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Abstract

We introduce the first approach to solve the challeng-

ing problem of unsupervised 4D visual scene understand-

ing for complex dynamic scenes with multiple interacting

people from multi-view video. Our approach simultane-

ously estimates a detailed model that includes a per-pixel

semantically and temporally coherent reconstruction, to-

gether with instance-level segmentation exploiting photo-

consistency, semantic and motion information. We further

leverage recent advances in 3D pose estimation to constrain

the joint semantic instance segmentation and 4D temporally

coherent reconstruction. This enables per person seman-

tic instance segmentation of multiple interacting people in

complex dynamic scenes. Extensive evaluation of the joint

visual scene understanding framework against state-of-the-

art methods on challenging indoor and outdoor sequences

demonstrates a significant (≈ 40%) improvement in seman-

tic segmentation, reconstruction and scene flow accuracy.

1. Introduction

With the advent of autonomous vehicles and rising de-

mand for immersive content in augmented and virtual real-

ity, understanding dynamic scenes has become increasingly

important. In this paper we propose an unsupervised frame-

work for 4D dynamic scene understanding to address this

demand. By “4D Scene understanding” we refer to a unified

framework that describes: 3D modelling; motion/flow esti-

mation; and semantic instance segmentation on a per frame

basis for an entire sequence. Recent advances in pose esti-

mation [8, 46] and recognition [20, 56, 9] using deep learn-

ing have achieved excellent performance for complex im-

ages. We exploit these advances to obtain 3D human-pose

and an initial semantic instance segmentation from multiple

view videos to bootstrap the detailed 4D understanding and

modelling of complex dynamic scenes captured with mul-

tiple static or moving cameras (see Figure 1). Joint 4D re-

construction allows us to understand how people move and

interact, giving contextual information in general scenes.

Existing multi-task methods for scene understanding

perform per frame joint reconstruction and semantic in-

Figure 1. Joint 4D semantic instance segmentation and reconstruc-

tion exploiting 3D human-pose of interacting people in dynamic

scenes. Shades of pink in segmentation represents instances of

people. Colour assigned to reconstruction of frame 80 is reliably

propagated to frame 120 using proposed temporal coherence.

stance segmentation from a single image [25], showing

that joint estimation can improve each task. Other meth-

ods have fused semantic segmentation with reconstruction

[34] or flow estimation [41] demonstrating significant im-

provement in both semantic segmentation and reconstruc-

tion/scene flow. We exploit the joint estimation to under-

stand dynamic scenes by simultaneous reconstruction, flow

and segmentation estimation from multiple view video.

The first category of methods in joint estimation for

dynamic scenes generate segmentation and reconstruction

from multi-view [35] and monocular video [16, 30] with-

out any output scene flow estimate. The second category

of methods segment and estimates motion in 2D [41], or

give spatio-temporal aligned segmentation [11, 32, 12] from

multiple views without retrieving the shape of the objects.

The third category of methods in 4D temporally coherent

reconstruction either align meshes using correspondence in-

formation between consecutive frames [58] or extract the

scene flow by estimating the pairwise surface correspon-

dence between reconstructions at successive frames [53, 5].

However methods in these three categories do not exploit

semantic information of the scene. The fourth category

of joint estimation methods exploit semantic information
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by introducing joint semantic segmentation and reconstruc-

tion for general dynamic scenes [21, 56, 27, 49, 34] and

street scenes [13, 50]. However these methods give per-

frame semantic segmentation and reconstruction with no

motion estimate leading to unaligned geometry and pixel

level incoherence in both segmentation and reconstruction

for dynamic sequences. Other methods for semantic video

segmentation classify objects exploiting spatio-temporal se-

mantic information [48, 32, 11] but do not perform recon-

struction. We address this gap in the literature by propos-

ing a novel unsupervised framework for joint multi-view 4D

temporally coherent reconstruction, semantic instance seg-

mentation and flow estimation for general dynamic scenes.

Methods in the literature have exploited human-pose in-

formation to improve results in semantic segmentation [55]

and reconstruction [22]. However existing joint methods

for dynamic scenes (with multiple people) do not exploit

human-pose information often detecting interacting people

as a single object [34]. Table 1 shows a comparison be-

tween the tasks performed by state-of-the-art methods. We

exploit advances in 3D human-pose estimation to propose

the first approach for 4D (3D in time) human-pose based

scene understanding of general dynamic scenes with multi-

ple interacting dynamic objects (people) with complex non-

rigid motion. 3D human-pose estimation makes full use of

multi-view information and is used as a prior to constrain

the shape, segmentation and motion in space and time in the

joint scene understanding estimation to improve the results.

Our contributions are:

• High-level 4D scene understanding for general dy-

namic scenes from multi-view video.

• Joint instance-level segmentation, temporally coherent

reconstruction and scene flow with human-pose priors.

• Robust 4D temporal coherence and per-pixel semantic

coherence for dynamic scenes containing interactions.

• An extensive performance evaluation against 15 state-

of-the-art methods demonstrating improved semantic

segmentation, reconstruction and motion estimation.

2. Joint 4D dynamic scene understanding

This section describes our approach to joint 4D scene un-

derstanding, with different stages shown in Figure 2. The

input to the joint optimisation is multi-view video, per-

view initial semantic instance segmentation [20] and 3D

human-pose estimation [47]. To achieve stable long-term

4D understanding a set of unique key-frames are detected

exploiting multi-view information. Sparse temporal fea-

ture tracks are obtained per view between key-frames to

initialise the joint estimation. This allows robust 4D un-

derstanding in the presence of large non-rigid motion be-

tween frames. An initial reconstruction is obtained for each

object in the scene combining the initial semantic instance

segmentation with the sparse reconstruction [34]. The ini-

Semantic Segment Instance 3D Motion Pose

[25, 49, 13] X X X X × ×
[41] X X X × X ×
[34, 21, 27] X X × X × ×
[55] X X X × × X

[22] × × × X X X

[16] X X × X X ×
[30, 40] × × X X X ×
[35] × X × X X ×
[48, 32, 11] X X × × X ×
Proposed X X X X X X

Table 1. Comparison of tasks state-of-the-art methods are solving

against the proposed method.

tial reconstruction and semantic instance segmentation is

refined for each object instance through novel joint opti-

misation of segmentation, shape, and motion constrained

by 3D human-pose (Section 2.1). Key-frames are used to

introduce robust temporal coherence in the joint estima-

tion across long-sequences with large non-rigid deforma-

tion. Depth, motion and semantic instance segmentation is

combined across views between frames for 4D temporally

coherent reconstruction and dense per-pixel semantic coher-

ence for final 4D understanding of scenes (Section 3).

2.1. Joint per­view optimisation

Existing methods for semantic segmentation do not give

instance level segmentation of the scene. Previous approach

either segment the image followed by a per-segment object

category classification [33, 18], give deep per-pixel CNN

features followed by per-pixel classification in the image

[15, 19] or predict semantic segmentation from raw pixels

[42] followed by conditional random fields [28, 60]. A re-

cent state-of-the-art method gives a good estimate of ini-

tial semantic instance segmentation masks from an image of

complex sequence [20]. We employ this approach to predict

initial semantic instance segmentation pre-trained parame-

ters on MS-COCO[31] and PASCAL VOC12 [14] for each

view. Per-view semantic instance segmentation is combined

across views with sparse reconstruction to obtain an initial

reconstruction for each frame [34], this is refined through a

joint scene understanding optimisation.

The goal of the joint estimation is to refine initial se-

mantic instance segmentation and reconstruction by assign-

ing a label from a set of classes obtained from initial se-

mantic instance segmentation L =
{

l1, ..., l|L |

}

(|L | is

the total number of classes), a depth value from a set of

depth values D =
{

d1, ..., d|D|−1,U
}

(each depth value

is sampled on the ray from camera and U is an unknown

depth value to handle occlusions), and a motion flow field

M =
{

m1, ...,m|M |

}

simultaneously for the region R of

each object per view. |M | is the pre-defined discrete flow-

fields for pixel p = (x, y) in image I by m = (δx, δy) in

time. Joint semantic instance segmentation, reconstruction

and motion estimation is achieved by global optimisation

of a cost function over unary Eunary and pairwise Epair
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Figure 2. Unsupervised 4D scene understanding framework for dynamic scenes from multi-view video.

terms, defined as:

E(l, d,m) = Eunary(l, d,m) + Epair(l, d,m) (1)

Eunary = λdEd(d)+λaEa(l)+λsemEsem(l)+λfEf (m)

Epair = λsEs(l, d)+λcEc(l)+λrEr(l,m)+λpEp(l, d,m)

where, d is the depth, l is the class label, andm is the motion

at pixel p. Novel terms are introduced for flow Ef , motion

regularisation Er and human-pose Ep costs, explained in

Section 2.1.3 and 2.1.2 respectively. Results of the joint op-

timisation with and without pose (Ep) and motion (Ef ,Er)
information are presented in Figure 3, showing the improve-

ment in results. Ablative analysis on individual costs in Sec-

tion 4 show the improvement in performance with the novel

introduction of motion and pose constraints in the joint op-

timisation. Standard unary terms for depth (Ed), semantic

(Esem), and appearance (Ea) costs are used [34], explained

in Section 2.1.5. Standard pairwise terms colour contrast

(Ec) is used to assist segmentation and smoothness (Es)
cost ensures that depth vary smoothly in a neighbourhood,

are explained in Appendix A of the supplementary material.

Global optimisation of Equation 1 is performed over all

terms simultaneously, using the α-expansion algorithm by

iterating through the set of labels in L ×D ×M [7]. Each

iteration is solved by graph-cut using the min-cut/max-flow

algorithm [6]. Convergence is achieved in 7-8 iterations.

2.1.1 Spatio-temporal coherence in the optimisation

Constraints are applied on the spatial and temporal neigh-

borhood to enforce consistency in the appearance, semantic

label, 3D human pose and motion across views and time.

Spatial coherence: Multi-view spatial coherence is en-

forced in the optimisation such that the motion, shape, ap-

pearance, 3D pose and class labels are consistent across

views using an 8-connected spatial neighbourhood ψS for

each camera view such that the set of pixel pairs (p; q) be-

long to the same frame.

Temporal coherence: Temporal coherence is enforced in

the joint optimisation by enforcing coherence across key-

frames to handle large non-rigid motion and to reduce er-

rors in sequential alignment for long sequences in the 4D

scene understanding. Sparse temporal feature correspon-

dences are used for key-frame detection and robust initiali-
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sation of the joint optimisation. They measure the similarity

between frames and unlike optical flow are robust to large

motions and visual ambiguity. To achieve robust tempo-

ral coherence in the 4D scene understanding framework for

large non-rigid motion, sparse temporal feature correspon-

dences in 3D are obtained across the sequence.

The temporal neighbourhood is defined for each frame

between its respective key-frames. Sparse temporal corre-

spondence tracks define the temporal neighbourhood ψT =
{(p, q) | q = p+ ei,j}; where j = {t− 1, t+ 1} and ei,j
is the displacement vector from image i to j.

2.1.2 Human-pose constraints Ep(l, d,m)

We use 3D human-pose to constrain joint optimisation and

improve the flow, reconstruction and instance segmentation,

in both 2D and 3D for dynamic scenes with multiple inter-

acting people (see Figure 1). 3D human-pose is used as it is

consistent across multiple views unlike 2D human-pose. A

state-of-the-art method for 3D human-pose estimation from

multiple cameras [47] is used in the paper. Previous work

on 3D pose estimation [46] iteratively builds a 3D model of

human-pose consistent with 2D estimates of joint locations

and prior knowledge of natural body pose. In [47], multiple

cameras are used when estimating the 3D model; this then

feeds back into new estimates of the 2D joint locations in

each image. This approach allows us to take full advantage

of 3D estimates of pose, consistent across all cameras when

finding fine grained 2D correspondences between images,

and leading to more lifelike, vivid human reconstructions.

Initial semantic reconstruction is updated if the 3D pose

of the person lies outside the region R by dilating the

boundary to include the missing joints. This allows for more

robust and complete reconstruction and segmentation. We

use a standard set of 17 joints [47] defined as B. A circle

Ci is placed around the joint position in 2D and a sphere Si

is placed around the joint position in 3D based on the con-

fidence map to identify the nearest neighbour vertices for

every joint bi.

Ep(l, d,m) =
∑

bi∈B

λ2de2d(l,m) + λ3de3d(d) (2)

e2d(l,m) = eL2d(l) + eS2d(l) + eM2d(m)

e3d(d) = eM3d(d) + eS3d(d), if dp 6= U else 0

3D shape term: This term constrains the reconstruction in

3D such that the neighbourhood points around the joints do

not move far from the respective joints, and is defined as:

eS3d(d) = exp(−
1

|σSD
|

∑

Φ(p)∈Si

‖O‖
2
F )

where Φ(p) is the 3D projection of pixel p. The Frobe-

nius norm ‖O‖F =
∥

∥

[

Φ(p) bi
]∥

∥

F
is applied on the 3D

points in all directions to obtain the ‘net’ motion at each

pixel within Si and σSD
=

〈

‖O‖2
F

ϑΦ(p),bi

〉

.

3D motion term: This enforces as rigid as possible [43]

constraint on 3D points in the neighbourhood of each joint

bi in space and time. An optimal rotation matrix Ri is esti-

mated for each bi by minimising the energy defined as:

eM3d(d) =
∑

Φ(p)∈Si

∥

∥

(

bt+1
i − Φ(p)t+1

)

−Ri
(

bti − Φ(p)t
)∥

∥

2

2

+ λp3d
∥

∥p− eM3d
∥

∥

2

2

2D term: 3D poses are back-projected in each view to

constrain per view appearance (eL2d), semantic segmentation

(eS2d) and motion estimation (eM2d) in 2D. If p ∈ Ci,

eL2d(l) = exp



−
∑

p∈ψS

∑

p∈ψT

‖I(Π(bi))− I(p)‖
2

|σSL
|





eS2d(l) = exp



−
∑

p∈ψS

∑

p∈ψT

‖Π(bi)− p‖
2

|σSS
|





eM2d(m) = exp






−

∑

p∈ψS

∑

k∈ψT

∥

∥

∥ϑp,Π(bk
i
) − ϑ

p+mp,Π(bk+1
i

)

∥

∥

∥

2

|σSM
|







where, Π is the back-projection of 3D poses to 2D, Npose

is the number of nearest neighbours, σSL
=

〈

‖Π(bi)−q‖
2

ϑΠ(bi),q

〉

and, σSS
and σSM

is defined similarly. eL2d(l) and eS2d(l)
ensures that the pixels around projected 3D pose Π(bi) have

the same semantic label and appearance across views (ψS)

and time (ψT ) thereby ensuring spatio-temporal appearance

and semantic consistency respectively.

2.1.3 Motion constraints- Ef (m) and Er(l,m)

Flow term: This term is obtained by integrating the sum of

three penalisers over the reference image domain inspired

from [45], defined as:

Ef (p,mp) = eTF (p,mp) + eVF (p,mp) + eSF (p,mp)

where, eTF (p,mp) =
∑Nv

i=1 ‖(Ii(p, t)− Ii(p+mp, t+ 1))‖
2

penalises deviation from the brightness constancy assump-

tion in a temporal neighbourhood for the same view;

eVF (p,mp) =
∑

t∈ψT

∑Nv

i=2 ‖(I1(p, t)− Ii(p+mp, t))‖
2

penalises deviation in appearance from the bright-

ness constancy assumption between the reference

view and other views at other time instants; and

eSF (p,mp) = 0 if p ∈ N otherwise ∞ which forces

the flow to be close to nearby sparse temporal correspon-

dences. Ii(p, t) is the intensity at point p at time t in camera

i. The flow vector m is located within a window from a

sparse constraint at p and it forces the flow to approximate

the sparse 2D temporal correspondences.

Motion regularisation term: This penalises the absolute

difference of the flow field to enforce motion smoothness
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Figure 3. Comparison of reconstruction without pose and motion

in the optimisation framework, proposed result is best.

and handle occlusions in areas with low confidence [45].

Er(l,m) =
∑

p,q∈Np
‖∆m‖

2
λLr e

L
r (p, q,mp,mq, lp, lq) +

λAr e
A
r (p, q,mp,mq, lp, lq)

where ∆m = mp −mq and;

eXr = ∀
lp=lq

mean
q∈Np

EX(q,mq)− min
q∈Np

EX(q,mq) else 0. We

compute eLR (semantic regularisation) and eAR (appearance

regularisation) as the minimum subtracted from the mean

energy within the search window Np for each pixel p.

2.1.4 Long-term temporal coherence

Sparse temporal correspondences: The sparse 3D points

projected in all views are matched between frames N i
f and

key-frames across the sequence using nearest neighbour

matching [37] followed by a symmetry test which employs

forward and backward match consistency by performing

two-way matching to remove the inconsistent correspon-

dences. This gives sparse temporal feature correspondence

tracks per frame for each object: F ci = {f c1 , f
c
2 , ..., f

c
Rc

i
},

where c = 1 to Nv . Rci are the 3D points visible at each

frame i. Exhaustive matching is done, such that each frame

is matched to every other frame to handle appearance, reap-

pearance and disappearance of points between frames.

Key-frame detection: Previous work [39, 38] showed that

sparse key-frames allow robust long-term correspondence

for 4D reconstruction. In this work we introduce the addi-

tional use of pose in the detection and sparse temporal fea-

ture correspondence across key-frames to prevent the accu-

mulation of errors in long sequences. 4D scene alignment

between key-frames is explained in Section 3.

Key-frame similarity metric is defined as:

KSi,j = 1−
1

5Nv

Nv
∑

c=1

(M c
i,j+L

c
i,j+D

c
i,j+P

c
i,j+I

c
i,j) (3)

Key-frame detection exploits sparse correspondence (M c
i,j),

pose (P ci,j), shape (Ici,j), semantic (Ici,j) and distance (Dc
i,j)

information across viewsNv between frame i and j for each

object in view c, to improve the long-term temporal coher-

ence of the proposed method, using similar frames across

the sequence, illustrated in Figure 4. All frames with sim-

ilarity > 0.75 in a sequence are selected as key-frames de-

fined as K = {k1, k2, ..., kNk} where Nk is the number

of key-frames and N i
f is the number of frames between Ki

and Ki+1. All the metrics used in 3 and an ablation study

for key-frame detection is given in detail in Appendix B of

supplementary material.

Figure 4. An illustration of key-frame detection and matching

across a short sequence for stable long-term temporal coherence.

Features at view c frame i, F ci are matched to features

at view c to frames j = {i+ 1, ..., N i
f} to give corre-

spondences for all the frames N i
f with key-frame Ki. The

corresponding joint locations from the 3D pose are back-

projected in each view and added to sparse temporal tracks

in between key-frames. Any new point-tracks are added to

the list of point tracks for key-frame Ki.

2.1.5 Unary terms - Eunary(l, d,m)

Depth term: This gives a measure of photo-consistency

between views Ed(d) =
∑

p∈ψS
ed(p, dp), defined as:

ed(p, dp) =

{

M(p, q) =
∑

i∈Ok
m(p, q), if dp 6= U

MU , if dp = U

where MU is the fixed cost of labelling pixel unknown and

q denotes the projection of the hypothesised point P (3D
point along the optical ray passing through pixel p located

at a distance dp from the camera) in an auxiliary camera.

Ok is the set of the k most photo-consistent pairs with ref-

erence camera and m(p, q) is inspired from [35].

Appearance term: This term is computed using the neg-

ative log likelihood [6] of the colour models (GMMs with

10 components) learned from the initial semantic mask in

the temporal neighbourhood ψT and the foreground mark-

ers obtained from the sparse 3D features for the dynamic

objects. It is defined as:

Ea(l) =
∑

p∈ψT

∑

p∈ψS
− logP (Ip|lp)

where P (Ip|lp = li) denotes the probability of pixel p be-

longing to layer li.
Semantic term: This term is based on the probability of the

class labels at each pixel based on [9], defined as:

Esem(l) =
∑

p∈ψT

∑

p∈ψS
− logPsem(Ip|lp)

where Psem(Ip|lp = li) denotes the probability of pixel p
being in layer li in the reference image obtained from initial

semantic instance segmentation [20].

3. 4D scene understanding

The final 4D scene model fuses the semantic instance

segmentation, depth information and dense flow across

views and in time between frames (N i
f ) and key-frames

(Ki). The initial instance segmentation, human pose and

motion information for each object is combined to obtain fi-

nal instance segmentation of the scene. The depth informa-
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Figure 5. Example of 4D scene reconstruction for two datasets

Datasets Resolution Nv Baseline L KF Tracks

Handshake[26] 1920× 1080 8(all S) 15◦-30◦ 125 15 1945

Meetup[17] 1920× 1080 16(all S) 25◦-35◦ 100 9 1341

Juggler2[4] 960× 544 6(all M) 15◦-45◦ 300 16 1278

Handstand[51] 1600× 1200 8(all S) 25◦-45◦ 174 12 1056

Rachel[2] 3840× 2160 16(all S) 20◦-30◦ 270 15 1978

Juggler1[2] 1920× 1080 8(2 M) 15◦-30◦ 253 17 2083

Dance[1] 780× 582 8(all S) 35◦-45◦ 60 7 732

Magician[4] 960× 544 6(all M) 15◦-45◦ 300 10 1312

Human3.6[23] 1000× 1000 4(all S) 25◦-30◦ 250 14 994

MagicianLF[38] 2048× 2048 25(all S) 5◦-8◦ 350 5 1312

WalkLF[38] 2048× 2048 20(all S) 5◦-8◦ 221 7 1934

Table 2. Properties of all datasets: Nv is the number of views,

L is the sequence length, KF gives number of key-frames, and

Tracks gives the number of sparse temporal correspondence tracks

averaged over the entire sequence for each object (S stands for

static cameras and M for moving cameras).

tion is combined across views using Poisson surface recon-

struction [24] to obtain a mesh for each object in the scene.

4D temporally coherent meshes are obtained by combining

the most consistent motion information from all views for

each 3D point. This is combined with spatial semantic in-

stance information to give per-pixel semantic and temporal

coherence. Appearing, disappearing, and reappearing re-

gions are handled by using the sparse temporal tracks and

their respective motion estimate. The dense flow and se-

mantic instance segmentation together with 3D models of

each object in the scene gives the final 4D understanding of

the scenes. Examples are shown in Figure 1 and 5 on two

datasets, where objects are coloured in one key-frame and

colours are propagated reliably between frames and key-

frames across the sequence for robust 4D scene modelling.

4. Results and evaluation

Joint semantic instance segmentation, reconstruction and

flow estimation (section 2) is evaluated quantitatively and

qualitatively against 15 state-of-the-art methods on a vari-

ety of publically available multi-view indoor and outdoor

dynamic scene datasets, detailed in Table 2. More results

are provided in supplementary material Appendix C.

Algorithm parameters listed in Table 3 are the same for

all outdoor datasets, and for indoor datasets parameters de-

pend on the number of cameras (Nv). Pairwise costs are

constant λp = 0.9, λc = λs = λr = 0.5 for all datasets.

λd λa λsem λf λts/λ
s
s λca/λcl λ

L
r /λ

C
r λ2d/λ3d

Outdoor 1.2 0.5 0.5 0.4 1.0 5.0 0.6 7.5

I,Nv < 6 1.0 0.7 0.5 0.6 0.4 5.0 0.4 7.5

I,6 ≤ Nv < 20 1.0 0.7 0.2 0.4 0.4 5.0 0.4 5.0

I,Nv ≥ 20 1.0 1.0 0.5 0.5 0.2 5.0 0.4 5.0

Table 3. Parameters for all datasets. I is Indoor

Figure 6. Reconstruction evaluation against existing methods. Two

different views of 3D model are shown for proposed method.

4.1. Reconstruction evaluation

The proposed approach is compared against state-of-the-

art approaches for semantic co-segmentation and recon-

struction (SCSR) [34], piecewise scene flow (PRSM) [52],

multi-view stereo (SMVS) [29], and deep learning based

stereo approaches (LocalStereo) [44]. Qualitative compari-

son with 2 views of proposed method are shown in Figure 6.

Pre-trained parameters were used for LocalStereo and per-

view depth maps were fused using Poisson reconstruction.

The quality of surface obtained using proposed method is

improved compared to state-of-the-art methods. In contrast

to previous approaches, limbs of people are reliably recon-

structed because of the exploitation of human-pose and tem-

poral information (motion) in the joint optimisation.

For quantitative comparison to state-of-the-art methods,

we project the reconstruction onto different views and com-

pute the projection errors shown in Table 4. A significant

improvement is obtained in projected surface completeness

with the proposed approach.
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Methods Handshake Handstand Rachel Juggler1 Juggler2 Magician Dance Meetup Human3.6 MagicianLF WalkLF

PRSM [52] 1.56 1.79 1.51 1.57 1.68 1.72 1.79 1.98 2.01 1.59 1.41

LS [44] 1.24 1.38 1.15 1.21 1.18 1.33 1.46 1.47 1.64 1.20 1.23

SMVS [29] 0.84 0.97 0.73 0.75 0.85 0.92 0.85 0.96 1.19 0.94 0.88

SCSR [34] 0.70 0.84 0.67 0.69 0.73 0.78 0.77 0.87 0.92 0.77 0.71

PPS 0.73 0.87 0.65 0.70 0.71 0.75 0.74 0.88 0.90 0.78 0.70

PPM 0.71 0.85 0.64 0.68 0.69 0.73 0.72 0.85 0.87 0.75 0.68

PP 0.57 0.71 0.56 0.59 0.61 0.64 0.62 0.75 0.77 0.67 0.63

PS 0.59 0.69 0.59 0.57 0.63 0.66 0.60 0.73 0.76 0.65 0.60

PM 0.55 0.68 0.55 0.54 0.59 0.61 0.59 0.74 0.73 0.62 0.59

Proposed 0.46 0.55 0.47 0.49 0.51 0.53 0.55 0.57 0.60 0.49 0.44

Table 4. Reconstruction evaluation: Projection error across views against state-of-the-art methods, LS is LocalStereo. PP = E−Ep, PM =

E − Ef − Er, PPM = E − Ef − Er − Ep, PS = E − Esem and PPS = E − Esem − Ep, where E is defined in Equation 1.

Methods Handshake Handstand Rachel Juggler1 Juggler2 Magician Dance Meetup Human3.6 MagicianLF WalkLF

CRFRNN [60] 62.7 55.8 61.6 40.5 68.7 52.4 49.3 41.1 42.9 60.8 63.6

Segnet [3] 47.9 51.1 55.2 45.1 61.9 55.3 53.9 43.9 49.4 59.3 65.9

JSR [17] 67.8 58.7 58.4 56.2 66.0 61.3 57.9 50.2 53.4 62.3 68.9

SCV [48] 56.4 52.6 48.8 49.5 59.1 59.2 56.7 42.0 49.1 58.2 65.7

Dv3+ [10] 63.8 58.9 64.0 48.8 69.7 58.9 57.6 48.4 54.8 69.6 69.1

MRCNN [20] 65.2 59.6 67.4 50.3 70.5 60.5 58.7 47.2 53.4 69.5 70.2

PSP [59] 74.7 64.5 75.5 67.9 81.2 73.4 71.5 62.6 65.3 74.6 82.5

SCSR [34] 81.8 75.2 78.4 81.4 89.3 88.2 85.1 78.9 70.4 82.2 86.7

PPM 85.7 75.9 78.6 81.8 89.6 88.5 85.5 79.2 70.6 82.9 87.5

PP 86.3 77.4 80.7 82.6 90.1 89.1 87.6 80.8 76.3 86.1 89.3

PM 87.6 79.1 81.7 83.5 90.5 89.6 86.4 81.9 75.4 85.2 88.1

Proposed 89.6 83.3 85.8 88.2 91.1 90.9 88.5 84.7 81.1 89.4 91.8

Table 5. Segmentation comparison against state-of-the-art methods using the Intersection-over-Union metric.

4.2. Segmentation evaluation

Our approach is evaluated against a variety of state-of-

the-art multi-view (SCV [48], SCSR [34], and JSR [17])

and single-view (Dv3+ [10], MRCNN [20], PSP [59], CRF

RNN [60], and Segnet [3]) segmentation methods, shown in

Figure 7. For fair evaluation against single-view semantic

segmentation methods, multi-view consistency is applied

for segmentation estimated from each view to obtain multi-

view consistent semantic segmentation using dense multi-

view correspondence. Colour in the results is kept from the

original papers. Only MRCNN and the proposed approach

gives instance segmentation.

Quantitative evaluation against state-of-the-art methods

is measured by Intersection-over-Union with ground-truth,

shown in Table 5. Ground-truth is available on-line for most

of the datasets and obtained by manual labelling for other

datasets. Pre-trained parameters were used for semantic

segmentation methods. The semantic instance segmenta-

tion results from the joint optimisation are significantly bet-

ter compared to the state-of-the-art methods (≈ 20− 40%).

4.3. Motion evaluation

Flow from the joint estimation is evaluated against state-

of-the-art methods: (a) Dense flow algorithms DCflow

[57] and Deepflow [54]; (b) Scene flow methods PRSM

[52]; and (c) Non-sequential alignment of partial surfaces

4DMatch [36] (requires a prior 3D mesh of the object as

input for 4D reconstruction). The key-frames of sequence

are coloured and the colour is propagated using dense flow

from the joint optimisation throughout the sequence. The

red regions in 2D dense flow in Figure 8 are the regions for

which reliable correspondences are not found. This demon-

strates improved performance using the proposed method.

The colours in the 4D alignment in Figure 9 are not reliably

propagated by DCFlow for limbs.

We also compare the silhouette overlap error (Se) across

frames, key-frames and views to evaluate long-term tempo-

ral coherence in Table 6 for all datasets. This is defined as

Se = 1
NvNkN

i
f

∑Nk

i=1

∑Ni
f

j=1

∑Nv

c=1
Area of intersection

Area of semantic segmentation
.

Dense flow in time is used to obtain the propagated mask

for each image. The propagated mask is overlapped with se-

mantic segmentation at each time instant to evaluate the ac-

curacy of the propagated mask. The lower the Se the better.

Our approach gives the lowest error demonstrating higher

accuracy compared to the state-of-the-art methods.

4.4. Ablation study on Equation 1

We perform an ablation study on Equation 1, such that

we remove motion Ef , Er, pose Ep and semantic Esem
constraints from the equation, defining PM = E − Ef −
Er, PP = E − Ep, PPM = E − Ef − Er − Ep, PS =
E − Esem and PPS = E − Esem − Ep. Reconstruction,

flow and semantic segmentation is obtained with removed

constraints, and the results are shown in Tables 4, 6 and 5 re-

spectively. The proposed approach gives best performance

with joint pose, motion and semantic constraints.

4.5. Limitations

Gross errors in initial semantic instance segmentation

and 3D pose estimation lead to degradation in the quality of
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Figure 7. Semantic segmentation comparison against state-of-the-art methods. In the proposed method shades of pink depicts instances of

humans and shades of yellow depict instances of cars.

Methods Handshake Handstand Rachel Juggler1 Juggler2 Magician Dance Meetup Human3.6 MagicianLF WalkLF

PRSM [57] 1.80 2.15 1.54 1.65 1.79 1.96 1.87 2.11 2.34 1.87 1.52

Deepflow [54] 1.15 1.48 1.01 1.08 1.16 1.27 1.21 1.37 1.52 1.05 0.81

DCFlow [52] 0.90 1.17 0.97 0.87 0.93 1.03 0.96 1.12 1.21 0.83 0.79

4DMatch [36] 0.79 0.98 0.75 0.69 0.87 0.81 0.77 0.87 0.94 0.80 0.77

PPS 0.75 1.01 0.85 0.78 0.91 0.93 0.86 0.99 1.07 0.81 0.78

PP 0.71 0.93 0.80 0.73 0.84 0.87 0.78 0.92 0.99 0.76 0.73

PS 0.64 0.77 0.63 0.61 0.65 0.72 0.65 0.76 0.81 0.64 0.61

Proposed 0.51 0.61 0.48 0.49 0.52 0.58 0.55 0.63 0.68 0.53 0.44

Table 6. Silhouette overlap error for multi-view datasets for evaluation of long-term temporal coherence, where .

Figure 8. Temporal coherence evaluation against existing methods.

results (e.g. the cars in Juggler2 - Figure 7). Although 3D

human pose helps in robust 4D reconstruction of interact-

ing people in dynamic scenes, current 3D pose estimation

is unreliable for highly crowded environments resulting in

degradation of the proposed approach.

Figure 9. 4D alignment evaluation against DCFlow [57].

5. Conclusions

This paper introduced the first method for unsuper-
vised 4D dynamic scene understanding from multi-view
video. A novel joint flow, reconstruction and semantic
instance segmentation estimation framework is intro-
duced exploiting 2D/3D human-pose, motion, semantic,
shape and appearance information in space and time.
Ablation study on the joint optimisation demonstrates
the effectiveness of the proposed scene understanding
framework for general scenes with multiple interacting
people. The semantic, motion and depth information
per view is fused spatially across views for 4D seman-
tically and temporally coherent scene understanding.
Extensive evaluation against state-of-the-art methods on
a variety of complex indoor and outdoor datasets with
large non-rigid deformations demonstrates a significant
improvement in the accuracy in semantic segmenta-
tion, reconstruction, motion estimation and 4D alignment.
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