as well as evaluate the per-

formance of our method compared to the state-of-the-art in

Section 4, and make concluding remarks in Section 6.

2. Related Works

The success of SMOTE [8, 9] has inspired several im-

provements. For example, [17, 7] attempt to selectively

oversample minority class points lying close to the class

boundaries. Works like [18, 29, 2], on the other hand, asym-

metrically oversample the minority class such that more

synthetic points are generated surrounding the instances

which are difficult to classify. Although these methods

achieved commendable improvement on traditional classi-

fiers, they can neither be extended to deep learning tech-

niques nor be applied to images, respectively due to the

end-to-end structure of deep learning algorithms and a lack

of proper notion of distance between images.

Extending GANs for semi-supervised learning, works

like [27, 38] fused a c-class classifier with the discrimina-

tor by introducing an extra output line to identify the fake

samples. On the other hand, [41] proposed a c-class dis-

criminator which makes uncertain predictions for fake im-

ages. Additionally, [35] proposed a shared discriminator-

cum-classifier network which makes two separate sets of

predictions using two different output layers. These ap-

proaches can loosely be considered to be related to GAMO

as these also incorporate a classifier into the adversarial

learning scheme.

3. Proposed Method

Let us consider a c-class classification problem with a

training dataset X ⊂ R
D (of images vectorized either by

flattening or by a convolutional feature extraction network

F ). Let the prior probability of the i-th class be Pi, where

i ∈ C = {1, 2, · · · c}; C being the set of possible class la-

bels. Without loss of generality, we consider the classes to

be ordered such that P1 ≤ P2 ≤ · · · < Pc. Moreover, let Xi

denote the set of all ni training points which belong to class

i ∈ C. We intend to train a classifier M having c output
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Figure 2. GAMO functions by simultaneously updating the classifier M and the generator G. The classification function (black, dotted line)

is trained to correctly classify samples from the majority class distribution pdmaj (blue, solid line), the real minority class distribution pdmin

(red, dots and dashes) as well as the generated minority distribution p
g
min (brown, dashed line). The generator, on the other hand, is trained

to generate minority samples which will be misclassified by M . The upward arrows show how the generator learns the mapping x = G(z)
from a standard normal distribution (mauve, dotted line) in the latent space to convex combinations of the real minority instances from the

minority class. The ideal classification function is shown as a blue highlight in the background. (a) Let us consider an initial adversarial

pair: the generated distribution p
g
min is similar to the real distribution of the minority class pdmin and M is an inaccurate classifier. (b) M is

trained to properly classify the samples from the three distributions pdmaj , pdmin, and p
g
min; resulting in a non-ideal trained classifier which

is biased in favor of the majority class. (c) After an update to G, the gradient of M has guided G(z) to flow to regions that are more likely

to be misclassified by M . (d) Thereafter, retraining M results in a classifier much closer to the ideal classifier due to the increased number

of minority samples near the boundary of the two classes.

lines, where the i-th output Mi(x) predicts the probability

of any x ∈ X to be a member of the i-th class.

3.1. Adversarial Oversampling

Our method plays an adversarial game between a clas-

sifier that aims to correctly classify the data points and a

generator attempting to spawn artificial points which will

be misclassified by the classifier. The idea is that gener-

ating such difficult points near the fringes of the minority

class(es) will help the classifier to learn class boundaries

which are more robust to class imbalance. In other words,

the performance of the classifier will adversarially guide the

generator to generate new points at those regions where the

minority class under concern is prone to misclassification.

Moreover, the classifier will aid the generator to adaptively

determine the concentration of artificial instances required

to improve the classification performance in a region, thus

relieving the user from tuning the amount of oversampling.

Instead, we only need to fix the number of points to be gen-

erated to the difference between the number of points in the

majority class and that of the (respective) minority class(es).

3.2. Convex Generator

The generator tries to generate points which will be mis-

classified by the classifier. Hence, if left unchecked, the

generator may eventually learn to generate points which do

not coincide with the distribution of the intended minority

class. This may help improve the performance on the con-

cerned minority class but will lead to high misclassifica-

tion from the other classes. To prevent this from happening,

we generate the new points only as convex combinations

of the existing points from the minority class in question.

This will restrict the generated distribution within the con-

vex hull of the real samples from the (respective) minority

class(es). Since the generator attempts to conjure points that

are difficult for the classifier, the points are generated near

the peripheries of the minority class(es).

Our convex generator G comprises of two modules: a

Conditional Transient Mapping Unit (cTMU ) and a set of

class-specific Instance Generation Units (IGU ), which we

propose to limit the model complexity. The cTMU net-

work learns a mapping t, conditioned on class i, from a

l-dimensional latent space to an intermediate space. The

IGUi, on the other hand, learns a mapping gi from the

cTMU output space to a vector gi(t(z|i)) of ni convex

weights using softmax activation, where z is a latent vari-

able drawn from a standard normal distribution. Thus,

gi(t(z|i)) ≥ 0, and gi(t(z|i))
T
1 = 1. Hence, G can gen-

erate a new D-dimensional sample for the i-th class as a

convex combination of the data points in Xi,

G(z|i) = gi(t(z|i))
TXi. (1)

Formally, the adversarial game played by the proposed

classifier-convex generator duo poses the following opti-

mization problem, when cross entropy loss is considered:

min
G

max
M

J(G,M) =
∑

i∈C
Ji, (2)

where Ji = (Ji1 + Ji2 + Ji3 + Ji4),

Ji1 = PiEx∼pd
i
[logMi(x)],

Ji2 =
∑

j∈C\{i}
PjEx∼pd

j
[log(1−Mi(x))],

Ji3 = (Pc − Pi)EG(z|i)∼p
g

i
[logMi(G(z|i))], and,

Ji4 =
∑

j∈C\{i}

(Pc − Pj)EG(z|j)∼p
g

j
[log(1−Mi(G(z|j)))],

while pdi and p
g
i respectively denote the real and generated

class conditional probability distributions of the i-th class.
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Figure 3. The GAMO model: (Left) Schematic of the GAMO framework; (Right) Illustration of an Instance Generation Unit (IGU ).

Given an image, the extracted feature vectors (either by a convolutional neural network F or by flattening) are fed to the classifier network

M as well as the conditional discriminator D. M predicts the class label for the input data point while D distinguishes between real and

fake data instances. The convex generator network G is composed of a cTMU , and IGUs corresponding to each of the c − 1 minority

classes. The IGUi network takes an intermediate vector generated by cTMU and maps it to a set of ni convex weights. It then takes the

set Xi as input and generates a new sample for the i-th class, as the convex combination of all the xj ∈ Xi.

The two-player minimax game formalized in (2) is

played between a classifier M and a generator G. M at-

tempts to correctly classify all real as well as generated

points belonging to all the classes. Whereas, G strives to

generate sample(s) which have a high probability of being

classified by M into all other classes. To demonstrate how

such an adversarial game can aid M to learn a better class

boundary, we illustrate its chronological progression in a

more explanatory manner in Figure 2. In Theorem 1, we

show that the optimization problem in (2) is equivalent to

minimizing a sum of the Jensen-Shannon divergences.

Theorem 1. Optimizing the objective function J is equiva-

lent to the problem of minimizing the following summation

of Jensen-Shannon divergences:

c
∑

i=1

JS
(

(

Pip
d
i +(Pc−Pi)p

g
i

)

∣

∣

∣

∣

∣

∣

c
∑

j 6=i
j=1

(

Pjp
d
j+(Pc−Pj)p

g
j

)

)

Proof. See the supplementary document.

The behavior of the proposed approach can be under-

stood by interpreting Theorem 1. The optimization prob-

lem aims to bring the generated distribution, for a particular

class, closer to the generated as well as real distributions

for all other classes. Since the real distributions are static

for a fixed dataset, the optimization problem in Theorem

1 essentially attempts to move the generated distributions

for each class closer to the real distributions for all other

classes. This is likely to result in the generation of ample

points near the peripheries, which are critical to combating

class imbalance. While doing so, the generated distributions

for all classes also strive to come closer to each other. How-

ever, the generated distributions for the different classes do

not generally collapses upon each other, being constrained

to remain within the convex hulls of the respective classes.

3.3. Additional Discriminator

While the generator only generates points within the

convex hull of the samples from the minority class(es), the

generated points may still be placed at locations within the

convex hull which do not correspond to the distribution of

the intended class (recall Figure 1(c)). This is likely to

happen if the intended minority class(es) are non-convex in

shape. Moreover, we know from Theorem 1 that the gen-

erated distributions for different minority classes may come

close to each other if the respective convex hulls overlap.

To solve this problem, we introduce an additional condi-

tional discriminator which ensures that the generated points

do not fall outside the actual distribution of the intended mi-

nority class(es). Thus, the final adversarial learning system

proposed by us consists of three players, viz. a multi-class

classifier M , a conditional discriminator D which given a

class aims to distinguish between real and generated points,

and a convex generator G that attempts to generate points

which, in addition to being difficult for M to correctly clas-

sify, are also mistaken by D to be real points sampled from

the given dataset. The resulting three-player minimax game

is formally presented in (3).

min
G

max
M

max
D

Q(G,M,D) =
∑

i∈C
Qi, (3)

where, Qi = (Ji1 + Ji2 + Ji3 + Ji4 +Qi1 +Qi2),

Qi1 = PiEx∼pd
i
[logD(x|i)], and,

Qi2 = (Pc − Pi)EG(z|i)∼p
g

i
[log(1−D(G(z|i)|i))].

3.4. Least-Square Formulation

Mao et al. [31] showed that replacing the popular cross

entropy loss in GAN with least square loss can not only

produce better quality images but also can prevent the van-

ishing gradient problem to a greater extent. Therefore, we
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Algorithm 1 Generative Adversarial Minority Oversampling (GAMO)

Input: X: training set, l: latent dimension, b: minibatch size, u, v: (hyperparameters, set to ⌈n
b
⌉ in our implementation).

Output: A trained classification network M .

Note: For flattened images there is no need to train F , i.e., F (X) can be replaced by X .

1: while not converged do

2: for u steps do

3: Sample Bd = {x1,x2, · · ·xb} from X , with corresponding class labels Yd.

4: Update F by gradient descent on (M(F (Bd)), Yd) keeping M fixed.

5: end for

6: for v steps do

7: Sample Bd = {x1,x2, · · ·xb} from X , with corresponding class labels Yd.

8: Sample Bn = {z1, z2, · · · zb} from l dimensional standard normal distribution.

9: Update M and D by respective gradient descent on (M(F (Bd)), Yd) and (D(F (Bd)|Yd), 1), keeping F fixed.

10: Generate labels Yn by assigning each zj ∈ Bn to one of the c − 1 minority classes, with probability ∝ (Pc − Pi); ∀i ∈ C \ {c}.

11: Update M and D by respective gradient descent on (M(G(Bn|Yn)), Yn) and (D(G(Bn|Yn)|Yn), 0), keeping G fixed.

12: Sample Bg = {z1, z2, · · · zb} from l dimensional standard normal distribution.

13: Generate labels Yg by assigning each zj ∈ Bg to any of the c − 1 minority classes with equal probability. Take ones’ complement of Yg as Yg .

14: Update G by gradient descent on (M(G(Bg|Yg)), Yg) keeping M fixed.

15: Update G by gradient descent on (D(G(Bg|Yg)|Yg), 1) keeping D fixed.

16: end for

17: end while

also propose a variant of GAMO using the least square loss,

which poses the following optimization problem:

min
M

LM =
∑

i∈C
(Li1 + Li2 + Li3 + Li4), (4)

min
D

LD =
∑

i∈C
(Li5 + Li6), (5)

min
G

LG =
∑

i∈C\{c}
(Li7 + Li8 + Li9), (6)

where, Li1 = PiEx∼pd
i
[(1−Mi(x))

2],

Li2 =
∑

j∈C\{i}
PjEx∼pd

j
[(Mi(x))

2],

Li3 = (Pc − Pi)EG(z|i)∼p
g

i
[(1−Mi(G(z|i)))2],

Li4 =
∑

j∈C\{i}
(Pc − Pj)EG(z|j)∼p

g

j
[(Mi(G(z|j)))2],

Li5 = PiEx∼pd
i
[(1−D(x|i))2],

Li6 = (Pc − Pi)EG(z|i)∼p
g

i
[(D(G(z|i)|i))2],

Li7 = EG(z|i)∼p
g

i
[(Mi(G(z|i)))2],

Li8 =
∑

j∈C\{i,c}
EG(z|j)∼p

g

j
[(1−Mi(G(z|j)))2],

Li9 = EG(z|i)∼p
g

i
[(1−D(G(z|i)|i))2].

3.5. Putting it all together

The model for the GAMO framework is detailed in Fig-

ure 3, while the complete algorithm is described in Algo-

rithm 1. To ensure an unbiased training for M and D we

generate artificial points for the i-th class with probability

(Pc−Pi) to compensate for the effect of imbalance. On the

other hand, to also ensure unbiased training for G we use

samples from all classes with equal probability.

4. Experiments

We evaluate the performance of a classifier in terms of

two indices which are not biased toward any particular class

[40], namely Average Class Specific Accuracy (ACSA) [21,

44] and Geometric Mean (GM) [26, 4]. All our experiments

have been repeated 10 times to mitigate any bias generated

due to randomization and the means and standard deviations

of the index values are reported.

We have used a collection of 7 image datasets for our ex-

periments, namely MNIST [28], Fashion-MNIST [46], CI-

FAR10 [25], SVHN [34], LSUN [51] and SUN397 [47]2.

All the chosen datasets except SUN397 are not significantly

imbalanced in nature, therefore we have created their imbal-

anced variants by randomly selecting a disparate number

of samples from the different classes. Further, for all the

datasets except SUN397, 100 points are selected from each

class to form the test set. In the case of SUN397 (50 classes

of which are used for our experiments) 20 points from each

class are kept aside for testing.

We refrain from using pre-trained networks for our ex-

periments as the pre-learned weights may not reflect the im-

balance between the classes. We, instead, train the models

from scratch to emulate real-world situations where the data

is imbalanced and there is no pre-trained network available

that can be used as an appropriate starting point. We have

obtained the optimal architectures and hyperparameters for

each contending method in Section 4-5 using a grid search

(see supplementary document).

4.1. MNIST and Fashion-MNIST

The experiments in this section are conducted using

imbalanced subsets of the MNIST and Fashion-MNIST

datasets. In case of both the datasets, we have sampled

{4000, 2000, 1000, 750, 500, 350, 200, 100, 60, 40} points

from classes in order of their index. Thus, the datasets have

an Imbalance Ratio (IR: ratio of the number of representa-

tives from the largest class to that of the smallest class) of

100. We begin by establishing the effectiveness of our pro-

2Additional study on class imbalanced non-image benchmark datasets

can be found in the supplementary document.
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Table 1. Comparison of classification performance of CE and LS variants of classifiers on MNIST and Fashion-MNIST datasets.

MNIST Fashion-MNIST

Algorithm CE LS CE LS

ACSA GM ACSA GM ACSA GM ACSA GM

Baseline CN 0.88±0.01 0.87±0.02 0.88±0.01 0.86±0.01 0.82±0.01 0.80±0.01 0.81±0.01 0.79±0.01

SMOTE+CN 0.88±0.02 0.87±0.03 0.89±0.01 0.89±0.01 0.82±0.01 0.80±0.02 0.80±0.01 0.77±0.01

Oversample+CN - - - - 0.81±0.01 0.79±0.01 0.81±0.01 0.79±0.01

Augment+CN - - - - 0.82±0.01 0.78±0.01 0.82±0.01 0.78±0.01

DOS - - - - 0.82±0.01 0.79±0.01 0.81±0.01 0.79±0.02

cGAN / cDCGAN+CN 0.88±0.01 0.87±0.01 0.89±0.01 0.88±0.01 0.81±0.02 0.78±0.01 0.82±0.01 0.80±0.01

cG+CN 0.86±0.03 0.85±0.02 0.86±0.03 0.85±0.03 0.79±0.02 0.77±0.02 0.80±0.01 0.77±0.02

cG+D+CN 0.85±0.02 0.83±0.01 0.85±0.02 0.82±0.02 0.79±0.02 0.78±0.01 0.79±0.01 0.78±0.02

GAMO\D (Ours) 0.87±0.01 0.86±0.01 0.88±0.01 0.87±0.01 0.81±0.01 0.80±0.01 0.82±0.01 0.80±0.01

GAMO (Ours) 0.89±0.01 0.88±0.01 0.91±0.01 0.90±0.01 0.82±0.01 0.80±0.01 0.83±0.01 0.81±0.01

cGAN

CN

cG IGUSMOTE

CN

cG

CN CND

G

CN

G

CND

Figure 4. Ablation study on the MNIST dataset: SMOTE gen-

erates artificial samples from the minority class(es) as convex

combinations of pairs of neighbors from the respective class(es).

The oversampled dataset is then classified using a classifier

network CN. SMOTE sometimes generates unrealistic “out-of-

distribution” samples which are combinations of visually disparate

images that happen to be Euclidean neighbors in the flattened im-

age space. Using cGAN for generating new samples results in real-

istic images only from the more abundant minority classes. Train-

ing only a conditional Generator cG adversarially against CN, to

generate images which will be misclassified by CN, results in new

samples which all resemble the majority class ‘0’. Introducing a

discriminator D (to ensure that cG adheres to class distributions)

into the mix results in new samples which are somewhat in keep-

ing with the class identities, but still unrealistic in appearance. Em-

ploying our proposed convex generator G to generate new samples

by training it adversarially with CN (the GAMO\D formulation)

results in samples which are in keeping with the class identities,

but often “out-of-distribution” as the classes are non-convex. Fi-

nally, introducing D into this framework results in the complete

GAMO model which can generate realistic samples which are also

in keeping with the class identities.

posed framework. We also compare between the two vari-

ants of GAMO which use Cross Entropy (CE) and Least

Square (LS) losses, respectively.

We undertake an ablation study on MNIST using flat-

tened images to facilitate straightforward visualization of

the oversampled instances. Convolutional features are

used for Fashion-MNIST. For MNIST, we have com-

Table 2. Comparison of classification performance on CIFAR10

and SVHN datasets.

Algorithm
CIFAR10 SVHN

ACSA GM ACSA GM

Baseline CN 0.45±0.01 0.37±0.01 0.74±0.01 0.73±0.01

SMOTE+CN 0.46±0.02 0.4±0.02 0.75±0.01 0.73±0.02

Oversample+CN 0.44±0.02 0.37±0.03 0.74±0.02 0.73±0.02

Augment+CN 0.47±0.01 0.39±0.02 0.69±0.01 0.63±0.01

cDCGAN+CN 0.42±0.02 0.32±0.03 0.69±0.01 0.66±0.02

DOS 0.46±0.02 0.37±0.01 0.71±0.02 0.68±0.01

GAMO\D (Ours) 0.47±0.01 0.40±0.01 0.75±0.01 0.75±0.02

GAMO (Ours) 0.49±0.01 0.43±0.02 0.76±0.01 0.75±0.02

pared GAMO, against baseline classifier network (CN),

SMOTE+CN (training set is oversampled by SMOTE),

cGAN+CN (training set oversampled using cGAN, which

is then used to train CN), and also traced the evolution

of the philosophy behind GAMO, through cG+CN (con-

ditional generator cG adversarially trained against CN, in

contrast to cGAN+CN where CN does not play any part in

training cGAN), cG+D+CN (cG+CN network coupled with

a discriminator D), and GAMO\D (GAMO without a dis-

criminator) on the MNIST dataset. For Fashion-MNIST,

SMOTE+CN is performed in the feature space learned

by baseline CN. Oversample+CN (minority class images

randomly sampled with replacement), Augment+CN (data

augmentation to create new images and balance the training

set), and DOS are also considered during comparison, while

cGAN+CN is replaced by cDCGAN+CN (oversampled us-

ing conditional deep convolutional GAN).

The ablation study is shown visually in Figure 4 and the

results for both datasets are tabulated in Table 1. Overall,

GAMO is observed to perform better than all other meth-

ods on both datasets. Interestingly, GAMO\D performs

much worse than GAMO on MNIST but improves signif-

icantly on Fashion-MNIST. This may be due to the fact that

the convolutional feature extraction for Fashion-MNIST re-

sults in distributed representations where the classes are al-

most convex with little overlap between classes, enabling

the convex generator to always generate data points which

reside inside the class distributions.

Since we observe from Table 1 that the LS variants of the

classifiers mostly perform better than their CE based coun-
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Table 3. Comparison of classification performance with increased number of training instances on CelebA and LSUN datasets.

CelebA-Small CelebA-Large

Algorithm During Training During Testing During Training During Testing

ACSA GM ACSA GM ACSA GM ACSA GM

Baseline CN 0.91±0.01 0.91±0.01 0.59±0.01 0.45±0.04 0.93±0.01 0.92±0.01 0.71±0.01 0.60±0.03

SMOTE+CN 0.99±0.01 0.99±0.01 0.62±0.02 0.48±0.03 0.99±0.01 0.99±0.01 0.71±0.02 0.66±0.03

Oversample+CN 0.99±0.01 0.99±0.01 0.59±0.03 0.39±0.04 0.98±0.01 0.98±0.02 0.68±0.02 0.62±0.02

Augment+CN 0.74±0.06 0.70±0.09 0.62±0.05 0.47±0.08 0.82±0.01 0.79±0.01 0.72±0.01 0.66±0.02

cDCGAN+CN 0.86±0.01 0.84±0.01 0.59±0.01 0.36±0.02 0.87±0.01 0.86±0.01 0.67±0.01 0.58±0.02

DOS 0.82±0.03 0.80±0.02 0.61±0.01 0.48±0.02 0.84±0.01 0.83±0.02 0.72±0.01 0.64±0.02

GAMO (Ours) 0.92±0.01 0.91±0.01 0.66±0.01 0.54±0.02 0.91±0.01 0.91±0.01 0.75±0.01 0.70±0.02

LSUN-Small LSUN-Large

During Training During Testing During Training During Testing

ACSA GM ACSA GM ACSA GM ACSA GM

Baseline CN 0.90±0.01 0.89±0.01 0.50±0.01 0.28±0.05 0.87±0.01 0.87±0.01 0.61±0.02 0.54±0.03

SMOTE+CN 0.99±0.02 0.99±0.02 0.50±0.01 0.40±0.02 0.98±0.01 0.98±0.01 0.66±0.03 0.62±0.03

Oversample+CN 0.99±0.01 0.99±0.01 0.52±0.01 0.43±0.02 0.98±0.01 0.98±0.01 0.62±0.03 0.58±0.03

Augment+CN 0.67±0.06 0.64±0.09 0.54±0.03 0.45±0.07 0.70±0.03 0.65±0.03 0.64±0.02 0.58±0.03

cDCGAN+CN 0.80±0.02 0.79±0.02 0.53±0.02 0.43±0.03 0.81±0.02 0.80±0.02 0.60±0.02 0.53±0.03

DOS 0.78±0.03 0.76±0.02 0.54±0.02 0.44±0.02 0.79±0.02 0.77±0.02 0.63±0.02 0.61±0.03

GAMO (Ours) 0.93±0.01 0.93±0.01 0.57±0.01 0.50±0.02 0.80±0.01 0.80±0.01 0.70±0.02 0.68±0.03

terparts (which according to [31] is contributed by the more

stable and better decision boundary learned in LS), all the

experiments in the subsequent sections are reported using

the LS formulation for all the contending algorithms.

4.2. CIFAR10 and SVHN

In case of CIFAR10 and SVHN the classes are subsam-

pled (4500, 2000, 1000, 800, 600, 500, 400, 250, 150, and

80 points are selected in order of the class labels) to achieve

an IR of 56.25. From Table 2 we can see that GAMO per-

forms better than others on both of these datasets, closely

followed by GAMO\D, further confirming the additional

advantage of convolutional feature extraction in the GAMO

framework. Interestingly, Augment+CN performs much

worse than the other methods on the SVHN dataset. This

may be due to the nature of the images in the SVHN dataset,

which may contain multiple digits. In such cases, attempt-

ing to augment the images may result in a shift of focus

from one digit to its adjacent digit, giving rise to a discrep-

ancy with the class labels.

Table 4. Comparison of classification performance on SUN397.

Algorithm ACSA GM

Baseline CN 0.26±0.04 0.19±0.05

SMOTE+CN 0.28±0.04 0.21±0.04

Oversample+CN 0.23±0.05 0.00±0.00

Augment+CN 0.30±0.04 0.21±0.04

cDCGAN+CN 0.20±0.05 0.00±0.00

DOS 0.28±0.04 0.20±0.05

GAMO (Ours) 0.32±0.04 0.24±0.03

4.3. CelebA and LSUN

The experiment on CelebA and LSUN are undertaken to

evaluate the performance of GAMO on images of higher

resolution, as well as to assess the effects of an increase

in the number of instances from the different classes. In

case of CelebA the images are scaled to 64× 64 size, while

for LSUN the same is done on a central patch of resolution

224×224 extracted from each image. In the case of CelebA

we have created two 5 class datasets by selecting samples

from non-overlapping classes of hair colors, namely blonde,

black, bald, brown, and gray. The first dataset is the smaller

one (having 15000, 1500, 750, 300, and 150 points in the

respective classes) with an IR of 100, while the second one

is larger (having 28000, 4000, 3000, 1500, and 750 points

in the respective classes) with an IR of 37.33. Similarly,

in the case of LSUN we select 5 classes namely classroom,

church outdoor, conference room, dining room, and tower,

and two datasets are created. The smaller one (with 15000,

1500, 750, 300, and 150 points from the respective classes)

has an IR of 100, while the larger one (with 50000, 5000,

3000, 1500, and 750 points) has an IR of 66.67.

In Table 3, we present the ACSA and GM over both the

training and test sets for the small and large variants of the

two datasets. We can observe that all the algorithms manage

to close the gap between their respective training and test-

ing performances as the size of the dataset increases. How-

ever, SMOTE+CN shows a high tendency to overfit, which

might be caused by the miscalibrated initial baseline CN.

The same is observed for Oversample+CN, indicating that

such balancing technique may not provide additional infor-

mation to a classifier to facilitate better learning. Moreover,

while Augment+CN seems to have the lowest tendency to

overfit (smallest difference between training and testing per-

formances), GAMO exhibits a greater ability to retain good

performance on the test dataset.

4.4. SUN397

We have randomly selected 50 classes from SUN397 to

construct a dataset containing 64×64 sized images (depend-

ing on the image size either a 512×512 or a 224×224 center
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Figure 5. (a) GAMO2pix network. (b)-(c) Comparison of images

respectively generated by cDCGAN, and GAMO2pix for (left to

right) CIFAR10, Fashion-MNIST, SVHN, and CelebA-Small.

patch is extracted, which is then scaled to 64× 64) with an

IR of 14.21. The experiment on SUN397 is performed to

evaluate the performance of GAMO over a large number of

classes. A scrutiny of the result tabulated in Table 4 reveals

that despite all four contending techniques being severely

affected by the complexity of the classes and the scarcity of

data samples from many of the classes, GAMO is able to

retain overall better performance than its competitors.

5. GAMO2pix

GAMO results ultimately in a classifier trained to prop-

erly classify samples from all the classes. However, some

application may require that actual samples be generated

by oversampling to form an artificially balanced dataset.

While GAMO directly generates images if flattened images

are used, it only generates vectors in the distributed rep-

resentation space (mapped by the convolutional layers) for

the convolutional variant. Therefore, we also propose the

GAMO2pix mechanism to obtain images from the GAMO-

generated vectors in the distributed representation space.

Table 5. Comparison of FID of cDCGAN and GAMO2pix.

Dataset GAMO2pix (Ours) cDCGAN

Fashion-MNIST 0.75±0.03 5.57±0.03

SVHN 0.17±0.02 0.59±0.04

CIFAR10 1.59±0.03 2.96±0.03

CelebA-Small 11.13±0.04 15.12±0.05

Our network for generating images (as illustrated in Fig-

ure 5(a)) from the GAMO-generated vectors is inspired by

the Variational Autoencoder (VAE) [23, 37]. VAE, unlike

regular autoencoders, is a generative model which attempts

to map the encoder output to a standard normal distribu-

tion in the latent space, while the decoder is trained to map

samples from the latent normal distribution to images. In

GAMO2pix, the convolutional feature extractor F trained

by GAMO is kept fixed and connected to two trainable par-

allel dense layers, which learn the mean (µ) and the log-

variance (logσ2) of the posterior distribution. Then sam-

ples drawn from N (µ,σ) are fed to the decoder. The loss

of GAMO2pix is the sum of KL(N (µ,σ)||N (0, I)) and

mean squared reconstruction error. The GAMO2pix net-

work is trained separately for each class to learn the inverse

map from the D-dimensional feature space induced by F

to the original image space. Thus, we use GAMO2pix to

generate realistic images of the concerned class given the

GAMO-generated vectors.

We present the images respectively generated by cD-

CGAN and GAMO2pix on CIFAR10, Fashion-MNIST,

SVHN and CelebA-Small in Figures 5(b)-5(c). We can

see that GAMO2pix can indeed generate more realistic and

diverse images, compared to cDCGAN which also suf-

fers from mode collapse for minority classes. This is fur-

ther confirmed by the lower Fréchet Inception Distance

(FID) [20] (calculated between real and artificial images

from each class and averaged over classes) achieved by

GAMO2pix, as shown in Table 5.

6. Conclusions and Future Work

The proposed GAMO is an effective end-to-end over-

sampling technique for handling class imbalance in deep

learning frameworks. Moreover, it is also an important step

towards training robust discriminative models using adver-

sarial learning. We have observed from our experiments

that the convolutional variant of GAMO is more effective

due to the distributed representations learned by the convo-

lutional layers. We also found that the LS loss variant of

GAMO generally performs better than the CE loss variant.

An interesting area of future investigation is to improve

the quality of the images generated by GAMO2pix by em-

ploying a different architecture such as BEGAN [3]. To re-

duce the tendency of GAMO to overfit as well as to poten-

tially improve its performance, one may consider hybridiza-

tion with improved GAN variants [16] which can achieve

good performance even with less number of training sam-

ples. Further, one may explore the efficacy of GAMO to

learn new classes by taking inspiration from Memory Re-

play GAN [45], or study the usefulness of the proposed con-

vex generator for handling boundary distortion in GANs.
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