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Abstract

Deep neural networks are vulnerable to adversarial at-

tacks, which can fool them by adding minuscule perturba-

tions to the input images. The robustness of existing de-

fenses suffers greatly under white-box attack settings, where

an adversary has full knowledge about the network and can

iterate several times to find strong perturbations. We ob-

serve that the main reason for the existence of such per-

turbations is the close proximity of different class samples

in the learned feature space. This allows model decisions

to be totally changed by adding an imperceptible perturba-

tion in the inputs. To counter this, we propose to class-wise

disentangle the intermediate feature representations of deep

networks. Specifically, we force the features for each class

to lie inside a convex polytope that is maximally separated

from the polytopes of other classes. In this manner, the net-

work is forced to learn distinct and distant decision regions

for each class. We observe that this simple constraint on the

features greatly enhances the robustness of learned models,

even against the strongest white-box attacks, without de-

grading the classification performance on clean images. We

report extensive evaluations in both black-box and white-

box attack scenarios and show significant gains in compar-

ison to state-of-the art defenses1.

1. Introduction

Adversarial examples contain small, human-

imperceptible perturbations specifically designed by

an adversary to fool a learned model [37, 10]. These exam-

ples pose a serious threat for security critical applications,

e.g. autonomous cars [1], bio-metric identification [34]

and surveillance systems [28]. Furthermore, if a slight

perturbation added to a benign input drastically changes the

deep network’s output with a high-confidence, it reflects

that our current models are not distinctively learning the

fundamental visual concepts. Therefore, the design of

robust deep networks goes a long way towards developing

reliable and trustworthy artificial intelligence systems.

To mitigate adversarial attacks, various defense meth-

ods have recently been proposed. These can be broadly

1Code and models are available at: https://github.com/

aamir-mustafa/pcl-adversarial-defense
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Figure 1: 2D penultimate layer activations of a clean image

and its adversarial counterpart (PGD attack) for standard softmax

trained model and our method on MNIST (top row) and CIFAR-

10 (bottom row) datasets. Note that our method correctly maps the

attacked image to its true-class feature space.

classified into two categories: (a) Reactive defenses that

modify the inputs during testing time, using image trans-

formations to counter the effect of adversarial perturbation

[21, 5, 41, 26], and (b) Proactive defenses that alter the un-

derlying architecture or learning procedure e.g. by adding

more layers, ensemble/adversarial training or changing the

loss/activation functions [38, 16, 31, 4, 19, 29, 22, 14].

Proactive defenses are generally more valued, as they pro-

vide relatively better robustness against white-box attacks.

Nevertheless, both proactive and reactive defenses are eas-

ily circumvented by the iterative white-box adversaries [2].

This paper introduces a new proactive defense based on

a novel training procedure, which maximally separates the

learned feature representations at multiple depth levels of

the deep model. We note that the addition of perturbations

in the input domain leads to a corresponding polytope in the

high-dimensional manifold of the intermediate features and

the output classification space. Based upon this observation,

we propose to maximally separate the polytopes for differ-

ent class samples, such that there is a minimal overlap be-

tween any two classes in the decision and intermediate fea-

ture space. This ensures that an adversary can no longer fool

the network within a restricted perturbation budget. In other

words, we build on the intuition that two different class sam-

ples, which are visually dissimilar in the input domain, must

be mapped to different regions in the output space. There-
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fore, we must also enforce that their feature representations

are well separated along the hierarchy of network layers.

This is achieved by improving within-class proximities and

enhancing between-class differences of the activation maps,

along multiple levels of the deep model. As illustrated in

Fig. 1, the penultimate layer features learnt by the proposed

scheme are well separated and hard to penetrate compared

with the easily attacked features learnt using standard loss

without any deep supervision. As evidenced with empiri-

cal evaluations (Sec. 5), the proposed method provides an

effective and robust defense by significantly outperforming

current state-of-the-art defenses under both white-box and

black-box settings. Also, we experimentally show that our

method does not suffer from the obfuscated gradient prob-

lem, which is otherwise the case for most existing defenses.

Our approach provides strong evidence towards the no-

tion that the adversarial perturbations exist not only due to

the properties of data (e.g. high-dimensionality) and net-

work architecture (e.g. non-linearity functions) but also

are greatly influenced by the choice of objective func-

tions used for optimization. The deeply supervised multi-

layered loss based defense provides a significant boost in

robustness under strictest attack conditions where the bal-

ance is shifted heavily towards the adversary. These in-

clude white-box attacks and iterative adversaries includ-

ing the strongest first-order attacks (Projected Gradient De-

scent). We demonstrate the robustness of the proposed de-

fense through extensive evaluations on five publicly avail-

able datasets and achieve a robustness of 46.7% and 36.1%
against the strongest PGD attack (ǫ = 0.03) for the CIFAR-

10 and CIFAR-100 datasets, respectively. To the best of our

knowledge, these are significantly higher levels of robust-

ness against a broad range of strong adversarial attacks.

2. Related Work

Generating adversarial examples to fool a deep network

and developing defenses against such examples have gained

significant research attention recently. Adversarial pertur-

bations were first proposed by Szegedy et al. [37] using

an L-BFGS based optimization scheme, followed by Fast

Gradient Sign Method (FGSM) [10] and its iterative vari-

ant [16]. Moosavi-Dezfooli et al. [25] then proposed Deep-

Fool, which iteratively projects an image across the deci-

sion boundary (form of a polyhydron) until it crosses the

boundary and is mis-classified. One of the strongest at-

tacks proposed recently is the Projected Gradient Descent

(PGD) [22], which takes maximum loss increments allowed

within a specified l∞ norm-ball. Other popular attacks in-

clude the Carlini and Wagner Attack [3], Jacobian-based

Saliency Map Approach [30], Momentum Iterative Attack

[8] and Diverse Input Iterative Attack [42].

Two main lines of defense mechanisms have been pro-

posed in the literature to counter adversarial attacks. First,

by applying different pre-processing steps and transforma-

tions on the input image at inference time [41, 11]. The sec-

ond category of defenses improve network’s training regime

to counter adversarial attacks. An effective scheme in this

regards is adversarial training, where the model is jointly

trained with clean images and their adversarial counterparts

[17, 10]. Ensemble adversarial training is used in [38] to

soften the classifier’s decision boundaries. Virtual Adver-

sarial Training [24] smoothes the model distribution using

a regularization term. Papernot et al. [31] used distilla-

tion to improve the model’s robustness by retraining with

soft labels. Parsevel Networks [4] restrict the Lipschitz con-

stant of each layer of the model. Input Gradient Regularizer

[33] penalizes the change in model’s prediction w.r.t input

perturbations by regularizing the gradient of cross-entropy

loss. The Frobenius norm of the Jacobian of the network

has been shown to improve model’s stability in [13]. [20]

proposed defensive quantization method to control the Lip-

schitz constant of the network to mitigate the adversarial

noise during inference. [7] proposed Stochastic Activation

Pruning as a defense against adversarial attacks. Currently

the strongest defense method is Min-Max optimization [22]

which augments the training data with a first order attacked

samples. Despite significant research activity in devising

defenses against adversarial attacks, it was recently shown

in [2] that the currently existing state-of-the-art defenses

[15, 32, 35] are successfully circumvented under white-box

settings. Only Min-Max optimization [22] and Cascade ad-

versarial machine learning [27] retained 47% and 15% ac-

curacy respectively, and withstood the attacks under white-

box settings. In our experiments (see Sec. 5), we extensively

compare our results with [22] and make a compelling case

by achieving significant improvements.

At the core of our defense are the proposed objective

function and multi-level deep supervision, which ensure

feature space discrimination between classes. Our training

objective is inspired from center loss [40], which clusters

penultimate layer features. We propose multiple novel con-

straints (Sec. 3) to enhance between-class distances, and

ensure maximal separation of a sample from its non-true

classes. Our method is therefore fundamentally different

from [40], since the proposed multi-layered hierarchical

loss formulation and the notion of maximal separation has

not been previously explored for adversarial robustness.

3. Prototype Conformity Loss

Below, we first introduce the notations used, then pro-

vide a brief overview of the conventional cross entropy loss

followed by a detailed description of our proposed method.

Notations: Let x ∈ R
m and y denote an input-label pair

and 1y be the one-hot encoding of y. We denote a deep

neural network (DNN) as a function Fθ(x), where θ are the

trainable parameters. The DNN outputs a feature represen-
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Figure 2: An illustration of our training with joint supervision of

LPC and LCE. Gφ(·) is an auxiliary branch to map features to a

low dimensional output, which is then used for loss in Eq. 8

tation f ∈ R
d, which is then used by a classification layer

to perform multi-class classification. Let k be the number

of classes; the parameters of the classifier can then be repre-

sented as W = [w1, . . . ,wk] ∈ R
d×k. To train the model,

we find the optimal θ and W that minimize a given objec-

tive function. Next, we introduce a popular loss function for

deep CNNs.

Cross-entropy Objective: The cross-entropy objective

function maximizes the dot product between an input fea-

ture fi and its true class representative vector wy , such that

wy ∈ W . In other words, cross-entropy loss forces the

classifier to learn a mapping from feature to output space

such that the projection on to the correct class vector is max-

imized:

LCE(x,y) =

m
∑

i=1

− log
exp(wT

yi
fi + byi

)
∑k

j=1 exp(w
T
j fi + bj)

, (1)

where, m is the number of images, and fi is the feature

of ith image xi with the class yi. W and b are, respectively,

the weights and the bias terms for the classification layer.

Adversarial Perspective: The main goal of an attack algo-

rithm is to force a trained DNN Fθ to make wrong predic-

tions. Attack algorithms seek to achieve this goal within a

minimal perturbation budget. The attacker’s objective can

be represented by:

argmax
δ

L(x+ δ,y), s.t., ‖δ‖p < ǫ, (2)

where y is the ground-truth label for an input sample x,

δ denotes the adversarial perturbation, L(·) denotes the er-

ror function, ‖ · ‖p denotes the p-norm, which is generally

considered to be an ℓ∞-ball centered at x, and ǫ is the avail-

able perturbation budget.

In order to create a robust model, the learning algorithm

must consider the allowed perturbations in the input domain

and learn a function that maps the perturbed images to the

correct class. This can be achieved through the following

min-max (saddle point) objective that minimizes the empir-

ical risk in the presence of perturbations:

min
θ

E
(x,y)∼D

[

max
δ

L(x+ δ,y;θ)
]

, s.t., ‖δ‖p < ǫ, (3)

where D is the data distribution.

CE Loss in Adversarial Setting: The CE loss is the de-

fault choice for conventional classification tasks. However,

it simply assigns an input sample to one of the pre-defined

classes. It therefore does not allow one to distinguish be-

tween normal and abnormal inputs (adversarial perturba-

tions in our case). Further, it does not explicitly enforce

any margin constraints amongst the learned classification

regions. It can be seen from Eq. 3 that an adversary’s job

is to maximize L(·) within a small perturbation budget ǫ.
Suppose, the adversarial polytope in the output space2 with

respect to an input sample x is given by:

Pǫ(x; θ) = {Fθ(x+ δ) s.t., ‖δ‖p ≤ ǫ}. (4)

An adversary’s task is easier if there is an overlap between

the adversarial polytopes for different input samples be-

longing to different classes.

Definition 1: The overlap Oi,j
ǫ between polytopes for each

data sample pair (i, j) can be defined as the volume of in-

tersection between the respective polytopes:

Oi,j
ǫ = Pǫ(x

i
yi
; θ) ∩ Pǫ(x

j
yj
; θ).

Note that the considered polytopes can be non-convex as

well. However, the overlap computation can be simplified

for convex polytopes [6].

Proposition 1: For an ith input sample xi
yi

with class

label yi, reducing the overlap Oi,j
ǫ between its poly-

tope Pǫ(x
i
yi
; θ) and the polytopes of other class samples

Pǫ(x
j
yj
; θ), s.t., yj 6= yi will result in lower adversary suc-

cess for a bounded perturbation ‖δ‖p ≤ ǫ.

Proposition 2: For a given adversarial strength ǫ, assume

λ is the maximum distance from the center of the polytope

to the convex outer bounded polytope. Then, a classifier

maintaining a margin m > 2λ between two closest sam-

ples belonging to different classes will result in a decision

boundary with guaranteed robustness against perturbation

within the budget ǫ.

In other words, if the adversarial polytopes for samples

belonging to different classes are non-overlapping, the ad-

versary cannot find a viable perturbation within the allowed

budget. We propose that an adversary’s task can be made

difficult by including a simple maximal separation con-

straint in the objective of deep networks. The conventional

CE loss does not impose any such constraint, which makes

the resulting models weaker against adversaries. A more

principled approach is to define convex category-specific

classification regions for each class, where any sample

outside all of such regions is considered an adversarial

perturbation. Consequently, we propose the prototype

2Note that the output space in our case is not the final prediction space,

but the intermediate feature space.
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conformity loss function, described below.

Proposed Objective: We represent each class with its pro-

totype vector, which represents the training examples of that

class. Each class is assigned a fixed and non-overlapping p-

norm ball and the training samples belonging to a class i are

encouraged to be mapped close to its hyper-ball center:

LPC(x,y) =
∑

i

{

‖fi −wc
yi
‖2 −

1

k − 1

∑

j 6=yi

(

‖fi −wc
j‖2

+ ‖wc
yi
−wc

j‖2

)

}

. (5)

During model inference, a feature’s similarity is computed

with all the class prototypes and it is assigned the closest

class label if and only if the sample lies within its decision

region:
ŷi = argmin

j

‖fi −wc
j‖. (6)

Here, wc denotes the trainable class centroids. Note

that the classification rule is similar to the Nearest Class

Mean (NCM) classifier [23], but we differ in some impor-

tant aspects: (a) the centroids for each class are not fixed

as the mean of training samples, rather learned automati-

cally during representation learning, (b) class samples are

explicitly forced to lie within respective class norm-balls,

(c) feature representations are appropriately tuned to learn

discriminant mappings in an end-to-end manner, and (d)

to avoid inter-class confusions, disjoint classification re-

gions are considered by maintaining a large distance be-

tween each pair of prototypes. We also experiment with the

standard softmax classifier and get equivalent performance

compared to nearest prototype rule mentioned above.

Deeply Supervised Learning: The overall loss function

used for training our model is given by:

L(x,y) = LCE(x,y) + LPC(x,y). (7)

The above loss enforces the intra-class compactness and an

inter-class separation using learned prototypes in the out-

put space. In order to achieve a similar effect in the in-

termediate feature representations, we include other auxil-

iary loss functions {Ln} along the depth of our deep net-

works, which act as companion objective functions for the

final loss. This is achieved by adding an auxiliary branch

Gφ(·) after the defined network depth, which maps the fea-

tures to a lower dimension output, and is then used in the

loss definition. For illustration, see Fig. 2.

Ln(x,y) = LCE(f
l,y) + LPC(f

l,y) (8)

s.t., f l = Gl
φ(F

l
θ(x)). (9)

These functions avoid the vanishing gradients problem and

act as regularizers that encourage features belonging to the

same class to come together and the ones belonging to dif-

ferent classes to be pushed apart.

δ

δ

δ

δ

δ

δ
δ

δ

L𝐶𝐸 L𝐶𝐸 + Center Loss L𝐶𝐸 + L𝑃𝐶 L𝐶𝐸 + L𝑃𝐶 + AdvTrain

Figure 3: Comparison between different training methods. The

red circle encompasses the adversarial sample space within a per-

turbation budget ‖δ‖
p
< ǫ.

4. Adversarial Attacks

We evaluate our defense model against five recently pro-

posed state-of-the-art attacks, which are summarized below,

for completeness.

Fast Gradient Sign Method (FGSM) [10] generates an ad-

versarial sample xadv from a clean sample x by maximiz-

ing the loss in Eq. 2. It finds xadv by moving a single step

in the opposite direction to the gradient of the loss function,

as:
xadv = x+ ǫ · sign(∇xL(x,y)). (10)

Here, ǫ is the allowed perturbation budget.

Basic Iterative Method (BIM) [16] is an iterative variant

of FGSM and generates an adversarial sample as:

xm = clipǫ(xm−1+
ǫ

i
· sign(∇xm−1

(L(xm−1,y))), (11)

where x0 is clean image x and i is the iteration number.

Momentum Iterative Method (MIM) [8] introduces an

additional momentum term to BIM to stabilize the direction

of gradient. Eq. 11 is modified as:

gm = µ · gm−1 +
∇xm−1

L(xm−1,y)

‖ ∇xm−1
(L(xm−1,y)) ‖1

(12)

xm = clipǫ(xm−1 +
ǫ

i
· sign(gm)), (13)

where µ is the decay factor.

Carlini & Wagner Attack [3] defines an auxiliary variable

ζ and minimizes the objective function:

min
ζ

‖
1

2
(tanh (ζ)+1)−x ‖ +c ·f(

1

2
(tanh ζ+1)), (14)

where 1
2 (tanh (ζ) + 1) − x is the perturbation δ, c is the

constant chosen and f(.) is defined as:

f(xadv) = max(Z(xadv)y−max{Z(xadv)k : k 6= y},−κ).
(15)

Here, κ controls the adversarial sample’s confidence and

Z(xadv)k are the logits values corresponding to a class k.

Projected Gradient Descent (PGD) [22] is similar to BIM,

and starts from a random position in the clean image neigh-

borhood U(x, ǫ). This method applies FGSM for m itera-

tions with a step size of γ as:
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xm =xm−1 + γ · sign(∇xm−1
L(xm−1,y)). (16)

xm = clip(xm,xm − ǫ,xm + ǫ). (17)

It proves to be a strong iterative attack, relying on the first

order information of the target model.

5. Experiments

Datasets and Models: We extensively evaluate the pro-

posed method on five datasets: MNIST, Fasion-MNIST (F-

MNIST), CIFAR-10, CIFAR-100 and Street-View House

Numbers (SVHN). For the MNIST and F-MNIST datasets,

the CNN model chosen has six layers, as in [40]. For

the CIFAR-10, CIFAR-100 and SVHN datasets, we use a

ResNet-110 model [12] (see Table 1). The deep features for

the prototype conformity loss are extracted from different

intermediate layers using an auxiliary branch, which maps

the features to a lower dimension output (see Fig. 2). We

first train for T
′

epochs (T
′

= 50 for F/MNIST, T
′

= 200
for CIFAR-10/100 and SVHN) with LCE and then use the

loss in Eq. 8 for 300 epochs. A batch size of 256 and a

learning rate of 0.1 (×0.1 at T=200, 250) are used. Further

training details are summarized in Algorithm 1.

Algorithm 1: Model training with Prototype Conformity Loss.

Input: Classifier Fθ(x), training data {x}, ground truth labels

{y}, trainable parameters θ, trainable class centroids

{wc
j : j ∈ [1, k] }, perturbation budget ǫ, epochs T , number

of auxiliary branches L.

Output: Updated parameters θ

1 Initialize θ in convolution layers.

2 for t = 0 to T :

3 if t < T
′

:

4 Converge softmax objective, θ := argminθ LCE.

5 else:

6 Compute joint loss L = LCE +
∑L

l LPC

7 Compute gradients w.r.t θ and x, ∇θL(x,y) and

∇xL(x,y) respectively.

8 Update model weights, θ := argminθ L.

9 Update class centroids wc
j ∀ l

10 Generate adversarial examples as:

11 if FGSM: then xadv = x+ ǫ · sign (∇xL(x,y))
12 elif PGD: then xadv = clip (x,x− ǫ,x+ ǫ)
13 Augment x with xadv

14 return θ

5.1. Results and Analysis

White-Box vs Black-Box Settings: In an adversarial set-

ting, there are two main threat models: white-box attacks

where the adversary possesses complete knowledge of the

target model, including its parameters, architecture and the

training method, and black-box attacks where the adversary

feeds perturbed images at test time (which are generated

without any knowledge of the target model). We evaluate

the robustness of our proposed defense against both white-

box and black-box settings. Table 2 shows our results for

Table 1: Two network architectures: CNN-6 (MNIST, FMNIST)

and ResNet-110 (CIFAR-10,100 and SVHN). Features are ex-

tracted in CNN-6 (after Layer 3 and two FC layers) and ResNet-

110 (after Layer 3, 4 and FC layer) to impose the proposed LPC.

Auxiliary branches are shown in green color.

Layer # 6-Conv Model ResNet-110

1

[

Conv(32, 5× 5)

PReLu(2× 2)

]

×2
Conv(16, 3× 3) + BN

ReLU(2× 2)

2

[

Conv(64, 5× 5)

PReLu(2× 2)

]

×2

[

Conv(16, 1× 1) + BN

Conv(16, 3× 3) + BN

Conv(64, 1× 1) + BN

]

×12

3

[

Conv(128, 5× 5)

PReLu(2× 2)

]

×2

[

Conv(32, 1× 1) + BN

Conv(32, 3× 3) + BN

Conv(128, 1× 1) + BN

]

×12

GAP → LPC (GAP→FC(512) → LPC)

4 FC(512) → LPC

[

Conv(64, 1× 1) + BN

Conv(64, 3× 3) + BN

Conv(256, 1× 1)+ BN

]

×12

GAP → LPC

5 FC(64) → LPC FC(1024) → LPC

6 FC(10) → LCE FC(100/10) → LCE

the different attacks described in Sec. 4. The number of it-

erations for BIM, MIM and PGD are set to 10 with a step

size of ǫ/10. The iteration steps for C&W are 1, 000, with

a learning rate of 0.01. We report our model’s robustness

with and without adversarial training for standard perturba-

tion size i.e. ǫ = 0.3 for F/MNIST and and ǫ = 0.03 for the

CIFAR-10/100 and SVHN datasets.

Recent literature has shown transferability amongst deep

models [39, 17, 10], where adversarial images are effec-

tive even for the models they were never generated on. An

adversary can therefore exploit this characteristic of deep

models and generate generic adversarial samples to attack

unseen models. Defense against black-box attacks is there-

fore highly desirable for secure deployment of machine

learning models [30]. To demonstrate the effectiveness of

our proposed defense under black-box settings, we generate

adversarial samples using a VGG-19 model, and feed them

to the model trained using our proposed strategy. Results in

Table 2 show that black-box settings have negligible attack

potential against our model. For example, on the CIFAR-

10 dataset, where our model’s accuracy on clean images

is 91.89%, even the strongest iterative attack (PGD-0.03)

fails, and our defense retains an accuracy of 88.8%.

Adversarial Training has been shown to enhance many re-

cently proposed defense methods [18]. We also evaluate

the impact of adversarial training (AdvTrain) in conjunc-

tion with our proposed defense. For this, we jointly train our

model on clean and attacked samples, which are generated

using FGSM [10] and PGD [22] by uniformly sampling ǫ
from an interval of [0.1, 0.5] for MNIST and F-MNIST and

[0.01, 0.05] for CIFAR and SVHN. Results in Table 2 in-

dicate that AdvTrain further complements our method and
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Table 2: Robustness of our model in white-box and black-box settings. Adversarial samples generated in the black-box settings show

negligible attack potential against our models. Here ǫ is the perturbation size and c is the initial constant for C&W attack. It can be seen

that AdvTrain further complements the robustness of our models.

White-Box Setting Black-Box Setting

Training No Attack FGSM BIM C&W MIM PGD FGSM BIM C&W MIM PGD

MNIST (ǫ = 0.3, c = 10)

Softmax 98.71 4.9 0.0 0.2 0.01 0.0 23.0 17.8 20.9 14.8 11.9

Ours 99.53 31.1 23.3 29.1 24.7 19.9 78.3 72.7 77.2 74.5 69.5

Ours + AdvTrainFGSM 99.44 53.1 36.6 40.9 37.0 34.5 85.6 81.0 82.3 81.4 78.2

Ours + AdvTrainPGD 99.28 49.8 40.3 46.0 41.4 39.8 85.2 81.9 83.5 82.8 80.8

CIFAR-10 (ǫ = 0.03, c = 0.1)

Softmax 90.80 21.4 0.0 0.6 0.0 0.01 39.0 30.1 31.8 30.9 29.1

Ours 90.45 67.7 32.6 37.3 33.2 27.2 85.5 83.7 83.3 81.9 76.4

Ours + AdvTrainFGSM 91.28 75.8 45.9 45.7 44.7 42.5 88.9 87.6 87.4 88.2 84.5

Ours + AdvTrainPGD 91.89 74.9 46.0 51.8 49.3 46.7 88.5 88.3 88.2 88.5 88.8

CIFAR-100 (ǫ = 0.03, c = 0.1)

Softmax 72.65 20.0 4.2 1.1 3.52 0.17 40.9 34.3 37.1 35.5 30.7

Ours 71.90 56.9 28.0 31.1 28.7 25.9 65.3 64.5 64.1 64.8 62.8

Ours + AdvTrainFGSM 69.11 61.3 32.3 35.2 33.3 31.4 66.1 65.2 65.7 65.5 63.4

Ours + AdvTrainPGD 68.32 60.9 34.1 36.7 33.7 36.1 65.9 66.1 66.7 66.1 66.7

F-MNIST (ǫ = 0.3, c = 10)

Softmax 91.51 8.7 0.1 0.2 0.0 0.0 46.7 29.3 30.8 29.5 26.0

Ours 91.32 29.0 22.0 23.9 21.8 20.3 84.8 79.0 79.2 78.4 76.3

Ours + AdvTrainFGSM 91.03 55.1 37.5 41.7 40.6 35.3 89.1 87.0 87.7 87.9 85.2

Ours + AdvTrainPGD 91.30 47.2 40.1 44.6 41.3 40.7 88.2 88.0 88.2 88.3 89.7

SVHN (ǫ = 0.03, c = 0.1)

Softmax 93.45 30.6 6.2 7.1 7.3 9.6 48.1 30.3 31.4 33.5 21.5

Ours 94.36 69.3 37.1 39.2 41.0 33.7 77.4 73.1 76.4 74.0 70.1

Ours + AdvTrainFGSM 94.18 80.1 47.4 51.9 45.6 40.5 90.1 87.4 88.0 87.6 84.4

Ours + AdvTrainPGD 94.36 76.5 48.8 54.8 47.1 47.7 88.7 88.2 89.2 88.6 89.3

provides an enhanced robustness under both black-box and

white-box attack settings.

Adaptive White-box Settings: Since at inference time, our

model performs conventional softmax prediction, we eval-

uated the robustness against standard white-box attack set-

tings, to be consistent with existing defenses. Now, we also

experiment in an adaptive white-box setting where the at-

tack is performed on the joint PC+CE loss (with access to

learned prototypes). Negligible performance drop is ob-

served in adaptive settings (see Table 3).

Table 3: Robustness in adaptive white-box attack settings. The

performance for conventional attacks (where CE is the adversarial

loss) is shown in blue. ∗ indicates adversarially trained models.

Training No Attack FGSM BIM MIM PGD

CIFAR-10 (ǫ = 8/255)

Ours 90.45 66.90 (67.7) 31.29 (32.6) 32.84 (33.2) 27.09 (27.2)

Ours∗
FGSM

91.28 74.24 (75.8) 44.05 (45.9) 43.77 (44.7) 41.32 (42.5)

Ours∗
PGD

91.89 74.31 (74.9) 44.85 (46.0) 47.31 (49.3) 44.75 (46.7)

F-MNIST (ǫ = 0.3/1)

Ours 91.32 28.1 (29.0) 21.7 (22.0) 20.3 (21.8) 19.5 (20.3)

Ours∗
FGSM

91.03 53.3 (55.1) 36.0 (37.5) 39.3 (40.6) 34.7 (35.3)

Ours∗
PGD

91.30 46.0 (47.2) 40.1 (40.1) 40.7 (41.3) 39.7 (40.7)

5.2. Comparison with Existing Defenses

We compare our method with recently proposed state-

of-the art proactive defense mechanisms, which alter the

network or use modified training loss functions. To this

end, we compare with [17], which injects adversarial ex-

amples into the training set and generates new samples at

each iteration. We also compare with [29], which introduces

an Adaptive Diversity Promoting (ADP) regularizer to im-

prove adversarial robustness. Further, we compare with an

input gradient regularizer mechanism [33] that penalizes the

degree to which input perturbations can change a model’s

predictions by regularizing the gradient of the cross-entropy

loss. Finally, we compare with the current state-of-the-

art Min-Max optimization based defense [22], which aug-

ments the training data with adversarial examples, causing

the maximum gradient increments to the loss within a speci-

fied l∞ norm. The results in Tables 8 , 9 and 4 in terms of re-

tained classification accuracy on different datasets show that

our method significantly outperforms all existing defense

schemes by a large margin. The performance gain is more

pronounced for the strongest iterative attacks (e.g. C&W

and PGD) with large perturbation budget ǫ. For example,

our method achieves a relative gain of 20.6% (AdvTrain

models) and 41.4% (without AdvTrain) compared to the 2nd

best methods on the CIFAR-10 and MNIST datasets respec-

tively for the PGD attack. On CIFAR-100 dataset, for the

strongest PGD attack with ǫ = 0.01, the proposed method

achieves 38.9% compared with 18.3% by ADP [29], which,

to the best of our knowledge, is the only method in the lit-

erature evaluated on the CIFAR-100 dataset. Our results

further indicate that adversarial training consistently com-

pliments our method and augments its performance across

all evaluated datasets.

Additionally we compare our model’s performance with

a close method proposed by Song et al. [36] in Table 5,

where our approach outperforms them by a significant mar-

gin. Besides a clear improvement, we discuss our main dis-

tinguishing features below: (a) Our approach is based on a

“deeply-supervised” loss that prevents changes to the out-
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Table 4: Comparison on CIFAR-100 dataset for white-box adver-

sarial attacks (numbers shows robustness, higher is better). ∗ sign

denotes adversarially trained models. For our model, we report

results without adversarial training (Ours) and with adversarially

generated images from FGSM (Ours∗f ) and PGD (Ours∗p ) attacks.

Attacks Params. Baseline ADP [29] Ours Ours∗f Ours∗p

No Attack - 72.6 70.2 71.9 69.1 68.3

BIM
ǫ = 0.005 21.6 26.2 44.8 55.1 55.7

ǫ = 0.01 10.1 14.8 39.8 46.2 46.9

MIM
ǫ = 0.005 24.2 29.4 46.1 56.7 57.1

ǫ = 0.01 11.2 17.2 40.6 43.8 45.9

PGD
ǫ = 0.005 26.6 32.1 42.2 53.6 55.0

ǫ = 0.01 11.7 18.3 38.9 40.1 44.0

puts within the limited perturbation budget. Such supervi-

sion paradigm is the main contributing factor towards our

improved results (See Table 7). (b) [36] focuses on domain

adaption between adversarial and natural samples without

any constraint on the intermediate feature representations.

In contrast, we explicitly enforce the hidden layer activa-

tions to be maximally separated in our network design. (c)

[36] only considers adversarially trained models, while we

demonstrate clear improvements both with and without ad-

versarial training (a more challenging setting). In Table 5

we have followed the exact model settings used in [36].

Dataset Clean FGSM MIM PGD

F-MNIST (ǫ = 0.1)
85.5 78.2 68.8 68.6

91.3 86.6 80.1 79.4

SVHN (ǫ = 0.02)
82.9 57.2 53.9 53.2

94.4 87.1 82.2 80.7

CIFAR-10 (ǫ = 4/255)
84.8 60.7 59.0 58.1

91.9 85.3 70.1 69.4

CIFAR-100 (ǫ = 4/255)
61.6 29.3 27.3 26.2

71.9 49.1 40.7 38.6

Table 5: Comparison

of our approach with

[36] on 4 datasets.

Green rows show

results for [36] and

blue for our models.

5.3. Transferability Test

We investigate the transferability of attacks on CIFAR-

10 dataset between a standard VGG-19 model, adversarially

trained VGG-19 [17], Madry et al.’s [22] and our model.

We report the accuracy of target models (columns) on ad-

versarial samples generated from source models (rows) in

Table 6. Our results yield the following findings:

Improved black-box robustness: As noted in [2], a model

that gives a false sense of security due to obfuscated gradi-

ents can be identified if the black-box attacks are stronger

than white-box. In other words, robustness of such a model

under white-box settings is higher than under black-box set-

tings. It was shown in [2] that most of the existing defenses

obfuscate gradients. Madry et al.’s approach [22] was en-

dorsed by [2] to not cause gradient masking. The compari-

son in Table 6 shows that our method outperforms [22].

Similar architectures increase transferability: Changing

the source and target network architectures decreases the

transferability of an attack. The same architectures (e.g.

VGG-19 and its AdvTrain counterpart, as in Table 6) show

increased robustness against black-box attacks generated

from each other.

Table 6: Transferability Test on CIFAR-10: PGD adversaries

are generated with ǫ = 0.03, using the source network, and then

evaluated on target model. Underline denotes robustness against

white-box attack. Note that adversarial samples generated on our

model are highly transferable to other models as black-box at-

tacked images.

Source

Target
VGG-19 AdvTrain [17] Madry et al. [22] Ours

VGG-19 0.0 16.20 52.71 88.80

AdvTrain [17] 12.43 0.0 49.80 72.53

Madry et al. [22] 58.91 67.32 43.70 71.72

Ours 50.31 61.02 66.70 49.10

5.4. Ablation Analysis

LPC at Different Layers: We investigate the impact of

our proposed prototype conformity loss (LPC) at different

depths of the network. Specifically, as shown in Table 7,

we apply LPC individually after each layer (see Table 1 for

architectures) and in different combinations. We report the

achieved results on the CIFAR-10 dataset for clean and per-

turbed samples (using FGSM and PGD attacks) in Table 7.

The network without any LPC loss is equivalent to a stan-

dard softmax trained model. It achieves good performance

on clean images, but fails under both white-box and black-

box attacks (see Table 2). The models with LPC loss at ini-

tial layers are unable to separate deep features class-wise,

thereby resulting in inferior performance. Our proposed

LPC loss has maximum impact in the deeper layers of the

network. This justifies our choice of different layers for LPC

loss, indicated in Table 1.

Table 7: Ablation Analysis with LPC applied at different layers

of ResNet-110 (Table 1) for CIFAR-10 dataset.

Layer #
No Attack FGSM PGD

ǫ = 0 ǫ = 0.03 ǫ = 0.03

None 90.80 21.40 0.01

Layer 1 74.30 23.71 0.01

Layer 2 81.92 30.96 8.04

Layer 3 88.75 33.74 10.47

Layer 4 90.51 39.90 11.90

Layer 5 91.11 47.02 13.56

Layer 4+5 90.63 55.36 20.70

Layer 3+4+5 90.45 67.71 27.23

5.5. Identifying Obfuscated Gradients

Recently, Athalye et.al. [2] were successful in break-

ing several defense mechanisms in the white-box settings by

identifying that they exhibit a false sense of security. They

call this phenomenon gradient masking. Below, we discuss

how our defense mechanism does not cause gradient mask-

ing on the basis of characteristics defined in [2, 9].

Iterative attacks perform better than one-step attacks:

Our evaluations in Fig. 4 indicate that stronger iterative at-

tacks (e.g. BIM, MIM, PGD) in the white-box settings are

more successful at attacking the defense models than single-

step attacks (FGSM in our case).
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Table 8: Comparison on CIFAR-10 dataset for white-box adversarial attacks (numbers shows robustness, higher is better). ∗ sign denotes

adversarially trained models. For our model, we report results without adversarial training (Ours) and with adversarially generated images

from FGSM (Ours∗f ) and PGD (Ours∗p ) attacks.

Attacks Params. Baseline AdvTrain [17]∗ Yu et al. [43]∗ Ross et al. [33]∗ Pang et al. [29]∗ Madry et al. [22]∗ Ours Ours∗f Ours∗p

No Attack - 90.8 84.5 83.1 86.2 90.6 87.3 90.5 91.3 91.9

FGSM
ǫ = 0.02 36.5 44.3 48.5 39.5 61.7 71.6 72.5 80.8 78.5

ǫ = 0.04 19.4 31.0 38.2 20.8 46.2 47.4 56.3 70.5 69.9

BIM
ǫ = 0.01 18.5 22.6 62.7 19.0 46.6 64.3 62.9 67.9 74.5

ǫ = 0.02 6.1 7.8 39.3 6.9 31.0 49.3 40.1 51.2 57.3

MIM
ǫ = 0.01 23.8 23.9 - 24.6 52.1 61.5 64.3 68.8 74.9

ǫ = 0.02 7.4 9.3 - 9.5 35.9 46.7 42.3 53.8 60.0

C&W

c = 0.001 61.3 67.7 82.5 72.2 80.6 84.5 84.3 91.0 91.3

c = 0.01 35.2 40.9 62.9 47.8 54.9 65.7 63.5 72.9 73.7

c = 0.1 0.6 25.4 40.7 19.9 25.6 47.9 41.1 55.7 60.5

PGD
ǫ = 0.01 23.4 24.3 - 24.5 48.4 67.7 60.1 68.3 75.7

ǫ = 0.02 6.6 7.8 - 8.5 30.4 48.5 39.3 50.6 58.5

Table 9: Comparison on MNIST dataset for white-box adversarial attacks (numbers shows robustness, higher is better). ∗ sign denotes

adversarially trained models. For our model, we report results without adversarial training (Ours) and with adversarially generated images

from FGSM (Ours∗f ) and PGD (Ours∗p ) attacks.

Attacks Params. Baseline AdvTrain [17]∗ Yu et al. [43] Ross et al. [33] Pang et al. [29] Ours Ours∗f Ours∗p

No Attack - 98.7 99.1 98.4 99.2 99.5 99.5 99.4 99.3

FGSM
ǫ = 0.1 58.3 73.0 91.6 91.6 96.3 97.1 97.2 96.5

ǫ = 0.2 12.9 52.7 70.3 60.4 52.8 70.6 80.0 77.9

BIM
ǫ = 0.1 22.5 62.0 88.1 87.9 88.5 90.2 92.0 92.1

ǫ = 0.15 12.2 18.7 77.1 32.1 73.6 76.3 76.5 77.3

MIM
ǫ = 0.1 58.3 64.5 - 83.7 92.0 92.1 92.7 93.0

ǫ = 0.15 16.1 28.8 - 29.3 77.5 77.7 80.2 82.0

C&W

c = 0.1 61.6 71.1 89.2 88.1 97.3 97.7 97.1 97.6

c = 1.0 30.6 39.2 79.1 75.3 78.1 80.4 87.3 91.2

c = 10.0 0.2 17.0 37.6 20.0 23.8 29.1 39.7 46.0

PGD
ǫ = 0.1 50.7 62.7 - 77.0 82.8 83.6 93.7 93.9

ǫ = 0.15 6.3 31.9 - 44.2 41.0 62.5 78.8 80.2

CIFAR-10 MNIST

Figure 4: Robustness of our model (without adversarial training)

against white-box attacks for various perturbation budgets.

Robustness against black-box settings is higher than

white-box settings: In white-box settings, the adversary

has complete knowledge of the model, so attacks should be

more successful. In other words, if a defense does not suffer

from obfuscated gradients, robustness of the model against

white-box settings should be inferior to that in the black-box

settings. Our extensive evaluations in Table 2 show that the

proposed defense follows this trend and therefore does not

obfuscate gradients.

Increasing the distortion bound (ǫ) decreases the robust-

ness of defense: On increasing the perturbation size, the

success rate of the attack method should significantly in-

crease monotonically. For an unbounded distortion, the

classifier should exhibit 0% robustness to the attack, which

again is true in our case (see Fig. 4).
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7. Conclusion

Our findings provide evidence that the adversary’s task is

made difficult by incorporating a maximal separation con-

straint in the objective function of DNNs, which conven-

tional cross-entropy loss fails to impose. Our theory and

experiments indicate, if the adversarial polytopes for sam-

ples belonging to different classes are non-overlapping, the

adversary cannot find a viable perturbation within the al-

lowed budget. We extensively evaluate the proposed model

against a diverse set of attacks (both single-step and itera-

tive) in black-box and white-box settings and show that the

proposed model maintains its high robustness in all cases.

Through empirical evaluations, we further demonstrate that

the achieved performance is not due to obfuscated gradi-

ents, thus the proposed model can provide significant secu-

rity against adversarial vulnerabilities in deep networks.
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