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Abstract

We propose to jointly learn multi-view geometry and

warping between views of the same object instances for ro-

bust cross-view object detection. What makes multi-view

object instance detection difficult are strong changes in

viewpoint, lighting conditions, high similarity of neighbour-

ing objects, and strong variability in scale. By turning

object detection and instance re-identification in different

views into a joint learning task, we are able to incorporate

both image appearance and geometric soft constraints into

a single, multi-view detection process that is learnable end-

to-end. We validate our method on a new, large data set of

street-level panoramas of urban objects and show superior

performance compared to various baselines. Our contribu-

tion is threefold: a large-scale, publicly available data set

for multi-view instance detection and re-identification; an

annotation tool custom-tailored for multi-view instance de-

tection; and a novel, holistic multi-view instance detection

and re-identification method that jointly models geometry

and appearance across views.

1. Introduction

We propose a method to simultaneously detect objects

and re-identify instances across multiple different street-

level images using noisy relative camera pose as weak

supervision signal. Our method learns a joint distribu-

tion across camera pose and object instance warping be-

tween views. While object detection in single street-level

panorama images is straightforward since the introduction

of robust, deep learning-based approaches like Faster R-

CNN [25] for object detection or Mask R-CNN [11] for in-

stance segmentation, establishing instance correspondences

across multiple views with this wide baseline setting is

very challenging due to strong perspective change between

views. Moreover, Google street-view panoramas, which are

our core data in this paper, are stitched together from mul-

tiple individual photos leading to stitching artefacts in addi-

tion to motion-blur, rolling shutter effects etc. that are com-

mon for these type of mobile mapping imagery. This makes

correspondence search via classical structure-from-motion

methods like [3, 2] impossible.

Our core motivation is facilitating city maintenance us-

ing crowd-sourced images. In general, monitoring street-

side objects in public spaces in cities is a labor-intensive

and costly process in practice today that is mainly carried

out via in situ surveys of field crews. One strategy that

can complement greedy city surveillance and maintenance

efforts is crowd-sourcing information through geo-located

images like proposed for street trees [30, 4, 17]. We follow

this line of work, but propose an entirely new simultaneous

multi-view object instance detection and re-identification

method that jointly reasons across multi-view geometry and

object instance warping between views. We formulate this

problem as an instance detection and re-identification task,

where the typical warping function between multiple views

of the same tree (Fig. 2) in street-view panoramas is learned

together with the geometric configuration. More precisely,

instead of merely relying on image appearance for instance

re-identification, we insert heading and geo-location of the

different views to the learning process. Our model learns

to correlate typical pose configurations with corresponding

object instance warping functions to disentangle multiple

possibly matching candidates in case of ambiguous image

evidence.

Our contributions are (i) a novel multi-view object in-

stance detection and re-identification method that jointly

reasons across camera poses and object instances, (ii) a new

object instance re-identification data set with thousands of

geo-coded trees, and (iii) a new interactive, semi-supervised

multi-view instance labeling tool. We show that learning

geometry and appearance jointly end-to-end significantly
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helps improving object detections across multiple views as

well as final geo-coding of individual objects.

2. Related Work

We are not aware of any work that does simultaneous

object detection and instance re-identification with soft ge-

ometric constraints. But our proposed method touches a

lot of different research topics in computer vision like pose

estimation, urban object detection, object geo-localization,

and instance re-identification. A full review is beyond the

scope of this paper and we thus provide only some example

literature per topic and highlight differences with the pro-

posed work.

Pose estimation: Learning to predict camera poses us-

ing deep learning has been made popular by the success of

PoseNet [1] using single RGB images and many works have

been published since then [21, 8, 31]. Tightly coupling pose

with image content can, for example, be helpful for estimat-

ing a human hand’s appearance from any perspective if seen

from only one viewpoint [24]. Full human pose estimation

is another task that benefits from combined pose reason-

ing across pose and scene content like [20] who employ a

multi-task CNN to estimate pose and recognize action. In

this paper, we rely on public imagery without fine-grained

camera pose information.

Urban object detection: A large body of literature ad-

dresses urban object detection from an autonomous driv-

ing perspective with various existing public benchmarks,

e.g. KITTI [9], CityScapes [7], or Mapillary [22]. In these

scenarios, dense image sequences are acquired with minor

viewpoint changes in driving direction with forward facing

cameras. Such conditions make possible object detection

and re-identification across views [6, 16, 37]. In our setup,

significant changes occur between views, thus making the

re-identification problem much more challenging.

Object geo-localization: Geo-localization of objects

from Google street-view imagery with noisy pose infor-

mation was introduced in [30, 4]. In a similar attempt,

[14] geo-localize traffic lights and telegraph poles by ap-

plying monocular depth estimation using CNNs, then us-

ing a Markov Random Field model to perform object tri-

angulation. The same authors extend their approach by

adding LiDAR data for object segmentation, triangulation,

and monocular depth estimation for traffic lights [15]. [36]

propose a CNN-based object detector for poles and apply

a line-of-bearing method to estimate the geographic object

position. We rather suggest here to follow an end-to-end

learning strategy.

Instance re-identification: Matching image patches

can be viewed as a simple version of re-identifying im-

age content across different views, e.g. in structure-from-

motion [10], tracking [29], super-resolution [34], depth

map estimation [35], object recognition [27], image re-

trieval [38], and image classification [39]. Our scenario is

closely related to works on re-identifying object instances

across views. Siamese CNNs have been established as a

common technique to measure similarity, e.g. for the per-

son re-id problem that tries to identify a person in multi-

ple views [18]). [33] detects and re-identifies objects in an

end-to-end learnable CNN approach with an online instance

matching loss. [32] solves re-identification with a so-

called center loss that tries to minimize the distance between

candidate boxes in the feature space. In contrast to prior

work [30, 4, 15], which does detection, geo-coding and re-

identification in a hierarchical procedure, our method does

it simultaneously in one pass. Methods based on Siamese

models [18] alone are not a viable solution to our prob-

lem, since they need image crops of the object and can not

fully utilize re-identification annotations due to their pair-

wise labelling training setup. [32] searches for a crop within

the detections in a gallery of images, in comparison to our

method which aims at matching detections from both full

images. The key differences between our work and [33] is

that we both ensure object geolocalization and avoid stor-

ing features from all identities since that is impractical in a

real-world application like the one considered in the paper

where objects actually look very similar in appearance.

3. Multi-view detection and instance re-

identification

Our method learns to detect and re-identify object in-

stances across different views simultaneously. We compen-

sate for inaccurate or missing image evidence by learning a

joint distribution of multi-view camera poses together with

the respective warping function of object instances. Intu-

itively, our method learns to correlate a particular geomet-

ric pose setup (e.g., an equilateral triangle, a right triangle,

etc.) with the corresponding change of object appearance in

the images. As shown in Fig. 3, trees in many situations

being the same species, and planted the same time look

very similar making it hard to detect or re-identify. Learned

relative camera pose configurations help re-identifying ob-

ject instances across views if appearance information in

the images is weak while strong image evidence helps im-

proving noisy camera pose. In general, one can view the

relative camera pose estimation task as imposing soft ge-

ometric constraints on the instance re-identification task.

This joint reasoning of relative camera poses and object ap-

pearance ultimately improves object detection, instance re-

identification, and also the final object geo-coding accuracy.

A big advantage of this simultaneous computation of rel-

ative camera poses, object instance warping and finally ob-

ject geo-coding is that the model learns to compensate and

distribute all small errors that may occur. It thus implic-

itly learns to fix inaccurate relative poses relying on im-

age evidence and vice versa. An overview of the archi-
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Figure 1. A pair of images is fed to our multi-view object detectors, matching projected predictions is learned, and the geo-coordinate of

the object predicted.

tecture of our method is shown in Fig. 4. The basic lay-

out follows a Siamese architecture as proposed originally

by [5]. The main concept of Siamese CNNs is construct-

ing two identical network branches that share (at least par-

tially) their weights. Features are computed for both input

images and then compared to estimate the degree of simi-

larity. This can be achieved by either evaluating a distance

metric in the feature space or by evaluating the final classifi-

cation loss. Here, our primary data source are Google street-

view (GSV) panoramic images along with their geographic

meta data (GMD) because they are publicly available at a

global scale, fit our purpose of city-scale object mapping

for maintenance purposes, and constructing large data sets

amenable to deep learning is straightforward. Fig. 2 illus-

trates the setup of the problem, where the GSV panoramas

captured from C∗ contain our object of interest T from dif-

ferent viewpoints. The GMD contains many useful proper-

ties of the panorama image at hand but location in latitude

and longitude as well as yaw are rather inaccurate. Since

we do not have any information regarding C’s intrinsic or

extrinsic properties, we rely on the GMD to use in our pro-

jection functions which plays an important role as we will

present in the upcoming parts of the paper. GMD is also

contains IDs of other images in vicinity.

3.1. Multi­view object detection

Our core object detection network component is based

on the single shot detector (SSD) [19]. Our architecture is

generally detector-agnostic and any detector could replace

SSD if desired. We chose SSD over other prominent meth-

ods like Faster R-CNN [25] because SSD provides an easy

implementation that allows intuitive modifications and it

performs faster with fewer classes, like in our case, while

achieving good accuracy [13]. We chose SSD512 [19] as

our preferred architecture, which sacrifices a bit of compu-

tational speed for better accuracy.

Our network is composed of two identical blocks de-

noted as X and Y (Fig. 1). As shown in Fig. 4, each block re-

ceives an image, camera pose information (geometric meta

Figure 2. C∗: Camera with geo-position. T : The tree has its actual

geographic coordinates, and location within the panorama. a◦:

heading angle inside panorama. v: Distance between cameras.

Figure 3. Tree instance re-identification problem (color indicates

matches): each tree is photographed from multiple different views,

changing its size, perspective, and background. Note that many

trees look alike.

data, GMD), and the ground truth during training. Note that

the camera’s pose information C only contains its location

ℓ = (lat, lng), yaw, and height h, which is passed to the

network denoted as GMD in Fig. 4. From the GMD data

we are able to calculate the distance between the cameras,

and the heading angle inside the panorama toward the ob-

ject, see Eq. (1). Ground truth is composed of two types
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of bounding boxes: (i) regular object bounding boxes and

(ii) bounding boxes that carry instance IDs labeled and geo-

coordinates. Each image passes first through the SSD base

network composed of ResNet-50 modules [12]. It is then

subject to the convolutional feature layers that provide us

with detections at multiple scales. In order to prepare for

instance re-identification, each individual object detection

is given a local ID, which will play a role in the multi-view

instance matching stage later on. All detections per net-

work block (i.e., panorama) are then projected during train-

ing into the other block’s space using our geometric projec-

tion, see Eq. (1) & (2). Predictions generated from X and

Y are passed through a projection function that estimates

their real world geographic position. From this position it

is again projected into pixels into the corresponding view.

These projection functions assume that the local terrain is

flat to simplify the problem. Objects T are represented in-

side street view images in local East, North, Up (ENU) co-

ordinates that are calculated by providing Cl, Ch and Tl us-

ing Eq. (1). To obtain the pixel location of the object Ox,y ,

Eq. (2) is used given R as the Earth’s radius, W and H the

image’s width and height respectively, and z the estimated

distance from C calculated by z =
√

e2x + e2y .

(ex, ey, ez) =
(

R cos[Clat] sin[Tlng − Clat],

R sin[Tlat − Clat],−Ch

) (1)

x =(π + arctan(ex, ey)− Cyaw)W/2π

y =(π/2− arctan(−h, z))H/π
(2)

Blindly projecting bounding boxes between panoramas

would, however, ignore any scale difference between differ-

ent images of the same instance. Since the mapping vehicle

is moving along while acquiring images, objects close to

the camera in one image will likely be further away in the

next. In addition, detected bounding boxes may sometimes

be fitting an object inaccurately due to partial occlusions or

simply poor detector performance. Using the above men-

tioned equations that assume flat terrain, these errors would

results in projections meters away from the true position.

We thus add a dense regression network to regress the pre-

dicted bounding boxes to the ground truth of the other block

once projected. For example, X’s projected predictions are

regressed to Y’s ground truth, and vice versa. This com-

ponent (Geo Regression Net) aims at taking the predicted

boxes, and projected boxes location, and regress them to

their real world geo-coordinates through a densely layered

network.

Geo Regression Net: Inspired by [23, 28], this network

component estimates the geo-coordinates of the detected

Figure 4. Our network design: Images along with their GMD are

inputs to the network. Object bounding boxes and scores for each

class are computed via extra feature layers (i.e., Conv4 3 [19]).

These are projected into the other image’s space (i.e. to the other

network block, from X to Y and from Y to X), and input to a

dense Geo Regression Net to estimate geographic coordinates. Fi-

nally, projected predictions are input to the Projection Net network

component that does some fine-tuning of the projections.

bounding boxes. Note that our “Projection Function” com-

ponent (based on Eq. (1) and (2)) provides initial estimates

for geo-coordinates, which are improved with this compo-

nent. The Geo Regression Net consists of two dense layers

with ReLU activations.

Figure 5. Illustration of predictions (b∗) projected (b′∗) in other

views and their ground truth (g∗).

Projection Net: This network component fine-tunes pro-

jected predictions b′
∗

by learning to regress the discrepancy

between them and the other block’s ground truth as illus-

trated in Fig 5. Projection Net is constructed similar to the
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extra feature layers (Fig. 4), but uses only box regression

layers. Our model was trained for 13 epochs, using a sin-

gle NVIDIA GeForce GTX 1080Ti, with each epoch being

trained for approximately 4.5 hours.

3.2. Loss function

We formulate a multi-task loss in Eq. (3) to train our

network. Similarly to SSD [19], we use a softmax log

loss Lconf for classification and a smooth-L1 loss Lloc for

bounding box regression. As shown in Fig. 5, our predic-

tions b are projected into b′ using the projection function.

We use again Lloc but this time using the ground truth g
of the other image g′, since it contains the actual bounding

boxes we are trying to regress to in order for the “Projection

Network” to regress the projected boxes. However, map-

ping which predicted bounding boxes correspond to which

default boxes x in g′ is not a straightforward task due to how

the default boxes are generated systematically:

• boxes inside g and g′ are filtered (fg and f ′

g) by keep-

ing only the identified objects (ID’d) to ensure that we

are regressing each instance to its corresponding box

in the other image,

• b is matched using IoU with fg to estimate which boxes

are our target identities,

• indices of the boxes targeted are then selected to be

used as inputs into our loss function, with f ′

g as ground

truth.

The Geo Regression Net network component is trained us-

ing a RMSE LRMSE loss. For the re-identification task, we

train both base networks X and Y using a contrastive loss

Lcont by feeding features from x and x′ that are of iden-

tified objects as input to learn discriminative features and

pull them close if similar. Our complete, multi-task loss

function is:

Lcom(x, c, b, g) =
1

N
(Lconf (x, c) + αLloc(x, b, g)

+αLloc′(x, b
′, g, g′) + Lcont(x, g) + LRMSE(b, g))

(3)

During inference, predicted boxes b∗ are combined in

each view creating a large number of candidate boxes. As

in the original implementation of SSD [19], we use a clas-

sification confidence threshold of 0.01 to filter redundant

boxes. Afterwards non-maximum suppression (NMS) with

Jaccard index (IoU) is employed using a 0.5 overlap. As

mentioned in Sec. 3.1 the local IDs assigned are used to

find which remaining candidate bounding boxes when pro-

jected, overlap’s with the other view’s candidate boxes (i.e.

bX ∩ b′Y ), from which we can identify the corresponding

boxes. Simultaneously, by calculating the distance between

the candidate boxes from each view using Euclidean dis-

tance, we are able to match corresponding boxes.

4. Experiments

We validate our method with experiments on two differ-

ent data sets with street-level imagery. The first data set con-

sists of GSV panoramas, meta data, and tree object instance

labels across multiple views. The second data set contains

sequences of Mapillary images acquired with dash cams

where object instances are labeled across multiple consec-

utive image acquisitions. In addition to presenting final re-

sults of our end-to-end learnable multi-view object instance

detection and re-identification approach, we also do a thor-

ough ablation study to investigate the impact of each indi-

vidual component.

4.1. Data sets

Pasadena Multi-View ReID: We build a new multi-view

data set of street-trees, which is used as a test-bed to learn

simultaneous object detection and instance re-identification

with soft geometric constraints. The original Pasadena Ur-

ban Trees data set [30] contains 1,000 GSV images la-

beled using Mechanical Turk without explicit instance la-

bels across multiple views. We construct a new Multi-View

ReID data set for our purpose where each tree appears in

those four panoramas that are closest to a particular tree lo-

cation. In total, we label 6,020 individual tree objects in

6,141 panoramas with each tree appearing in four different

panoramas. Each panorama image is of size 2048 x 1024

px. This creates a total of 25,061 bounding boxes, where

each box is assigned a particular tree ID to identify the dif-

ferent trees across panoramas. The annotations per image

include the following: (i) bounding boxes identified (ID’d)

and unidentified, (ii) ID’d bounding boxes include the geo

coordinate position, distance from camera v, heading angle

a, (iii) image’s dimensions, and geo-coordinates. For vali-

dating our method experimentally, we split the data set into

4298 images for training, 921 for validation, and 922 for

testing. Since we are not aware of any existing multi-view

instance labeling tool for geo-located objects, we created a

new one described in the sequel.

Mapillary: In order to verify if our method generalizes

across different data sets, we run experiments on a data

set provided by Mapillary 1. Note that this particular

data set is different from the well-known Mapillary Vistas

dataset [22], which provides images and semantic segmen-

tation. Our data set at hand is composed of 31,442 traffic

signs identified in 74,320 images and carries instance IDs

across views in an area of approximately 2km2. On aver-

age, two traffic signs appear per image. This data set comes

as GeoJSON “FeatureCollection” where each “feature” or

identity contains the following properties that were used:

(i) the object’s geo-coordinate that is achieved by using 3D

1www.mapillary.com
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structure from motion techniques, therefore it is affected by

the GPS, and the density of the images, (ii) the distance in

meters from the camera position, (iii) image keys in which

the object appears in and which is used to retrieve the image

using their API, (iv) geo-coordinates of the image location,

(v) the object’s altitude, and (vi) an annotation in polygon

form of the sign.

The Mapillary data set significantly differs from our tree

data set in several aspects. Images were crowd-sourced with

forward looking dash cams attached to moving vehicles,

and by walking humans using smart phones. Image sizes

and image quality are thus inconsistent across the data set.

Viewpoint changes between consecutive frames are only

of a few meters, and the field of view per image is much

smaller than a GSV panorama as shown in Fig. 8. Con-

sequently, the distribution of relative poses between view-

points is very different as well as the change in appearance

of the same object instance across views. Because the cam-

era is forward-looking, each object is viewed more or less

from the same viewpoint, only scale changes. However, ob-

jects are generally smaller because unlike GSV, no orthog-

onal views perpendicular to the driving direction exist.

Figure 6. Consecutive frames of two example scenes of the Map-

illary data set.

4.2. Multi­view object annotation tool

Labeling object instances across multiple panoramas is

a difficult task (Fig. 3) because many trees look alike and

significant variations in scale and viewpoint occur. Our an-

notation tool aims at making multi-view instance labeling

more efficient by starting from an aerial view of the scene.

To begin labeling, the annotator first selects an individual

object from the aerial image. The four closest panoramas

are presented to the annotator and in each view a marker ap-

pears that roughly points at the object location inside each

panorama. This projection from aerial view to street-view

panorama approximates the object’s position in each of the

panoramas and is calculated using Eq. (1) and (2). This ini-

tial, approximate object re-identification significantly helps

Figure 7. Our annotation tool provides 4 multi-view panoramas

from GSV. Initial bounding boxes for the target object are pre-

dicted, in which annotators can then refine, or annotate the missing

object. To help identifying the object in multiple views a red circle

is drawn to estimate the location of the target object in all views to

guide the annotator. Images in the figure are from our Multi-View

ReID dataset in Pasadena.

a human observer to identify the same tree across different

images despite large scale and viewpoint changes. More-

over, SSD predicts bounding boxes around the objects of in-

terest (here: trees) such that the annotator can simply refine

or resize an existing bounding box in most cases (or create a

new bounding box if the object remains undetected). Iden-

tity labeling or correspondence matching is done by select-

ing the best fitting bounding box (i.e., there may sometimes

be more than one bounding box per object) per object per

panorama. All multi-view instance annotations are stored in

a MongoDB, which enables multiple annotators to work on
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Method w/o Pose [mAP] w/ Pose [mAP]

FaceNet [26] 0.808 0.842

ResNet-50 [12] 0.828 0.863

MatchNet [10] 0.843 0.871

Table 1. Re-identification results without (w/o Pose) and with (w/

Pose) camera pose information (C∗

l , v, a), fed to the Siamese net-

work architectures FaceNet, ResNet-50, and MatchNet.

the same data set at the same time. The database is designed

to store annotated bounding boxes to each image, with a

separate document storing which bounding boxes are iden-

tities. This reduces the effort of having to reannotate each

image again for every identity. Our labeling tool is generic

in terms of object category and can easily be adapted to any

category by re-training the detector component for a differ-

ent class. Also the detector can be exchanged for any other

object detector implemented/wrapped in Python. As out-

put the labeling tool provides annotations through its API

in VOC and JSON format.

4.3. Detection

A significant benefit of projecting bounding boxes be-

tween blocks of our architecture is that it makes object de-

tection much more robust against occlusions and missed de-

tections caused by missing image evidence in individual im-

ages. In order to validate the improvement due to simultane-

ously detecting objects across multiple views, we compare

object detector results on individual panoramas (Monocu-

lar) with results from our model that combine object ev-

idence from multiple views via projecting detections be-

tween blocks X and Y . Results are shown in Tab. 2. Ours

improves detection mAP on the Pasadena tree data set by

8.5 percent points, while improving by 2.7 percent points

on the Mapillary data set.

4.4. Re­identification with pose information

We verify if learning a joint distribution across cam-

era poses and image evidence supports instance re-

identification (regardless of the chosen architecture) with

three popular Siamese architectures, namely FaceNet [26],

ResNet-50 [12], and MatchNet [10]. Results shown in

Tab. 1 indicate that Ours with camera pose information con-

sistently outperforms all baseline methods regardless of the

base network architecture. Any architecture with added ge-

ometric cues does improve performance. Learning soft geo-

metric constraints of typical scene configurations helps dif-

ferentiating correct from wrong matches in intricate situa-

tions. Overall, Ours with the MatchNet [10] architecture

performs best.

We evaluate the Re-ID mAP for our multi-view set-

ting, which measures the amount of correct instance re-

identifications if projecting detections between panoramas

in the right column of Tab. 2. To measure the similar-

ity between tree detections across multiple views projected

onto one another, we use the distance between overlapping

bounding boxes as explained in the inference stage. 73%

of all tree instances labeled with identities are matched cor-

rectly, which is a high number given the high similarity be-

tween neighboring trees and the strong variation in scale

and perspective. As for Mapillary’s dataset, 88% of the traf-

fic signs were re-identified. In comparison to tree objects,

neighboring traffic signs (with different purposes) are easier

to discriminate, but much smaller in size.

4.5. Geo­localization

We finally evaluate performance of our end-to-end train-

able urban object mapping architecture by comparing pre-

dicted geo-locations of trees with ground truth positions.

We compare our full, learned model (Ours) against simply

projecting each detection per single panorama (Single) to

geographic coordinates as well as combining detections of

multiple views (Multi) (Tab. 3). We compute the discrep-

ancy between predicted geo-coordinates and ground truth

object position using the haversine formula given in Eq. (4)

with r being the Earth’s radius (6,372,800 meters):

d = 2r arcsin

(

(

sin2
(blat − glat

2

)

+ cos(glat) cos(blat) sin
2

(blng − glng
2

)

)0.5
)

(4)

Single view geo-localization was done by applying projec-

tion functions given in Eq. (1) and (2) to the individual de-

tections. As for multi-view experiments, we use combined

detections from multiple views without learning the projec-

tion and project to geographic coordinates as before. Ours

is our full model as depicted in Fig. 4, which takes advan-

tage of “Projection Net” and “Geo Regression Net” com-

ponents. Learning multi-view object detection and instance

re-identification significantly improves performance, bring-

ing down the MAE to 3.13 meters for the Pasadena trees

data set while achieving 4.36 meters for Mapillary. Fig. 9

shows tree detection results (red) for a small example scene

in comparison to ground truth locations (orange) overlaid to

an aerial view.

5. Conclusion

We have presented a new, end-to-end trainable method

for simultaneous multi-view instance detection and re-

identification with learned geometric soft-constraints.

Quantitative results on a new data set (labeled with a novel
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Method Data set Det. mAP Re-ID mAP

Monocular
Pasadena 0.597 -

Mapillary 0.875 -

Ours
Pasadena 0.682 0.731

Mapillary 0.902 0.882

Table 2. Detection and Re-identification results with individual,

single-view object detections (Monocular) compared to our full,

multi-view pipeline (Ours).

Method Data set MAE [m]

Single
Pasadena 77.41

Mapillary 83.27

Multi
Pasadena 70.16

Mapillary 64.0

Ours
Pasadena 3.13

Mapillary 4.36

Table 3. Geo-localization results as mean absolute error (MAE)

compared to geographic ground truth object positions.

multi-view instance re-identification annotation tool) with

street-level panorama images are very promising. Experi-

ments on a Mapillary data set with shorter baselines, smaller

objects, narrower field of view, and mostly forward looking

cameras indicate that our method generalizes to a different

acquisition design, too.

In general, integrating object evidence across views

improves object detection and geo-localization simultane-

ously. In addition, our re-identification ablation study

proves that learning a joint distribution across camera poses

and object appearances helps re-identification. We hope

tight coupling of camera pose information and object ap-

pearance within a single architecture will benefit further

research on multi-view object detection and instance re-

identification in the wild. All source code, the tree detection

and re-identification data set, and our new labeling tool will

be made publicly available2.
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2www.registree.ethz.ch

Figure 8. Detection and Re-identification using our method.

Green: ground truth boxes. Blue: ground truth box of the iden-

tity instance. Orange: predictions with classification score and

calculated feature distance from matching box in the other view.

Figure 9. Small subset of tree predictions (red) overlaid to an aerial

image (not used in our model) and compared to tree ground truth

locations (orange).
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