
AutoFocus: Efficient Multi-Scale Inference

Mahyar Najibi ∗ Bharat Singh ∗ Larry S. Davis

University of Maryland, College Park

{najibi,bharat,lsd}@cs.umd.edu

Abstract

This paper describes AutoFocus, an efficient multi-scale

inference algorithm for deep-learning based object detec-

tors. Instead of processing an entire image pyramid, Auto-

Focus adopts a coarse to fine approach and only processes

regions which are likely to contain small objects at finer

scales. This is achieved by predicting category agnostic seg-

mentation maps for small objects at coarser scales, called

FocusPixels. FocusPixels can be predicted with high re-

call, and in many cases, they only cover a small fraction of

the entire image. To make efficient use of FocusPixels, an

algorithm is proposed which generates compact rectangu-

lar FocusChips which enclose FocusPixels. The detector is

only applied inside FocusChips, which reduces computation

while processing finer scales. Different types of error can

arise when detections from FocusChips of multiple scales

are combined, hence techniques to correct them are pro-

posed. AutoFocus obtains an mAP of 47.9% (68.3% at 50%

overlap) on the COCO test-dev set while processing 6.4 im-

ages per second on a Titan X (Pascal) GPU. This is 2.5×
faster than our multi-scale baseline detector and matches

its mAP. The number of pixels processed in the pyramid can

be reduced by 5× with a 1% drop in mAP. AutoFocus ob-

tains more than 10% mAP gain compared to RetinaNet but

runs at the same speed with the same ResNet-101 backbone.

1. Introduction

Human vision is foveal and active [1, 21]. The fovea,

which observes the world at high-resolution, only corre-

sponds to 5 degrees of the total visual field [32]. Our

lower resolution peripheral vision has a field of view of 110

degrees [62]. To find objects, our eyes perform saccadic

movements which rely on peripheral vision [31]. When

moving between different fixation points, the region in be-

tween is simply ignored, a phenomenon known as saccadic

masking [7, 27, 50]. Hence, finding objects is an active

process and the search time depends on the complexity of

∗Equal Contribution

0

10

20

30

40

50

60

Small Med Large BG
A

re
a 

P
er

ce
n
ta

ge
/I

m
ag

e

0.3%
3%

40%

57%
Small: (0, 322]

Med: (322, 962] 

Large: (962, ∞)

Figure 1: Area of objects of different sizes and the back-

ground in the COCO validation set. Objects are divided

based on their area (in pixels) into small, medium, and large.

the scene. For example, locating a face in a portrait photo-

graph would take much less time than finding every face in

a crowded market.

Adaptive processing, which is quite natural, brings sev-

eral benefits. Many applications do not have real-time re-

quirements and detectors are applied offline on billions of

images/videos. Therefore, computational savings in a batch

mode provide substantial monetary benefits. Examples in-

clude large-scale indexing of images and videos for visual

search, APIs provided by cloud services, smart retail stores

etc. While there is work on image classification which per-

forms conditional computation [4, 39, 67], modern object

detection algorithms perform static inference and process

every pixel of a multi-scale image pyramid to detect objects

of different sizes [59, 60, 54]. This is a very inefficient pro-

cess as the algorithm spends equal energy at every pixel at

different scales.

To provide some perspective, we show the percentage of

pixels occupied per image for different size objects in the

COCO dataset in Fig 1. Even though 40% of the object

instances are small, they only occupy 0.3% of the area. If

the image pyramid includes a scale of 3, then just to detect

such a small fraction of the dataset, we end up perform-

ing 9 times more computation at finer-scales. If we add

some padding around small objects to provide spatial con-

text and only upsample these regions, their area would still

9745



be small compared to the resolution of the original image.

So, when performing multi-scale inference, can we predict

regions containing small objects from coarser scales?

If deep convolutional neural networks are an approxima-

tion of biological vision, it should be possible to localize

object-like regions at lower resolution and recognize them

by zooming on them at higher resolution - similar to the way

our peripheral vision is coupled with foveal vision. To this

end, we propose an object detection framework called Aut-

oFocus, which adopts a coarse to fine approach and learns

where to look in the next (larger) scale in the image pyra-

mid. Thus, it saves computation while processing finer

scales. This is achieved by predicting category agnostic bi-

nary segmentation maps for small objects, which we refer to

as FocusPixels. A simple algorithm which operates on Fo-

cusPixels is designed to generate chips for the next image

scale. AutoFocus only processes 20% of the image at the

largest scale in the pyramid on the COCO dataset, without

any drop in performance. This can be improved to as little

as 5% with a 1% drop in performance.

2. Related Work

Image pyramids [66] and convolutional neural networks

[34] are fundamental building blocks in the computer vi-

sion pipeline. Unfortunately, convolutional neural networks

are not scale invariant. Therefore, for instance-level vi-

sual recognition problems, to recognize objects of differ-

ent sizes, it is beneficial to rely on image pyramids [59].

While efficient training solutions have been proposed for

multi-scale training [60], inference on image pyramids re-

mains a computational bottleneck which prohibits their use

in practice. Recently, a few methods have been proposed

to accelerate multi-scale inference, but they have only been

evaluated under constrained settings like pedestrian/face de-

tection or object detection in videos [22, 61, 12, 58, 40, 30].

In this work, we propose a simple and pragmatic framework

to accelerate multi-scale inference for generic object detec-

tion which is evaluated on benchmark datasets.

Accelerating object detection has a long history in com-

puter vision. The Viola-Jones detector [64] is a classic ex-

ample. It rejects easy regions with simple filters and spends

more energy on promising object-like regions to accelerate

the process. Several methods since then have been proposed

to improve it [6, 72, 70]. Prior to deep-learning based object

detectors, it was common to employ a multi-scale approach

for object detection [65, 14, 18, 20, 17, 3] and several ef-

fective solutions were proposed to accelerate detection on

image pyramids. Common techniques involved approxima-

tion of features to reduce the number of scales [17, 3], cas-

cades [6, 16] or feature pyramids [15]. Recently, feature-

pyramids have been extensively studied and employed in

deep learning based object detectors as the representation

provides a boost in accuracy without compromising speed

[45, 43, 69, 9, 36, 44, 52, 24, 37, 41]. Although the use

of image pyramids is common in challenge winning entries

which primarily focus on performance [25, 13, 54, 41], ef-

ficient detectors which operate on a single low-resolution

image (e.g. YOLO [56], SSD [43], RetinaNet [37]) are com-

monly deployed in practice. This is because multi-scale

inference on pyramids of high-resolution images is pro-

hibitively expensive.

AutoFocus alleviates this problem to a large extent and

is designed to provide a smooth trade-off between speed

and accuracy. It shows that it is possible to predict the

presence of a small object at a coarser scale (referred to as

FocusPixels) which enables avoiding computation in large

regions of the image at finer scales. These are different

from object proposals [11, 63, 57] where region candidates

need to have a tight overlap with objects. Learning to

predict FocusPixels is an easier task and does not require

instance-level reasoning. AutoFocus shares the motivation

with saliency and reinforcement learning based methods

which perform a guided search while processing images

[28, 26, 42, 53, 23, 49, 55, 29, 47], but it is designed to

predict small objects in coarser scales and they need not be

salient.

3. Background

We provide a brief overview of SNIP, which is the multi-

scale training and inference method described in [59]. The

core idea is to restrict the training samples to be in a pre-

defined scale range which is appropriate for the input scale.

For example, the detector is only trained on small objects at

high resolution (larger scale) and large objects at low res-

olution (smaller scale). Because it is not trained on large

objects at high resolution images, it is unlikely to detect

them during inference as well. Rules are also defined to ig-

nore large detections in high-resolution images during infer-

ence and vice-versa. Therefore, while merging detections

from multiple scales, SNIP simply ignores large detections

in high resolution images which contain most of the pixels.

Since the size of objects is known during training, it is

possible to ignore large regions of the image pyramid by

only processing appropriate context regions around objects.

SNIPER [60] showed that training on such low resolution

chips with appropriate scaling does not lead to any drop in

performance when compared to training on full-resolution

images. If we can automatically predict these chips for

small objects at a coarser scale, we may not need to process

the entire high-resolution image during inference as well.

But when these chips are generated during training, many

object instances get cropped and their size changes. This

did not hurt performance during training and can also be

regarded as a data augmentation strategy. Unfortunately,

if chips are generated during inference and an object is

cropped into multiple parts, it would increase the error rate.

9746



Positive

Negative

Don’t Care

GT box

Legend

(a) Image (b) Scale 1

(c) Scale 2

(d) Scale 3

Figure 2: The figure illustrates how FocusPixels are assigned at multiple scales of an image. At scale 1 (b), the smallest two

elephants generate FocusPixels, the largest one is marked as background and the one on the left is ignored during training to

avoid penalizing the network for borderline cases (see Sec. 4.1 for assignment details). The labelling changes at scales 2 and

3 as the objects occupy more pixels. For example, only the smallest elephant would generate FocusPixels at scale 2 and the

largest two elephants would generate negative labels.

So, apart from predicting where to look at the next scale, we

also need to design an algorithm which correctly merges de-

tections from chips at multiple scales.

4. The AutoFocus Framework

Classic features like SIFT [46] / SURF [2], combine two

major components - the detector and the descriptor. The

detector typically involved lightweight operators like Dif-

ference of Gaussians (DoG) [48], Harris Affine [51], Lapla-

cian of Gaussians (LoG) [8] etc. The detector was applied

on the entire image to find interesting regions. Therefore,

the descriptor, which was computationally expensive, only

needed to be computed for these interesting regions. This

cascaded model of processing the image made the entire

pipeline efficient.

Likewise, the AutoFocus framework is designed to pre-

dict interesting regions in the image and discards regions

which are unlikely to contain objects at the next scale. It

zooms and crops only such interesting regions when apply-

ing the detector at successive scales. AutoFocus is com-

prised of three main components: the first learns to pre-

dict FocusPixels, the second generates FocusChips for effi-

cient inference and the third merges detections from mul-

tiple scales, which we refer to as focus stacking for object

detection.

4.1. FocusPixels

FocusPixels are defined at the granularity of the convolu-

tional feature map (like conv5). A pixel in the feature map

is labelled as a FocusPixel if it has any overlap with a small

object. An object is considered to be small if it falls in an

area range (between 5 × 5 and 64 × 64 pixels in our im-

plementation) in the resized chip (Sec. 4.2) which is input

to the network . To train our network, we mark FocusPixels

as positives. We also define some pixels in the feature map

as invalid. Those pixels which overlap objects that have an

area smaller or slightly larger than those defined as small

are considered invalid (smaller than 5 × 5 or between 64 ×
64 and 90 × 90). All other pixels are considered as nega-

tives. AutoFocus is trained to generate high activations on

regions which contain FocusPixels.

Formally, given an image of size X×Y , and a fully con-

volutional neural network whose stride is s, then the labels

L will be of size X ′×Y ′, where X ′ = ⌈X

s
⌉ and Y ′ = ⌈Y

s
⌉.

Since the stride is s, each label l ∈ L corresponds to s × s

pixels in the image. The label l is defined as follows,

l =



















1, IoU(GT, l) > 0, a <
√
GTArea < b

−1, IoU(GT, l) > 0,
√
GTArea < a

−1, IoU(GT, l) > 0, b <
√
GTArea < c

0, otherwise

where IoU is intersection over union of the s×s label block

with the ground truth bounding box. GTArea is the area of

the ground truth bounding box after scaling. a is typically

5, b is 64 and c is 90. If multiple ground-truth bounding

boxes overlap with a pixel, FocusPixels (l = 1) are given

precedence. Since our network is trained on 512 × 512

pixel chips, the ratio between positive and negative pixels

is around 10, so we do not perform any re-weighting for

the loss. Note that during multi-scale training, the same

ground-truth could generate a label of 1, 0 or -1 depend-

ing on how much it has been scaled. The reason we regard

pixels for medium objects as invalid (l = −1) is that the

transition from small to large objects is not visually obvi-

ous. Extremely small objects in each scale are also marked

9747



Figure 3: The figure illustrates how AutoFocus detects a person and a racket in an image. The green borders and arrows

are for inference at the original resolution. The blue borders and arrows are shown when inference is performed inside

FocusChips. In the first iteration, the network detects the person and also generates a heat-map to mark regions containing

small objects. This is depicted in the white/grey map - it is used to generate FocusChips. In the next iteration, the detector is

then applied inside FocusChips only. Inside FocusChips, there could be detections for the cropped object present at the larger

resolution. Such detections are pruned and finally valid detections are stacked across multiple scales.

as invalid because after the early down-sampling operations,

the network does not have sufficient information to make a

correct prediction about them at that particular scale. The

labelling scheme is visually depicted in Fig 2. For train-

ing the network, we add two convolutional layers (3×3 and

1×1) with a ReLU non-linearity on top of the conv5 feature-

map. Finally, we have a binary softmax classifier to predict

FocusPixels, shown in Fig 3.

4.2. FocusChip Generation

During inference, we mark those pixels P in the out-

put as FocusPixels, where the probability of foreground is

greater than a threshold t, which is a parameter control-

ling the speed-up and can be set with respect to the desired

speed accuracy trade-off. This generates a number of con-

nected components S . We dilate each component with a fil-

ter of size d × d to increase contextual information needed

for recognition. After dilation, components which become

connected are merged. Then, we generate chips C which en-

close these connected components. Note that chips of two

connected components could overlap. As a result, these

chips are merged and overlapping chips are replaced with

their enclosing bounding-boxes. Some connected compo-

nents could be very small, and may lack the contextual in-

formation needed to perform recognition. Many small chips

also increase fragmentation which results in a wide range of

chip sizes. This makes batch-inference inefficient. To avoid

these problems, we ensure that the height and width of a

chip is greater than a minimum size k. This process is de-

scribed in Algorithm 1. Finally, we perform multi-scale in-

ference on an image pyramid but successively prune regions

Algorithm 1: FocusChip Generator

Input : Predictions for feature map P , threshold t,

dilation constant d, minimum size of chip k

Output: Chips C
1 Transform P into a binary map using the threshold t

2 Dilate P with a d× d filter

3 Obtain a set of connected components S from P
4 Generate enclosing chips C of size > k for each

component in S
5 Merge chips C if they overlap

6 return Chips C

which are unlikely to contain objects.

4.3. Focus Stacking for Object Detection

One issue with such cascaded multi-scale inference is

that some detections at the boundary of the chips can be

generated for cropped objects which were originally large.

At the next scale, due to cropping, they could become small

and generate false positives, such as the detections for the

horse and the horse rider on the right, shown in Fig 4 (c).

To alleviate this effect, Step 2 in Algorithm 1 is very im-

portant. Note that when we dilate the map P and generate

chips, this ensures that no interesting object at the next scale

would be observed at the boundaries of the chip (unless the

chip shares a border with the image boundary). Otherwise,

it would be enclosed by the chip, as these are generated

around the dilated maps. Therefore, if a detection in the

zoomed-in chip is observed at the boundary, we discard it,

9748



(a) (b) (c) (d)

Figure 4: Pruning detections while FocusStacking. (a) Original Image (b) The predicted FocusPixels and the generated

FocusChip (c) Detection output by the network (d) Final detections for the FocusChip after pruning.

even if it is within valid SNIP ranges, such as the horse rider

eliminated in Fig 4 (d).

There are some corner cases when the detection is at the

boundary (or boundaries x, y) of the image. If the chip

shares one boundary with the image, we still check if the

other side of the detection is completely enclosed inside or

not. If it is not, we discard it, else we keep it. In another

case, if the chip shares both the sides with the image bound-

ary and so does the detection, then we keep the detection.

Once valid detections from each scale are obtained us-

ing the above rules, we merge detections from all the scales

by projecting them to the image co-ordinates after applying

appropriate scaling and translation. Finally, Non-Maximum

Suppression is applied to aggregate the detections. The net-

work architecture and an example of multi-scale inference

and focus stacking is shown in Fig 3.

5. Datasets and Experiments

We evaluate AutoFocus on the COCO [38] and the PAS-

CAL VOC [19] datasets. As our baseline, we use the

SNIPER detector1 [60] which obtains an mAP of 47.9%

(68.3% at 50% overlap) on the COCO test-dev set and

47.5% (67.9% at 50% overlap) on the COCO validation

set. We add the fully convolutional layers for AutoFocus

which predict the FocusPixels. No other changes are made

to the architecture or the training schedule. We use Soft-

NMS [5] at test-time for Focus Stacking with σ = 0.55.

Following SNIPER [60], the resolutions used for the 3

scales at inference are S1=(480, 512), S2=(800, 1280), and

S3=(1400, 2000). The first resolution is the minimum size

of a side and the second one is the maximum in pixels. The

scales corresponding to these resolutions are referred to as

scales 1, 2 and 3 respectively in the following sections.

Since FocusChips of different size are generated, we

group chips which are of similar size and aspect ratio to

achieve a high batch inference throughput. In some cases,

we need to perform padding when performing batch infer-

1http://www.github.com/mahyarnajibi/SNIPER

0 64 128 256 512
Min Chip Size (k)

0X

2X

4X

6X

8X

10X

P
ix
el
s
in

S
1+

S
2+

S
3

P
ix
el
s
in

F
oc
u
sC

h
ip
s

0.3 0.4 0.8 1.4
Milion Pixels Processed

Figure 5: Upper-bound on the speed-up using FocusChips

generated from optimal FocusPixels.

ence, which can slightly change the number of pixels pro-

cessed per image. For large datasets, this overhead is negli-

gible as the number of groups (for size and aspect ratio) can

be increased without reducing the batch size.

5.1. Stats for FocusPixels and FocusChips

In high resolution images (scale 3), the percentage of Fo-

cusPixels is very low (i.e. ∼ 4%). So, ideally a very small

part of the image needs to be processed at high resolution.

Since the image is upsampled, the FocusPixels projected on

the image occupy an area of 632 pixels on average (the high-

est resolution images have an area of 16022 pixels on aver-

age). At lower scales (like scale 2), although the percentage

of FocusPixels increases to ∼ 11%, their projections only

occupy an area of 1022 pixels on average (each image at

this scale has an average area of 9402 pixels). After dilating

FocusPixels with a kernel of size 3 × 3, their percentages at

scale 3 and scale 2 change to 7% and 18% respectively.

Using the chip generation algorithm, for a given mini-

mum chip size (like k = 512), we also compute the upper

bound on the speedup which can be obtained. This is under

the assumption that FocusPixels can be predicted without

any error (i.e. based on GTs). The bound for the speedup

can change as we change the minimum chip size in the al-

9749



0.2 0.4 0.6
FocusPixel Area / Image Area

0.0

0.2

0.4

0.6

0.8

1.0

R
ec
al
l

Focus Pixels

Scale 1 - 480x512 (GTs)

Scale 2 - 800x1280 (GTs)

(a)

0.2 0.4 0.6
FocusPixel Area / Image Area

0.0

0.2

0.4

0.6

0.8

1.0

Focus Pixels

Scale 1 - 480x800 (Dets)

Scale 2 - 800x1280 (Dets)

(b)

0.0 0.2 0.4 0.6 0.8 1.0
FocusChip Area / Image Area

0.0

0.2

0.4

0.6

0.8

1.0

Focus Chips

Scale 1 - 480x512 (GTs)

Scale 2 - 800x1280 (GTs)

(c)

0.0 0.2 0.4 0.6 0.8 1.0
FocusChip Area / Image Area

0.0

0.2

0.4

0.6

0.8

1.0

Focus Chips

Scale 1 - 480x512 (Dets)

Scale 2 - 800x1280 (Dets)

(d)

Figure 6: Quality of the FocusPixels and FocusChips. The x-axis represents the ratio of the area of FocusPixels or FocusChips

to that of the image. The y-axis changes as follows, (a) FocusPixel recall is computed based on the GT boxes (b) FocusPixel

recall is computed using the confident detections (c) FocusChip recall is computed based on the GT boxes (d) FocusChip

recall is computed based on the confident detections.

gorithm. Fig 5 shows the effect of the minimum chip size

parameter k for FocusChip generation in algorithm 1. The

same value is used at each scale. For example, reducing the

minimum chip size from 512 to 64 can lead to a theoretical

speedup of ∼ 10 times over the baseline which performs

inference on 3 scales. However, a significant reduction in

minimum chip size can also affect detection performance

- a reasonable amount of context is necessary for retaining

high detection accuracy.

5.2. Quality of FocusPixel prediction

We evaluate how well our network predicts FocusPix-

els at different scales. To measure the performance, we use

two criteria. First, we measure recall for predicting Focus-

Pixels at two different resolutions. This is shown in Fig 6

a. This gives us an upper bound on how accurately we lo-

calize small objects using low resolution images. However,

not all ground-truth objects which are annotated might be

correctly detected. Note that our eventual goal is to acceler-

ate the detector. Therefore, if we crop a region in the image

which contains a ground-truth instance but the detector is

not able to detect it, cropping that region would not be use-

ful. The final effectiveness of FocusChips is coupled with

the detector, hence we also evaluate the accuracy of Focus-

Pixel prediction on regions which are confidently detected

as shown in Fig 6 b. To this end, we only consider Focus-

Pixels corresponding to those GT boxes which are covered

(IoU > 0.5) by a detection with a score greater than 0.5. At

a threshold of 0.5, the detector still obtains an mAP of 47%

which is within 1% of the final mAP and does not have a

high false positive rate.

As expected, we obtain better recall at higher resolutions

with both metrics. We can cover all confident detections at

the higher resolution (scale 2) when the predicted FocusPix-

els cover just 5% of total image area. At a lower resolution

(scale 1), when the FocusPixels cover 25% of the total im-

age area, we cover all confident detections, see Fig 6 b.

5.3. Quality of FocusChips

While FocusPixels are sufficient to generate enclosing

regions which need to be processed, current software im-

plementations require the input image to be a rectangle for

efficient processing. To this end, we evaluate the perfor-

mance of the enclosing chips generated using the FocusPix-

els. Similar to Section 5.2, we use two metrics - one is re-

call of all GT boxes which are enclosed by FocusChips, the

other one is recall for GT boxes enclosed by FocusChips

which have a confident overlapping detection. To achieve

perfect recall for confident detections at scale 2, FocusChips

cover 5% more area than FocusPixels. At scale 1, they cover

10% more area. This is because objects are often not rect-

angular in shape. These results are shown in Fig 6 d.

5.4. Speed Accuracy Trade­off

We perform grid-search on different parameters, which

are dilation, min-chip size and the threshold to generate Fo-

cusChips on a subset of 100 images in the validation set. For

a given average number of pixels, we check which config-

uration of parameters obtains the best mAP on this subset.

Since there are two scales at which we predict FocusPix-

els, we first find the parameters of AutoFocus when it is

only applied to the highest resolution scale. Then we fix

these parameters for the highest scale, and find parameters

for applying AutoFocus at scale 2.

In Fig 7 we show that the multi-scale inference baseline

which uses 3 scales obtains an mAP of 47.5% (and 68% at

50% overlap) on the val-2017 set. Using only the lower two

scales obtains an mAP of 45.4%. The middle scale alone

obtains an mAP of 37%. This is partly because the detector

is trained with the scale normalization scheme proposed in

[59]. As a result, the performance on a single scale alone

is not very good, although multi-scale performance is high.

9750



1X 2X 3X 4X 6X
Pixels in S1+S2+S3 / AutoFocus Pixels

38

40

42

44

46

48

m
AP

AutoFocus
S1+S2+S3
S1+S2
S2

3.6 1.8 1.2 0.9 0.6
Milion Pixels Processed

(a)

1X 2X 3X 4X 6X
Pixels in S1+S2+S3 / AutoFocus Pixels

56

58

60

62

64

66

68

AP
 @

 0
.5

AutoFocus
S1+S2+S3
S1+S2
S2

3.6 1.8 1.2 0.9 0.6
Milion Pixels Processed

(b)

1X 5X 10X 15X 20X
Pixels in S3 / AutoFocus Pixels in S3

45.0

45.5

46.0

46.5

47.0

47.5

48.0

m
AP

AutoFocus
S1+S2+S3

2.6 0.5 0.3 0.2 0.1
Milion Pixels Processed in Scale 3

(c)

1X 5X 10X 15X 20X
Pixels in S3 / AutoFocus Pixels in S3

62

63

64

65

66

67

68

69

AP
 @

 0
.5

AutoFocus
S1+S2+S3

2.6 0.5 0.3 0.2 0.1
Milion Pixels Processed in Scale 3

(d)

Figure 7: Results are on the val-2017 set. (a,c) show the mAP averaged for IoU from 0.5 to 0.95 with an interval of 0.05

(COCO metric). (b,d) show mAP at 50% overlap (PASCAL metric). We can reduce the number of pixels processed by a

factor of 2.8 times without any loss of performance. A 5 times reduction in pixels is obtained with a drop of 1% in mAP.

The maximum savings in pixels which we can obtain while

retaining performance is 2.8 times. We lose approximately

1% mAP to obtain a 5 times reduction over our baseline in

the val-2017 set.

We also perform an ablation experiment for the Focus-

Pixels predicted using scale 2. Note that the performance of

just using scales 1 and 2 is 45%. We can retain the origi-

nal performance of 47.5% on the val-2017 set by processing

just one fifth of scale 3. With a 0.5% drop we can reduce

the pixels processed by 11 times in the highest resolution

image. This can be improved to 20 times with a 1% drop in

mAP, which is still 1.5% better than the performance of the

lower two scales.

Method Pixels AP AP50 S M L

Retina [37] 9502 37.8 57.5 20.2 41.1 49.2

LightH [35] 9402 41.5 - 25.2 45.3 53.1

Refine+ [71] 31002 41.8 62.9 25.6 45.1 54.1

Corner+ [33] 12402 42.1 57.8 20.8 44.8 56.7

SNIPER [60] 19102 47.9 68.3 31.5 50.5 60.3

11752 47.9 68.3 31.5 50.5 60.3

AutoFocus 9302 47.2 67.5 30.9 49.0 60.0

8602 46.9 67.0 30.1 48.9 60.0

Table 1: Comparison with SNIPER on the COCO test-dev.

This is our multi-scale baseline. Results for others are taken

from the papers/GitHub of the authors. Note that average

pixels processed over the dataset are reported (instead of

the shorter side). All methods use a ResNet-101 backbone.

‘+’ denotes the multi-scale version provided by the authors.

Results on the COCO test-dev set are provided in Ta-

ble 1. While matching SNIPER’s performance of 47.9%

(68.3% at 0.5 IoU), AutoFocus processes 6.4 images per

second on the test-dev set with a Titan X Pascal GPU.

SNIPER processes 2.5 images per second. RetinaNet with

a ResNet-101 backbone and a FPN architecture processes

Method Pixels AP50 AP70

Deformable ConvNet [13] 7052 82.3 67.8

Deformable ConvNet v2 [73] 7052 84.9 73.5

SNIPER [60] 19152 86.6 80.5

AutoFocus* 8602 85.8 79.5

AutoFocus
7002 85.3 78.1

12502 86.5 80.2

Table 2: Comparison on PASCAL VOC 2007 test-set. All

methods use ResNet-101 and trained on VOC2012 train-

val+VOC2007 trainval. The average pixels processed over

the dataset are also reported. To show the robustness of Aut-

oFocus to hyper-parameter choices, in ‘*’ we use the same

parameters as COCO and run the algorithm on PASCAL.

6.3 images per second on a P100 GPU (which is like Ti-

tan X), but obtains 37.8% mAP 2. We also report the num-

ber of pixels processed with a few efficient recent detectors.

Detectors which perform better than SNIPER like MegDet

[54] or PANet [41] are slower because they use complex ar-

chitectures like ResNext-152 [68] etc. To the best of our

knowledge, AutoFocus is the fastest detector which obtains

an mAP of 47.9% (or 68.3% at 0.5 IoU) on the COCO

dataset. We show the inference process for AutoFocus on

a few images in the COCO val-2017 set in Fig 8. We also

report results on the PASCAL VOC dataset in Table 2. To

show the robustness of AutoFocus to its hyper-parameters,

we use exactly the same hyper-parameters tuned for COCO

(shown as AutoFocus*). While processing the same area as

DeformableV2 [73], AutoFocus achieves 4.6% better AP at

0.7 IoU. It also matches the performance of SNIPER while

being considerably more efficient. Its mAP (on the COCO

metric) can be further improved by using refinement tech-

niques like cascade-RCNN [10].

2https://github.com/facebookresearch/Detectron/

blob/master/MODEL_ZOO.md

9751



D
et

ec
ti
o
n
s 

4
8
0
x
5
1
2

F
o
cu

s 
P

ix
el

s 
&

 
C

h
ip

s 
4
8
0
x
5
1
2

D
et

ec
ti
o
n
s

8
0
0
x
1
2
8
0

F
o
cu

s 
P

ix
el

s 
&

 
C

h
ip

s 
8
0
0
x
1
2
8
0

D
et

ec
ti
o
n
s

1
4
0
0
x
2
0
0
0

F
in

a
l 
D

et
s

a
ft

er
F
o
cu

s 
S
ta

ck
in

g

Figure 8: Each column shows the inference pipeline in AutoFocus. The confidence for FocusPixels and FocusChips are

shown in red, and yellow respectively in the second and fourth rows. Detections are shown in green. As can be seen, complex

images containing many small objects like the two leftmost columns can generate multiple FocusChips in high resolutions

like 1400 × 2000. Images which do not contain small objects are not processed at all in high resolution, like the one in the

rightmost column.

9752



References

[1] John Aloimonos, Isaac Weiss, and Amit Bandyopadhyay.

Active vision. International journal of computer vision,

1(4):333–356, 1988. 1

[2] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf:

Speeded up robust features. In European conference on com-

puter vision, pages 404–417. Springer, 2006. 3

[3] Rodrigo Benenson, Markus Mathias, Radu Timofte, and Luc

Van Gool. Pedestrian detection at 100 frames per second.

In Computer Vision and Pattern Recognition (CVPR), 2012

IEEE Conference on, pages 2903–2910. IEEE, 2012. 2

[4] Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and

Doina Precup. Conditional computation in neural networks

for faster models. ICML Workshop on Abstraction in Rein-

forcement Learning, 2016. 1

[5] Navaneeth Bodla, Bharat Singh, Rama Chellappa, and

Larry S Davis. Soft-nms – improving object detection with

one line of code. In 2017 IEEE International Conference on

Computer Vision (ICCV), pages 5562–5570. IEEE, 2017. 5

[6] Lubomir Bourdev and Jonathan Brandt. Robust object detec-

tion via soft cascade. In Computer Vision and Pattern Recog-

nition, 2005. CVPR 2005. IEEE Computer Society Confer-

ence on, volume 2, pages 236–243. IEEE, 2005. 2

[7] Bruno G Breitmeyer and Leo Ganz. Implications of sus-

tained and transient channels for theories of visual pattern

masking, saccadic suppression, and information processing.

Psychological review, 83(1):1, 1976. 1

[8] Peter J Burt and Edward H Adelson. The laplacian pyramid

as a compact image code. In Readings in Computer Vision,

pages 671–679. Elsevier, 1987. 3

[9] Zhaowei Cai, Quanfu Fan, Rogerio S Feris, and Nuno Vas-

concelos. A unified multi-scale deep convolutional neural

network for fast object detection. In European Conference

on Computer Vision, pages 354–370. Springer, 2016. 2

[10] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving

into high quality object detection. CVPR, 2018. 7

[11] Joao Carreira and Cristian Sminchisescu. Constrained para-

metric min-cuts for automatic object segmentation. In Com-

puter Vision and Pattern Recognition (CVPR), 2010 IEEE

Conference on, pages 3241–3248. IEEE, 2010. 2

[12] Kai Chen, Jiaqi Wang, Shuo Yang, Xingcheng Zhang, Yuan-

jun Xiong, Chen Change Loy, and Dahua Lin. Optimizing

video object detection via a scale-time lattice. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 7814–7823, 2018. 2

[13] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong

Zhang, Han Hu, and Yichen Wei. Deformable convolutional

networks. ICCV, 2017. 2, 7

[14] Navneet Dalal and Bill Triggs. Histograms of oriented gra-

dients for human detection. In Computer Vision and Pat-

tern Recognition, 2005. CVPR 2005. IEEE Computer Soci-

ety Conference on, volume 1, pages 886–893. IEEE, 2005.

2

[15] Piotr Dollár, Ron Appel, Serge Belongie, and Pietro Per-

ona. Fast feature pyramids for object detection. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

36(8):1532–1545, 2014. 2

[16] Piotr Dollár, Ron Appel, and Wolf Kienzle. Crosstalk cas-

cades for frame-rate pedestrian detection. In Computer

Vision–ECCV 2012, pages 645–659. Springer, 2012. 2

[17] Piotr Dollár, Serge J Belongie, and Pietro Perona. The fastest

pedestrian detector in the west. In BMVC, volume 2, page 7.

Citeseer, 2010. 2

[18] Piotr Dollár, Zhuowen Tu, Pietro Perona, and Serge Be-

longie. Integral channel features. BMVC, 2009. 2

[19] Mark Everingham, Luc Van Gool, Christopher KI Williams,

John Winn, and Andrew Zisserman. The pascal visual object

classes (voc) challenge. International journal of computer

vision, 88(2):303–338, 2010. 5

[20] Pedro F Felzenszwalb, Ross B Girshick, David McAllester,

and Deva Ramanan. Object detection with discriminatively

trained part-based models. IEEE transactions on pattern

analysis and machine intelligence, 32(9):1627–1645, 2010.

2

[21] John M Findlay and Iain D Gilchrist. Active vision: The

psychology of looking and seeing. Number 37. Oxford Uni-

versity Press, 2003. 1

[22] Mingfei Gao, Ruichi Yu, Ang Li, Vlad I Morariu, and

Larry S Davis. Dynamic zoom-in network for fast object

detection in large images. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2018. 2

[23] Abel Gonzalez-Garcia, Alexander Vezhnevets, and Vittorio

Ferrari. An active search strategy for efficient object class de-

tection. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 3022–3031, 2015. 2

[24] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Computer Vision (ICCV), 2017 IEEE

International Conference on, pages 2980–2988. IEEE, 2017.

2

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 2

[26] Xiaodi Hou and Liqing Zhang. Saliency detection: A spec-

tral residual approach. In Computer Vision and Pattern

Recognition, 2007. CVPR’07. IEEE Conference on, pages

1–8. IEEE, 2007. 2

[27] David E Irwin, Joseph S Brown, and Jun-shi Sun. Visual

masking and visual integration across saccadic eye move-

ments. Journal of Experimental Psychology: General,

117(3):276, 1988. 1

[28] Laurent Itti, Christof Koch, and Ernst Niebur. A model

of saliency-based visual attention for rapid scene analysis.

IEEE Transactions on pattern analysis and machine intelli-

gence, 20(11):1254–1259, 1998. 2

[29] Zequn Jie, Xiaodan Liang, Jiashi Feng, Xiaojie Jin, Wen Lu,

and Shuicheng Yan. Tree-structured reinforcement learning

for sequential object localization. In Advances in Neural In-

formation Processing Systems, pages 127–135, 2016. 2

[30] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and

Matei Zaharia. Noscope: optimizing neural network queries

over video at scale. Proceedings of the VLDB Endowment,

10(11):1586–1597, 2017. 2

9753



[31] Wolf Kienzle, Matthias O Franz, Bernhard Schölkopf, and

Felix A Wichmann. Center-surround patterns emerge as op-

timal predictors for human saccade targets. Journal of vision,

9(5):7–7, 2009. 1

[32] Helga Kolb. Simple anatomy of the retina. 1995. 1

[33] Hei Law and Jia Deng. Cornernet: Detecting objects as

paired keypoints. In Proceedings of the European Confer-

ence on Computer Vision (ECCV), pages 734–750, 2018. 7

[34] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

2

[35] Zeming Li, Chao Peng, Gang Yu, Xiangyu Zhang, Yang-

dong Deng, and Jian Sun. Light-head r-cnn: In defense of

two-stage object detector. arXiv preprint arXiv:1711.07264,

2017. 7

[36] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In CVPR, volume 1, page 4,

2017. 2

[37] Tsung-Yi Lin, Priyal Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. IEEE

transactions on pattern analysis and machine intelligence,

2018. 2, 7

[38] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European conference on computer vision, pages 740–755.

Springer, 2014. 5

[39] Lanlan Liu and Jia Deng. Dynamic deep neural networks:

Optimizing accuracy-efficiency trade-offs by selective exe-

cution. AAAI, 2018. 1

[40] Mason Liu and Menglong Zhu. Mobile video object de-

tection with temporally-aware feature maps. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2018. 2

[41] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia.

Path aggregation network for instance segmentation. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 8759–8768, 2018. 2, 7

[42] Tie Liu, Zejian Yuan, Jian Sun, Jingdong Wang, Nanning

Zheng, Xiaoou Tang, and Heung-Yeung Shum. Learning to

detect a salient object. IEEE Transactions on Pattern analy-

sis and machine intelligence, 33(2):353–367, 2011. 2

[43] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. Ssd: Single shot multibox detector. In European con-

ference on computer vision, pages 21–37. Springer, 2016. 2

[44] Yu Liu, Hongyang Li, Junjie Yan, Fangyin Wei, Xiaogang

Wang, and Xiaoou Tang. Recurrent scale approximation for

object detection in cnn. In IEEE international conference on

computer vision, volume 5, 2017. 2

[45] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 3431–3440, 2015. 2

[46] David G Lowe. Distinctive image features from scale-

invariant keypoints. International journal of computer vi-

sion, 60(2):91–110, 2004. 3

[47] Yongxi Lu, Tara Javidi, and Svetlana Lazebnik. Adaptive ob-

ject detection using adjacency and zoom prediction. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 2351–2359, 2016. 2

[48] David Marr and Ellen Hildreth. Theory of edge detection.

Proc. R. Soc. Lond. B, 207(1167):187–217, 1980. 3

[49] Stefan Mathe, Aleksis Pirinen, and Cristian Sminchisescu.

Reinforcement learning for visual object detection. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 2894–2902, 2016. 2

[50] Ethel Matin. Saccadic suppression: a review and an analysis.

Psychological bulletin, 81(12):899, 1974. 1

[51] Krystian Mikolajczyk and Cordelia Schmid. Scale & affine

invariant interest point detectors. International journal of

computer vision, 60(1):63–86, 2004. 3

[52] Mahyar Najibi, Pouya Samangouei, Rama Chellappa, and

Larry Davis. SSH: Single stage headless face detector. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 4875–4884, 2017. 2

[53] Mahyar Najibi, Fan Yang, Qiaosong Wang, and Robinson Pi-

ramuthu. Towards the success rate of one: Real-time uncon-

strained salient object detection. In 2018 IEEE Winter Con-

ference on Applications of Computer Vision (WACV), pages

1432–1441. IEEE, 2018. 2

[54] Chao Peng, Tete Xiao, Zeming Li, Yuning Jiang, Xiangyu

Zhang, Kai Jia, Gang Yu, and Jian Sun. Megdet: A large

mini-batch object detector. CVPR, 2018. 1, 2, 7

[55] Aleksis Pirinen and Cristian Sminchisescu. Deep reinforce-

ment learning of region proposal networks for object detec-

tion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 6945–6954, 2018. 2

[56] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 779–788, 2016. 2

[57] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in neural information pro-

cessing systems, pages 91–99, 2015. 2

[58] Mohammad Javad Shafiee, Brendan Chywl, Francis Li, and

Alexander Wong. Fast yolo: A fast you only look once sys-

tem for real-time embedded object detection in video. arXiv

preprint arXiv:1709.05943, 2017. 2

[59] Bharat Singh and Larry S Davis. An analysis of scale invari-

ance in object detection-snip. CVPR, 2018. 1, 2, 6

[60] Bharat Singh, Mahyar Najibi, and Larry S Davis. SNIPER:

Efficient multi-scale training. NIPS, 2018. 1, 2, 5, 7

[61] Guanglu Song, Yu Liu, Ming Jiang, Yujie Wang, Junjie Yan,

and Biao Leng. Beyond trade-off: Accelerate fcn-based face

detector with higher accuracy. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 7756–7764, 2018. 2

[62] Hans Strasburger, Ingo Rentschler, and Martin Jüttner. Pe-

ripheral vision and pattern recognition: A review. Journal of

vision, 11(5):13–13, 2011. 1

9754



[63] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gev-

ers, and Arnold WM Smeulders. Selective search for ob-

ject recognition. International journal of computer vision,

104(2):154–171, 2013. 2

[64] Paul Viola and Michael Jones. Rapid object detection using

a boosted cascade of simple features. In Computer Vision

and Pattern Recognition, 2001. CVPR 2001. Proceedings of

the 2001 IEEE Computer Society Conference on, volume 1,

pages I–I. IEEE, 2001. 2

[65] Paul Viola, Michael J Jones, and Daniel Snow. Detecting

pedestrians using patterns of motion and appearance. Inter-

national Journal of Computer Vision, 63(2):153–161, 2005.

2

[66] Andrew Witkin. Scale-space filtering: A new approach to

multi-scale description. In Acoustics, Speech, and Signal

Processing, IEEE International Conference on ICASSP’84.,

volume 9, pages 150–153. IEEE, 1984. 2

[67] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven

Rennie, Larry S Davis, Kristen Grauman, and Rogerio Feris.

Blockdrop: Dynamic inference paths in residual networks.

CVPR, 2018. 1

[68] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In Computer Vision and Pattern Recogni-

tion (CVPR), 2017 IEEE Conference on, pages 5987–5995.

IEEE, 2017. 7

[69] Fan Yang, Wongun Choi, and Yuanqing Lin. Exploit all the

layers: Fast and accurate cnn object detector with scale de-

pendent pooling and cascaded rejection classifiers. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 2129–2137, 2016. 2

[70] Cha Zhang and Paul A Viola. Multiple-instance pruning for

learning efficient cascade detectors. In Advances in neural

information processing systems, pages 1681–1688, 2008. 2

[71] Shifeng Zhang, Longyin Wen, Xiao Bian, Zhen Lei, and

Stan Z Li. Single-shot refinement neural network for object

detection. CVPR, 2018. 7

[72] Qiang Zhu, Mei-Chen Yeh, Kwang-Ting Cheng, and Shai

Avidan. Fast human detection using a cascade of histograms

of oriented gradients. In Computer Vision and Pattern

Recognition, 2006 IEEE Computer Society Conference on,

volume 2, pages 1491–1498. IEEE, 2006. 2

[73] Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. De-

formable convnets v2: More deformable, better results.

arXiv preprint arXiv:1811.11168, 2018. 7

9755


