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Abstract

This work addresses the task of open world semantic seg-

mentation using RGBD sensing to discover new semantic

classes over time. Although there are many types of ob-

jects in the real-word, current semantic segmentation meth-

ods make a closed world assumption and are trained only

to segment a limited number of object classes. Towards a

more open world approach, we propose a novel method that

incrementally learns new classes for image segmentation.

The proposed system first segments each RGBD frame using

both color and geometric information, and then aggregates

that information to build a single segmented dense 3D map

of the environment. The segmented 3D map representation

is a key component of our approach as it is used to dis-

cover new object classes by identifying coherent regions in

the 3D map that have no semantic label. The use of coher-

ent region in the 3D map as a primitive element, rather than

traditional elements such as surfels or voxels, also signifi-

cantly reduces the computational complexity and memory

use of our method. It thus leads to semi-real-time perfor-

mance at 10.7Hz when incrementally updating the dense 3D

map at every frame. Through experiments on the NYUDv2

dataset, we demonstrate that the proposed method is able to

correctly cluster objects of both known and unseen classes.

We also show the quantitative comparison with the state-

of-the-art supervised methods, the processing time of each

step, and the influences of each component.

1. Introduction

Building a semantically annotated 3D map (i.e., seman-

tic mapping) has become a vital research topic in computer

vision and robotics communities since it provides 3D loca-

tion information as well as object/scene category informa-

tion. It is naturally very useful in a wide range of applica-

tions including robot navigation, mixed/virtual reality, and

remote robot control. In most of these applications, it is im-

portant to achieve both high accuracy and efficiency. Con-

sidering robot navigation, robots need to recognize objects

accurately and efficiently to navigate actively changing en-
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Figure 1. Proposed method incrementally discovers new classes

(e.g., pictures) in the reconstructed 3D map.

vironments without any accident. In mixed reality systems,

accuracy and efficiency are important to achieve more nat-

ural interactions without delay. When controlling surgical

robots remotely, they are even more essential.

Consequently, many research have been conducted to de-

velop an accurate and efficient system for semantic map-

ping [17, 11, 22, 23, 33, 43, 47, 18, 20]. Most of the recent

semantic mapping systems consist of two principal com-

ponents, building a 3D map from RGBD images and pro-

cessing semantic segmentation on either images or the built

3D maps [17, 11, 22, 23]. Since the introduction of RGBD

sensors such as Microsoft Kinect [48], many approaches

have been presented for building a 3D map from RGBD

images [24, 14, 16, 19]. Regarding semantic segmenta-

tion, as semantic segmentation algorithms for images have

been studied in many literatures, most semantic mapping

systems have adapted these algorithms. Recently, since

convolutional neural networks (CNNs) improve the perfor-

mance of semantic segmentation further [21, 35, 5], CNNs
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have been incorporated to enhance the accuracy of semantic

mapping [22, 23].

While these advancements improved the accuracy and

efficiency of the overall system, the methods have limi-

tations in the objects that the system can recognize. As

previous semantic mapping systems recognize objects and

scenes by training a pixel-level classifier (e.g., random for-

est or CNNs) using a training dataset, the systems are only

able to recognize categories in the training dataset. This is

a huge limitation for autonomous systems considering real-

world consists of numerous objects/stuffs. Hence, we pro-

pose a novel system that can properly cluster both known

objects and unseen things to enable discovering new cat-

egories. The proposed method first generates object-level

segments in 3D. It then performs clustering of the object-

level segments to associate objects of the same class and to

discover new object classes.

The contributions of this paper are as follow: (1) We

present, to the best of our knowledge, the first semantic

mapping system that can properly discover clusters of both

known objects and unseen objects in a 3D map (see Fig-

ure 1); (2) To effectively handle deep features and geometric

cues in clustering, we propose to estimate the reliability of

the deep features from CNNs using the entropy of the prob-

ability distribution from CNNs. We then use the estimated

confidence for weighting the two types of features; (3) We

propose to utilize segments instead of elements (i.e., surfel

and voxel) in assigning/updating features and in clustering

to efficiently reduce computational cost and space complex-

ity. It enables the overall framework to run in semi-real-

time; (4) We improve object proposals in a 3D map by uti-

lizing both geometric and color information. It is especially

important for the regions with poor geometric characteris-

tics (e.g., pictures on a wall) ; (5) We demonstrate the effec-

tiveness and efficiency of the proposed system by training

CNNs on a subset of classes in a dataset and by discovering

the other subset of classes by using the proposed method.

2. Related Work

Semantic Scene Reconstruction Koppula et al. presented

one of the earliest works on semantic scene reconstruction

using RGBD images [17]. Given multiple RGBD images,

they first stitched the images to a single 3D point cloud.

They then over-segmented the point cloud and labeled each

segment using a graphical model.

As many 2D semantic segmentation approaches

achieved impressive results [21, 35, 5], Hermans et al.

proposed to use 2D semantic segmentation for 3D semantic

reconstruction instead of segmenting 3D point clouds [11].

They first processed 2D semantic segmentation using

randomized decision forests (RDF) and refined the result

using a dense Conditional Random Fields (CRF). They

then transferred class labels to 3D maps. Since, recently,

convolutional neural networks (CNNs) further improved

2D semantic segmentation, McCormac et al. presented a

system that utilizes CNNs for 2D semantic segmentation

instead of RDF [22]. While we focus on semantic scene

reconstruction methods using RGBD images, there are

methods using stereo image pairs [33, 43, 47] and using a

monocular camera [18, 20].

While all the previous works [17, 11, 22, 33, 43, 47, 18,

20] can recognize only learned object classes, we propose,

to the best of our knowledge, the first semantic scene recon-

struction system that can segment unseen object classes as

well as trained classes.

[3, 29, 41, 44, 12, 26] perform segmentation directly on

fully reconstructed 3D map or 3D point cloud. Differently

from these approaches, our goal is incrementally building

3D segmentation map at each frame in an RGB-D sequence.

Image Segmentation Image segmentation has been stud-

ied in many literatures [30, 36, 4, 8, 6, 9, 13, 10, 1, 2].

Relatively recently, Pont-Tuset et al. proposed an approach

for bottom-up hierarchical image segmentation [27]. They

developed a fast normalized cuts algorithm and also pro-

posed a hierarchical segmenter that uses multiscale infor-

mation. They then employed a grouping strategy that com-

bines multiscale regions into highly-accurate object propos-

als. As convolutional neural networks (CNNs) have be-

come a popular approach in semantic segmentation, Xia et

al. proposed a CNN-based method for unsupervised image

segmentation [45]. They segmented images by learning au-

toencoders with the consideration of the normalized cut and

smoothed the segmentation outputs using a conditional ran-

dom field. They then processed hierarchical segmentation

that first converts over-segmented partitions into weighted

boundary maps and then merges the most similar regions

iteratively.

Considering RGBD data, Yang et al. proposed a

two-stage segmentation method that consists of over-

segmentation using 3-D geometry enhanced superpixels

and graph-based merging [46]. They first applied a K-

means-like clustering method to the RGBD data for over-

segmentation using an 8-D distance metric constructed from

both color and 3-D geometrical information. They then em-

ployed a graph-based model to relabel the superpixels into

segments considering RGBD proximity, texture similarity,

boundary continuity, and the number of labels.

Comparing to the previous works [30, 36, 4, 8, 6, 9, 13,

10, 1, 2, 27, 45, 46], this work differs from them in two

aspects. First, we propose a segmentation algorithm for 3D

reconstructed scenes rather than images. Second, we aim to

group pixels with the same semantic meaning to a cluster

even if they are distant or separated by another segment.
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Figure 2. Overview of the proposed framework.

3. Class Discovery for Semantic Segmentation

In order to discover new classes of semantic segments,

we need a method for aggregating and clustering unknown

segments (i.e., segments of the image which cannot be clas-

sified into a known class). A central component of our pro-

posed approach is the segmentation of a dense 3D recon-

structed map of the scene, which we call the 3D segmen-

tation map, which is used to aggregate information about

each 2D image segment and that information is used to per-

form the 3D segment clustering to discover new ‘semantic’

(a nameless category) classes.

To incrementally discover object classes using RGBD

sensing, we first propose to build a 3D segmentation map

for object-level segmentation in 3D. Second, we perform

clustering of the object-level segments to associate ob-

jects of the same class and to discover new object classes.

Figure 2 shows the overview of the proposed framework.

Given an input RGBD stream, we build a 3D segmentation

map (Section 3.1) and process incremental clustering (Sec-

tion 3.2). The incremental clustering consists of extracting

features for each frame (Section 3.2.1) and clustering us-

ing the features (Section 3.2.2). The output of the proposed

method is the visualization of clustering membership on a

reconstructed 3D map.

3.1. Building the 3D Segmentation Map

As mentioned above, the 3D segmentation map is the key

data structure which is used to aggregate information about

2D image segmentation to discover new semantic classes.

Building the 3D segmentation map is an incremental pro-

cess, which consists of the following four processes applied

to each frame: (1) SLAM for dense 3D map reconstruction;

(2) SLIC for superpixel segmentation; (3) Agglomerative

clustering; and (4) Updating the 3D segmentation map. We

describe the details of each processing step below.

Dense SLAM. In order to estimate camera poses and in-

crementally build a 3D map, we employ the dense SLAM

method, InfiniTAM v3 [28]. The method builds 3D maps

using an efficient and scalable representation method which

Figure 3. Building 3D Segmentation Map. The output of this

processing is object-level segments in 3D. We build the 3D map

by propagating 2D segmentation to the existing 3D segmentation

map. (Section 3.1).

was proposed by Keller et al. [16]. The representation is a

point-based description with normal information and is re-

ferred to as surfel. We denote surfels using sk.

The surfel is a fundamental element in our reconstructed

3D map (like pixels on an image). Given a new depth frame,

we generate surfels and fuse them into the existing recon-

structed 3D map. Hence, building the 3D segmentation map

includes building a reconstructed 3D map using SLAM and

grouping surfels in the reconstructed 3D map.

RGBD SLIC. For every RGBD frame, we first implement

a modified SLIC superpixel segmentation algorithm to gen-

erate roughly 250 superpixels (small image regions) for

each frame. To use both color information and geomet-

ric cues, we define a new distance metric Ds that uses the

color image Ilabt (u) ∈ R
3 in the CIELAB color space,

the normal map Nt(u) ∈ R
3, and the image coordinates

u = (x, y) ∈ Z
2. The distance Ds between pixels u and v

is computed as follows:

Ds = dlab + αdn + βdxy,

dlab = ||I
lab
t (u)− Ilabt (v)||2,

dn = ||Nt(u)−Nt(v)||2,

dxy = ||u− v||2,

(1)

where α and β are constants for weighting dn and dxy .

Given the set of superpixels from the SLIC segmentation,

we compute the averaged color clab ∈ R
3, vertex v ∈ R

3,

and normal n ∈ R
3 of each superpixel r, which will be

used to further merge superpixels into bigger 2D regions.

Agglomerative Clustering. Since the SLIC superpixel seg-

mentation tends to generate a grid of segments with similar

sizes, we perform agglomerative clustering and merging to

produce object-level segments. The clustering and merging

are based on the similarity in clab, v, and n between super-

pixels. Specifically, we compute the similarity Λ in color

space, the geometric distance Ψ in 3D space, and convexity

Φ in shape. We then merge the superpixels if all the mea-

sured similarity/distances meet the following conditions.

Consider two neighboring superpixels (ra, rb). The Λ,
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Ψ, and Φ are computed as follow:

Λ(ra, rb) = ||ca − cb||2,

Ψ(ra, rb) = ||(vb − va) · na||2,

Φ(ra, rb) =

{

1 if (vb − va) · na > 0,
na · nb otherwise.

(2)

Given Λ, Ψ, and Φ, the pair of superpixels (ra, rb) are

merged only when they satisfy the predetermined criteria:

Λ < σΛ and Ψ < σΨ and Φ > σΦ, (3)

where σΛ, σΨ, and σΦ denote the corresponding thresholds

for Λ, Ψ, and Φ, respectively. Regarding convexity crite-

ria, it is based on the observation that objects on captured

images usually have convex shapes [40]. Consequently, we

penalize merging regions with concave shapes. σΨ is com-

puted using the noise model in [25], which presented the

relationship between noise and distance from a sensor.

3D Segmentation Map Update. Given the 2D segmenta-

tion result of current frame, we update the 3D segmentation

map. We employ the efficient and scalable segment propa-

gation method in [40] to assign/update a segment label li to

each surfel sk.

3.2. Incremental Clustering

In the previous section, we generate object-level seg-

ments by clustering and merging superpixels. The object-

level segments are then used to update the 3D segmentation

map. Given the object-level segments in the 3D segmen-

tation map, incremental clustering aims to discover new

object classes by clustering the object-level segments. To

cluster the segments, we first extract features using an in-

put RGBD frame and the 3D segmentation map. We then

cluster by computing weighted similarity between the seg-

ments. We describe the details of online feature extraction

in Section 3.2.1 and those of 3D segment clustering in Sec-

tion 3.2.2 (also, see Figure 4).

3.2.1 Online Feature Extraction

In order to accurately associate objects of the same class

or to discover new object classes, we need a method for

estimating similarity between object segments in the 3D

segmentation map. While measuring similarity can be as

simple as computing distance in color space, more mean-

ingful measurement is required to accurately determine ob-

ject classes. Moreover, as objects often appear on multiple

frames in a consecutive video, we can improve the simi-

larity measurement by utilizing previous frames. Lastly, as

record-keeping all the information from previous frames is

expensive, we need an efficient method to store the past in-

formation.

Figure 4. Incremental 3D Segment Clustering. This clustering is

to associates objects of the same class or to discover new classes

using object-level segments in the 3D segmentation map. (Sec-

tion 3.2).

To estimate more meaningful similarity, we utilize both

features from color images and geometric features as they

are often complementary. Especially, as convolutional neu-

ral networks have achieved impressive results in per-pixel

classification tasks [21, 35, 5], we extract features from

color images using CNNs. The extracted deep features and

geometric features for each frame are then used to update

the features for each segment in the 3D segmentation map.

By aggregating the features from all the previous frames, we

improve the robustness of the features in the 3D segmenta-

tion map. Moreover, storing/updating the features for each

segment is a very effective strategy for both saving memory

usage and reducing computations for 3D segment cluster-

ing. Considering the number of segments is much smaller

than that of surfels in the 3D map, the reduction in memory

usages is very significant. Specifically, the memory usage

is reduced from O(Ns(S +G+ 1)) to O(Nl(S +G+ 1))
where Ns and Nl denote the number of surfels and that of

object-level segments in the 3D segmentation map, respec-

tively; S and G represent the dimension of the deep features

and that of the geometric features, respectively.

While CNNs have shown impressive results, the reliabil-

ity of deep features can vary depending on the region of the

input image. We hypothesize that the regions that CNNs can

predict a class with high confidence, can be clustered accu-

rately using deep features. Hence, we estimate the reliabil-

ity of deep features using predicted probability distribution

from CNNs. Specifically, we compute the confidence by

calculating the entropy of the predicted probability distribu-

tion. We then, based on the estimated reliability, compute

weighted affinity using the similarity of geometric feature

and that of deep features between object-level segments in

the 3D segmentation map.

For deep features and entropy, we employ the U-Net ar-

chitecture [31] since our target applications (e.g. robot nav-
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igation) often demand short processing time. The network

takes only 36ms to process an input image of 320 × 240
resolution. Also, by using the same network for both pro-

cessing, we can save computations.

Geometric Feature Extraction/Update. To extract

translation/rotation-invariant and noise-robust geometric

features, we first estimate a Local Reference Frame (LRF)

for each segment. We then extract geometric features

for each segment using a fast and unique geometric fea-

ture descriptor, Global Orthographic Object Descriptor

(GOOD) [15].

Given a depth map, to estimate LRF for each segment,

we need the 3D segmentation map on the current image

plane. Hence, we first render the segmentation map to the

current image plane and obtain the rendered segmentation

map R with segment labels li. We then compute the LRF

by processing the Principal Component Analysis (PCA) for

each segment. In more details about processing the PCA,

we first compute the normalized covariance matrix and then

perform eigenvalue decomposition. The normalized covari-

ance matrix Cli of each segment li is computed using the

vertex map Vt and the rendered segmentation mapR as fol-

lows:

Cli =
1

|Uli |

∑

v∈Uli

(v − oli)(v − oli)
T ,

oli =
1

|Uli |

∑

v∈Uli

v,

Uli = {Vt(u)|R(u) = li},

(4)

where oli represents the geometric center of the segment li;

Uli denotes the set of vertices that belong to the segment li
on the current frame; | · | represents the number of elements

in the set. We then perform eigenvalue decomposition on

Cli as follows:

CliXli = EliXli , (5)

where Xli is a matrix with three eigenvectors; Eli =
diag(λ1, λ2, λ3) is a diagonal matrix with the correspond-

ing eigenvalues. Xli is directly utilized as the LRF.

Lastly, we employ a fast and unique geometric feature

descriptor, GOOD [15]. For each li, we transform the set

of vertices Uli using the LRF. We then feed the transformed

vertices into the descriptor to obtain the frame-wise geo-

metric feature FGEO
t (li) ∈ R

75.

After computing FGEO
t (li) using the current depth map,

the geometric features fGEO
li

in the 3D segmentation map

are updated as follows:

fGEO
li
←

1

ZGEO
li

·
ΩfGEO

li
+ FGEO

t (li)

Ω + 1
,

Ω← Ω+ 1.

(6)

This updates are applied to all segments li on the rendered

segmentation map R. ZGEO
li

denotes the constant for nor-

malizing the feature vector fGEO
li

.

Deep Feature Extraction/Update. We utilize the output

of the layer just before the last classification layer for deep

feature map. The per-frame deep feature map is denoted as

FCNN
t (u) ∈ R

S . The size of FCNN
t is W × H × S where

W and H represent the width and height of an input image,

respectively; and S denotes the number of channels (i.e. the

dimension of the features) which is 64.

We update the deep features fCNN
li

for each segment li
in the 3D segmentation map by employing incremental av-

eraging approach and by using the per-frame deep features.

Since deep features and entropy are extracted for each pixel

while geometric features are obtained for each segment li,

the procedures for updating are slightly different. The deep

features fCNN
li

are updated as follows:

fCNN
li=R(u) ←

1

ZCNN
li

·
ΓfCNN

li=R(u) + F
CNN
t (u)

Γ + 1
,

Γ← Γ + 1,

(7)

where ZCNN
li

is the normalizing constant for fCNN
li

; u is all

the coordinates on FCNN
t .

Entropy Computation/Update. The entropy is computed

by first estimating the probability distribution for each class

and by measuring the Shannon entropy [34] using the prob-

ability distribution. As the network is trained for semantic

segmentation, the probability distribution is obtained by the

output of the softmax layer of the network. The entropy

E(u) ∈ R is computed at each pixel u as follows:

E(u) = −
∑

c

Pc(u) logPc(u), (8)

where Pc(u) ∈ R is the probability for the class c at the

pixel u. Then, E(u) is used for updating the entropy eli for

each segment li in the 3D segmentation map as follows:

eli=R(u) ←
Γeli=R(u) + E(u)

Γ + 1
,

Γ← Γ + 1,

(9)

where u is all the coordinates on E .

3.2.2 3D Segment Clustering

Given semantic and geometric features in the 3D segmenta-

tion map from the feature updating stage, we apply a graph-

based unsupervised clustering algorithm to cluster regions

in the 3D segmentation map. We specifically employ the

Markov clustering algorithm (MCL) [42] because of the

flexible number of clusters and computational cost. Since
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Table 1. Quantitative comparison on the NYUDv2 dataset [37]. Supervised methods versus open set methods (ours).

Method classes in training dataset novel classes mean

bed book chair floor furn. obj. sofa table wall ceil. pict. tv wind. IoU

U-Net [31] 50.32 22.42 36.55 55.62 36.85 27.27 48.44 33.78 55.14 - - - - -

Nakajima et al. [23] 62.82 27.27 42.56 68.43 44.62 24.63 45.04 42.30 26.82 - - - - -

Ours + 3D Map [40] 62.80 23.96 33.10 63.41 50.58 27.28 58.68 40.23 54.53 31.42 19.37 43.98 31.30 41.59

Ours 64.22 22.28 41.79 67.38 56.15 28.61 49.31 40.95 63.18 29.30 28.69 52.20 53.92 46.05

we aim to be able to handle unknown objects in a scene, we

need the number of clusters (class categories) to be flexible,

like the MCL. Furthermore, since the computational cost

O(M3) of the MCL comes from the multiplication of two

matrices with the size M ×M , where M denotes the num-

ber of nodes in the graph, the cost can be turned into O(M)
by parallelizing the processing in a GPU. Accordingly, it

reduces processing time and makes more appropriate for an

online system.

We define the similarity s(i, j) between nodes (i.e. re-

gions li and lj in the 3D segmentation map). The weight

values wi and wj are first computed using the entropy e and

the number N of classes in the training dataset for the U-Net

as follows:

wi =
eli

logN
, wj =

elj

logN
. (10)

The denominator logN is selected to make w to be in [0,1]

considering the maximum value of eli is logN . The simi-

larity s(i, j) is then defined using wi and wj as follows:

s(i, j) = e−ηd(i,j),

d(i, j) = ||(1− wi)f
CNN
li
− (1− wj)f

CNN
lj
||2

+ ||wif
GEO
li
− wjf

GEO
lj
||2,

(11)

where η is a predefined constant. Based on the assumption

that the entropies of regions belonging to unknown object

categories are high, the similarity measurement between

these regions is more relying on geometric features than

deep features. We calculate the similarity s(i, j) for each

pair of region (i, j) and feed the similarities to the MCL to

update clusters.

4. Experiments and Results

To demonstrate the ability of discovering new object

classes using RGBD sensing, we experiment on a publicly

available RGBD dataset [37]. We first train a semantic seg-

mentation network using only a subset of object classes. We

then apply the proposed method to discover both the trained

clases and unseen classes. We demonstrate the effectiveness

of the proposed method by measuring accuracy, process-

ing time, and memory footprint on a test dataset. All ac-

curacy evaluations are performed at 320 × 240 resolution.

Processing time is measured using a machine with an In-

tel Core i7-5557U 3.1GHz CPU, GeForce GTX 1080 GPU,

and 16GB RAM. We use the following thresholds and con-

stant for all the experiments: σΛ = 7.0, σΦ = 0.8, η =
6.0, α = 110.0, β = 0.5.

Dataset. We experiment our system using the publicly

available NYUDv2 dataset [37] which consists of 206 test

video sequences. Since many of the videos have significant

drops in frame-rate, they are inappropriate for tracking and

reconstruction. Accordingly, previous works [11, 22, 23]

have used only 140 test sequences that have at least 2 frames

per second. This results in 360 labeled test images from the

654 images in the original test set.

U-Net Training. To evaluate the proposed system’s ability

of class discovering, we train the U-Net using a subset of

classes and evaluate the system using entire classes. This

enables the quantitative analysis of both trained classes and

unseen classes. We train the U-Net using the SUN RGBD

training dataset [39] which consists of 5,285 RGBD images.

We first initialize the weights of the U-Net using the VGG

model [38] pretrained on the ILSVRC dataset [32]. We then

finetune the model using pre-selected 9 classes among the

13 classes defined in [7]. The selected classes and the en-

tire classes are shown in Table 1. The same trained model

is used for both the proposed method and comparing meth-

ods [31, 23] in Section 4.1.

4.1. Results

We experimentally demonstrate the performance of the

proposed method quantitatively and qualitatively. For quan-

titative comparison, we measure the Intersection over Union

(IoU) using the test set of the NYUDv2 dataset [37] and

present on Table 1 and Table 2. In Table 1, we compare

the proposed method with two fully supervised methods

and our methods with a different incremental 3D segmenta-

tion method [40]. For the supervised methods, we selected

one state-of-the-art semantic mapping method [23] and one

semantic segmentation method [31] for 2D images. Obvi-

ously, these methods can only predict for the 9 classes in the

training dataset. As we propose a novel method for build-

ing a geometric 3D map using an RGBD SLIC-based seg-

mentation method, we compare the proposed method with

the method with the previous incremental 3D segmenta-

tion method of [40]. Since [40] uses only depth maps ex-

cluding color information, our method outperforms largely

for the classes with poor geometric characteristics (e.g.,
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Table 2. Ablation study on effects of deep features and geometric features for clustering.

Method classes in training dataset novel classes

bed book chair floor furn. obj. sofa table wall ceil. pict. tv wind. mean IoU

Ours GEO-only 51.95 21.47 35.99 64.75 50.28 28.36 48.98 39.14 55.80 29.76 25.38 44.88 52.43 42.24

Ours CNN-only 60.07 28.23 37.55 63.53 49.48 30.16 51.21 43.59 59.94 20.82 22.60 39.41 42.30 42.22

Ours 64.22 22.28 41.79 67.38 56.15 28.61 49.31 40.95 63.18 29.30 28.69 52.20 53.92 46.05

Scene (living_room_0030a) 3D Segmentation Map

Clustered 3D Map Nakajima et al.
Figure 5. Qualitative results of dense 3D incremental semantic

mapping. The proposed method discovers various classes includ-

ing both unseen classes and the classes in the training dataset of

the U-Net. For the geometric 3D map and the clustered 3D map,

a distinctive color is used for each segment and each cluster, re-

spectively. For the results of Nakajima et al. [23], which is a fully

supervised method, a specific color is used for each category as

shown in Table 1.

OursTateno et al.
Figure 6. Qualitative results of the 3D segmentation map. The pro-

posed method successfully segments pictures and the headboard

of a bed which have poor geometric characteristics while [40] has

limitation.

picture and window). Hence, it verifies the effectiveness

of the proposed SLIC-based incremental segmentation ap-

proach. Overall, the proposed method achieves competi-

tive accuracy comparing to the state-of-the-art supervised

method [23] and is able to successfully discover novel cat-

egories for unseen objects. Also, the proposed method out-

performs the method with [40] by 4.46 in mean IoU.

In Table 2, we compare the results of the proposed

method to those using only geometric features (Ours GEO-

only) and those using only deep features (Ours CNN-only)

to demonstrate the effectiveness of properly utilizing both

Input RGB U-Net Ours Ground Truth

Figure 7. Qualitative comparison on the NYUDv2 dataset [37]. To

visualize the results of the proposed method, we use a different

color for each cluster. The results of the U-Net and the ground

truth labels are visualized using a specific color for each category

as shown in Table 1.

features for measuring the similarity in (11). By comparing

“Ours GEO-only” and “Ours CNN-only”, we can observe

that “Ours CNN-only” achieves higher or similar accuracy

comparing to “Ours GEO-only” in the trained classes and

“Ours GEO-only” outperforms “Ours CNN-only” for all

the unseen classes. It consequently demonstrates the im-

portance of effectively utilizing both CNN features and ge-

ometric features to achieve high accuracy in both trained

classes and unseen classes. By applying the proposed confi-

dence estimation, the proposed method achieves higher ac-

curacy comparing to “Ours GEO-only” and “Ours CNN-

only” in most of the classes. It verifies the effectiveness

of weighting deep features and geometric features based on

the estimated confidence using the entropy. The proposed

method achieves 3.81 and 3.83 higher mean IoU comparing

to “Ours GEO-only” and “Ours CNN-only”, respectively.

Figures 1, 5, 6, and 7 show qualitative results of the pro-

posed method and comparing methods. The figures demon-

strate that the proposed method properly clusters objects of

both trained classes (for U-Net) and unseen classes. Dis-
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Table 3. Average processing time for each stage. Note that the

processing with * and that with ** can be processed simultane-

ously.

Component Processing time

Building 3D segmentation map * 18.2 ms

Deep feature extraction ** 35.9 ms

Geometric feature extraction 8.2 ms

Entropy computation 2.3 ms

Feature/Entropy update 33.4 ms

3D segment clustering 13.4 ms

Total 93.2 ms

tinctive trained objects include the chair in Figure 5 and the

desk on Figure 1. Characteristic unseen objects include the

window in Figure 5 and the pictures in Figure 1. More-

over, Figure 6 shows the comparison between the proposed

method and [40] in building 3D segmentation map for ob-

ject proposal generation. It shows that the proposed method

can segment the regions even with poor geometric charac-

teristics (e.g., pictures on the wall) by utilizing both depth

and color cues while [40] has limitations.

The bottom two rows of Figure 7 show the failure cases

of the proposed method. On the fourth row, while the pro-

posed method successfully segments and makes a cluster for

the TV (unseen object), the furniture under the TV is seg-

mented and grouped into multiple clusters because of the

several glass windows on the furniture. On the fifth row,

the small objects on the countertop are not segmented ac-

curately. These kinds of objects are challenging since they

are distant from the depth sensor and are small size, which

often leads to less accurate depth sensing.

4.2. Runtime Performance and Memory Footprint

We demonstrate the efficiency of the proposed method

by measuring processing time and memory footprint. The

average processing time for each stage is shown in Table 3.

The total processing time is 93.2 ms (10.7Hz) on average.

By the strategy of clustering segments instead of elements,

we were able to effectively reduce the processing time of

3D segment clustering to 13.4 ms on average. The average

number of segments in a 3D map was 253.7. The two most

expensive processing are forward-processing of the U-Net

and the feature updating.

We also present the processing time on Figure 8 and the

memory footprint on Figure 9 for each frame in a sequence.

Figure 8 shows that the processing time is quite stable even

though the reconstructed 3D map increases. Figure 9 shows

the memory footprint for storing deep features and geomet-

ric features. We compare the proposed method with the

baseline method which assigns/updates features to each el-

ement similar to [11, 22]. The analysis verifies that storing

features for each segment significantly suppressed memory

usage comparing to storing feature for each element. As

shown in Section 3.2.1, the space complexity of the pro-
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Figure 8. Processing time for each frame of the sequence bed-

room 0018b in the NYUDv2 dataset [37].
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Figure 9. Comparison of memory usage for storing seman-

tic and geometric features using the sequence bedroom 0018b

in the NYUDv2 dataset [37]. While the proposed method as-

signs/updates features to each segment of the 3D map, the baseline

method assigns/updates features to each element (e.g., surfel and

voxel) similar to [11, 22] which assign class probabilities to each

element.

posed method is O(Nl · (S + G + 1)) while that of the

baseline method is O(Ns · (S+G+1)). After reconstruct-

ing all the frames in the sequence bedroom 0018b, Nl and

Ns are 196 and 900,478, respectively.

5. Conclusion

Towards open world semantic segmentation, we present

a novel method that incrementally discovers new classes

using RGBD sensing. We propose to discover new ob-

ject classes by building a segmented dense 3D map and by

identifying coherent regions in the 3D map. We demon-

strate that the proposed method is able to successfully dis-

cover new object classes by experimenting on a public

dataset. The experimental results also show that the pro-

posed method achieves competitive accuracy for known

classes comparing to the supervised methods. We further

show that the proposed method is very efficient in compu-

tation and memory usage.
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