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Abstract

We describe a latent approach that learns to detect ac-

tions in long sequences given training videos with only

whole-video class labels. Our approach makes use of

two innovations to attention-modeling in weakly-supervised

learning. First, and most notably, our framework uses

an attention model to extract both foreground and back-

ground frames whose appearance is explicitly modeled.

Most prior works ignore the background, but we show

that modeling it allows our system to learn a richer no-

tion of actions and their temporal extents. Second, we

combine bottom-up, class-agnostic attention modules with

top-down, class-specific activation maps, using the latter

as form of self-supervision for the former. Doing so al-

lows our model to learn a more accurate model of atten-

tion without explicit temporal supervision. These modi-

fications lead to 10% AP@IoU=0.5 improvement over

existing systems on THUMOS14. Our proposed weakly-

supervised system outperforms recent state-of-the-arts by

at least 4.3% AP@IoU=0.5. Finally, we demonstrate

that weakly-supervised learning can be used to aggres-

sively scale-up learning to in-the-wild, uncurated Insta-

gram videos. The addition of these videos significantly im-

proves localization performance of our weakly-supervised

model.

1. Introduction

We explore the problem of weakly-supervised action lo-

calization, where the task is learning to detect and local-

ize actions in long sequences given videos with only video-

level class labels. Such a formulation of action understand-

ing is attractive because it is well-known that precisely es-

timating the start and end frames of actions is challenging

even for humans [3]. We build on a body of work that makes

use of attentional processing to infer frames most likely to

belong to an action. We specifically introduce the following

innovations.

Background modeling: Classic pipelines use atten-

tional pooling to focus a model on those frames likely to

backgroundGymnastics

Weakly-supervised: “This video contains Gymnastics action.” 
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Figure 1: With fully-supervised data where exact boundaries of

actions are provided, we can train highly discriminative detection

models that use background regions as negative examples, implic-

itly modeling background content. In weakly-supervised setting

where only video-level labels are known, current approaches sim-

ply train a foreground model to respond strongly at some locations

within the video, but leave the remaining background frames un-

modeled. In this paper we show that a model which explicitly ac-

counts for background frames substantially improves on weakly-

supervised localization.

contain the action of interest. We show that by modeling

the remaining background frames, one can significantly im-

prove the accuracy of such methods. Interestingly, fully-

supervised systems for both objects [22] and actions [4]

tend to build explicit models (or classifiers) for background

patches and background frames, but this type of reasoning is

absent in most weakly-supervised systems. Notable excep-

tions in the literature include probabilistic latent-variable

models that build generative models of both foreground and

background [16]. We incorporate background modeling

into discriminative network architectures as follows: many

such networks explicitly compute an attention variable, λt,

that specifies how much frame t should influence the final

video-level representation (by say, weighted pooling across

all frames). Simply put, we construct a pooled video-level

feature that focuses on the background by weighing frames
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with 1− λt.

Top-down guided attention: Our second innovation is

the integration of top-down attentional cues as additional

forms of supervision for learning bottom-up attention. The

attention variable λt, typically class-agnostic, looks for

generic cues that apply to all types of actions. As such,

it can be thought of as a form of bottom-up attentional

saliency [9]. Recent works have shown that one can also

extract top-down attentional cues from classifiers that oper-

ate on pooled features by looking at (temporal) class acti-

vation maps (T-CAM) [19, 38]. We propose to use class-

specific attention maps as a form of supervision to refine

the bottom-up attention maps λt. Specifically, our loss en-

courages bottom-up attention maps to agree with top-down

class-specific attention map (for classes known to exist in a

given training video).

Micro-videos as training supplements: We observe

there is a huge influx of microvideos on social media plat-

forms (Instagram, Snapchat) [20]. These videos often come

with user-generated tags, which can be loosely viewed as

video-level labels. This type of data appears to be an ideal

source for weakly-supervised video training data. However,

the utility of these videos remains to be established. In this

paper, we show that the addition of microvideos to existing

training data allows aggressive scaling up of learning which

improves action localization accuracy.

Our contributions are summarized below:

• We extend prior weakly-supervised action localiza-

tion systems to include background modeling and top-

down class-guided attention.

• We present extensive comparative analyses between

our models versus other state-of-the-art action local-

ization systems, both weakly-supervised and fully-

supervised, on THUMOS14 [15] and ActivityNet [13].

• We demonstrate the promising effects of using mi-

crovideos as supplemental, weakly-supervised training

data.

2. Related Works

In recent years, progress in temporal action local-

ization has been driven by large-scale datasets such as

THUMOS14 [15], Charades [27], ActivityNet [13] and

AVA [12]. Building such datasets has required substan-

tial human effort to annotate the start and end points of

interesting actions within longer video sequences. Many

approaches to fully-supervised action localization lever-

age these annotations and adopt a two-stage, propose-then-

classification framework [2, 26, 7, 14, 24, 37]. More re-

cent state-of-the-art methods [11, 10, 32, 5, 4] borrow in-

tuitions from the recent object detection frameworks (e.g.

R-CNN). One common factor among these approaches is

using non-action frames within the video for building back-

ground model.

Temporal boundary annotations, however, are expensive

to obtain. This motivates efforts in developing models that

can be trained with weaker forms of supervision such as

video-level labels. UntrimmedNets [30] uses a classifi-

cation module to perform action classification and selec-

tion module to detect important temporal segments. Hide-

n-Seek [29] addresses the tendency of popular weakly-

supervised solutions - networks with global average pool-

ing - to only focus on the most discriminative frames by

randomly hiding parts of the videos. STPN [19] introduced

an attention module to learn the weights for the weighted

temporal pooling of segment-level feature representations.

This method generates detections by thresholding Tempo-

ral Class Activation Mappings (T-CAM) weighted by the

attention values. AutoLoc [25] introduces a boundary pre-

dictor to predict segment boundaries using an anchoring

system. The boundary predictor is driven by the Outer-

Inner-Constrastive Loss, which encourages segments with

high activation on the inside and weaker activations on the

immediate neighborhood of this segment. W-TALC [21]

introduces a system with k-max Multiple Instance Learning

and explicitly identifies the correlations between videos of

similar categories by a co-activity similar loss. None of the

aforementioned methods attempts to explicitly model back-

ground content during training.

3. Localization from Weak Supervision

Assume we are provided with a training set of videos and

video-level labels y ∈ {0, . . . , C}, where C denotes the

number of possible actions and 0 indicates no action (the

background). In each frame t of each video, let us write

xt ∈ R
d for a feature vector based on RGB and optical flow

extracted at that frame (e.g., pretrained on a related video

classification task). We then can write each training video

as a tuple of feature vectors and video-level label:

({xt}, y), xt ∈ R
d, y ∈ {0, . . . , C}

In principle, videos may contain multiple types of ac-

tions, in which case it is more natural to model y as a multi-

label vector. From this set of video-level training annota-

tions, our goal is to learn a frame-level classifier that can

identify which of the C + 1 actions (or background) is tak-

ing place at each frame of a test video.

3.1. Weak Supervision

To produce video-level predictions of foreground ac-

tions, we perform attention-weighted average pooling of

frame features over the whole video to produce a single
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Figure 2: Network architecture for our weakly supervised action

localization model. Using a pre-trained network, we extract the

features representation for short video segments. The attention

module Ω predicts frame level attention λ which can be used

to pool the frame-level features into a single foreground video-

level feature representation. The complement of the attention vec-

tor, 1 − λ, can also be used to pool segments belonging to the

background into a video-level background representation. Video-

level labels are predicted from these pooled features. In addi-

tion to this action-specific top-down model appearance, we also

include bottom-up clustering loss which asserts that the video

should segment into distinct foreground and background appear-

ances zfg, zbg . To link these two, we compute an attention target

λ̂ based on the class activations of the ground-truth video label y

using a “self-guided” loss that encourages the predicted attention

λ to match this target.

video-level foreground feature xfg given by

xfg =
1

T

T∑

t=1

λtxt. (1)

The weighting for each frame is a scalar λt ∈ [0, 1] which

serves to pick out (foreground) frames during which an

action is taking place while down-weighting contribution

from background. The attention is a function of the d-

dimensional frame feature λt = Ω(xt) which we imple-

ment using two fully-connected (FC) layers with a ReLU

activation for the first layer and a sigmoid activation func-

tion for the second.

To produce a video-level prediction, we feed the pooled

feature to fully-connected softmax layer, parameterized by

wc ∈ R
d for class c:

pfg[c] =
ewc·xfg

∑C

i=0 e
wi·xfg

(2)

The foreground classification loss is the defined via regular

cross-entropy loss with respect to the video label y.

Lfg = − log pfg[y] (3)

Background-Aware Loss The complement of the atten-

tion factor, 1 − λ, indicates frames where the model be-

lieves that no action is taking place. We propose that fea-

tures pooled from such background frames xbg should also

be classified by the same softmax model as was applied to

the pooled foreground frames.

xbg =
1

T

T∑

t=1

(1− λt)xt (4)

pbg[c] =
ewc·xbg

∑C

i=0 e
wi·xbg

(5)

The vector, pbg ∈ R
C+1, indicate the likelihood of each

action class for the background-pooled features. The

background-aware loss, Lbg, encourages this vector to be

close to 1 at the background index, y = 0, and 0 otherwise.

This cross entropy loss on the background feature then sim-

plifies to

Lbg = − log pbg[0]

Compared to a model which is trained to classify only fore-

ground frames, Lbg, ensures that the parameters w also

learn to distinguish actions from the background.

Self-guided Attention Loss The attention variable λt can

be thought of as a bottom-up, or class-agnostic, attention

model that estimates the foreground probability of a frame.

This will likely respond to generic cues such as large body

motions, which are not specific to particular actions. Recent

works have shown one can extract top-down attentional cues

from classifiers operating on pooled features by examining

(temporal) class activation maps (TCAM) [19, 38]. We pro-

pose to use class-specific TCAM attention maps as a form

of self-supervision to refine the class-agnostic bottom-up at-

tention maps λt. Specifically, we use top-down attention

maps from the class y that is known to be a given training

video:

λ̂
fg
t = G(σ) ∗

ewyxt

∑C

i=0 e
wixt

(6)

where G(σ) refers to a Gaussian filter used to tempo-

rally smooth the class-specific, top-down attention signals.1

Gaussian smoothing imposes the intuitive prior that if a

frame has high probability of being an action, its neighbor-

ing frames should also have high probability of containing

an action. Note the above softmax differs from (2) and (5)

in that they are defined at the frame level (as opposed to the

video level) and that they are not modulated by bottom-up

attention λt = Ω(xt).

1If video is labeled with multiple actions, we max-pool foreground at-

tention targets λ̂
fg
t across all present actions so that λ̂t is large if any action

is taking place at time t.
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Video-level 
Probabilities

Proposals
(start, end, label)

Detections
(start, end, label, 

score)

Attentions

weighted
T-CAM

PoleVault: 0.91, GolfSwing: 0.05, Diving: 0.002, CliffDiving: 0.001, ... 

Figure 3: The detection process involves three steps: video-level class probability thresholding, segment proposal generation and detection

scoring. First, relevant classes are selected by thresholding video-level probabilities. The attention vector is thresholded with different

values to select salient, connected segments. Each threshold value corresponds to a different set of segment proposals which are pooled.

Each proposal is scored by averaging the weighted-TCAM values within its interval. Per-class non-maxima suppression is performed to

remove highly overlapped detections. The y-axis in last figure indicates the final detection score.

Since our top-down classifier also includes a model of

background, we can consider an attention target given by

the complement of the background class activations

λ̂
bg
t = G(σ) ∗

∑C

i=1 e
wixt

∑C

i=0 e
wixt

(7)

Given this attention target, we define the self-guided loss as

Lguide =
1

T

∑

t

|λt − λ̂
fg
t |+ |λt − λ̂

bg
t |

which biases the class-agnostic bottom-up attention map to

agree with the top-down class-specific attention map (for

classes known to exist in a given training video).

Foreground-background Clustering Loss Finally, we

consider a bottom-up loss defined purely in terms of the

video features and attention λ which makes no reference

to the video-level labels. We estimate another set of pa-

rameters ufg, ubg ∈ R
d that are applied to the bottom-

up attention-pooled features (that do not require top-down

class labels)

zfg =
eufgxfg

eufgxfg + eubgxfg
(8)

zbg =
eubgxbg

eufgxbg + eubgxbg
(9)

Each video should contain both foreground and background

frames so the clustering loss encourages both classifiers re-

spond strongly to their corresponding pooled features

Lcluster = − log zfg − log zbg (10)

This can be viewed as a clustering loss that encourages the

foreground and background pooled features to be distinct

from each other.

Total loss We combine these losses to yield a total per-

video training loss

Ltotal = Lfg + αLbg + βLguide + γLcluster. (11)

with α, β and γ are the hyperparameters to control the cor-

responding weights between the losses. We find that these

hyperparameters (α, β, γ) need to be small enough so that

network is driven mostly by the foreground loss, Lfg.

3.2. Action Localization

To generate action proposals and detections, we first

identify relevant action classes based on video-level clas-

sification probabilities, pfg. Segment proposals are gener-

ated for each relevant class. These proposals are then scored

with the corresponding weighted T-CAMs to obtain the final

detections. We keep segment-level features at timestamp t

with attention value λt greater than some pre-determined

threshold. We perform 1-D connected components for con-

nect neighboring segments to form segment proposal. A

segment proposal [tstart, tend, c], is then scored as

tend∑

t=tstart

θλRGB
t wT

c x
RGB
t + (1− θ)λFLOW

t wT
c xt

FLOW

tend − tstart + 1

(12)

where θ is a scalar denoting the relative importance between

the modalities. In this work, we set θ = 0.5.

Figure 3 shows an example of the inference process. Un-

like STPN, we do not generate proposals using attention-
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Table 1: Ablation studies show each additional loss leads to significant localization performance gain. The losses also complement each

other as combining them achieves better results. The first and second rows are obtained from STPN [19].

AP@IoU

Lfg Lbg Lguide Lcluster Lsparse 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

X – – – – 46.6 38.7 31.2 22.6 14.7 – – – –

X – – – X 52.0 44.7 35.5 25.8 16.9 9.9 4.3 1.2 0.2

X – X – – 53.8 46.4 38.2 29.0 19.2 10.6 4.4 1.3 0.1

X X – – – 53.6 47.6 39.1 30.2 20.5 12.2 5.4 1.7 0.2

X X X – – 58.9 54.3 41.5 33.9 24.4 16.2 7.8 2.4 0.4

X X – X – 54.9 48.4 40.8 32.4 23.1 14.2 7.4 2.5 0.3

X – X X – 60.1 54.1 45.6 34.0 23.2 13.6 6.2 1.4 0.1

X X X X – 60.4 56.0 46.6 37.5 26.8 17.6 9.0 3.3 0.4

weighted T-CAMs but from the attention vector, λ. Multi-

ple thresholds are used to provide a larger pool of proposals.

We find that generating proposals from the averaged atten-

tion weights from different modalities leads to more reliable

proposals. Class-wise non-maxima suppression (NMS) is

used to remove detections with high overlap.

4. Experiments

4.1. Datasets and Evaluation Method

Datasets We evaluate the proposed algorithm on two popu-

lar action detection benchmarks, THUMOS14 [15] and Ac-

tivityNet1.3 [13].

THUMOS14 has temporal boundary annotations for 20

action classes in 212 validation videos and 200 test videos.

Following standard protocols, we train using the validation

subset without temporal annotations and evaluate using test

videos. Video length ranges from a few seconds up to 26

minutes, with the mean duration around 3 minutes long. On

average, there are 15 action instances per video. There is

also a large variance in the length of an action instance, from

less than a second to minutes.

The ActivityNet dataset offers a larger benchmark for

complex action localization in untrimmed videos. We

use ActivityNet1.3, which has 10,024 videos for training,

4,926 for validation, and 5,044 for testing with 200 activ-

ity classes. For fair comparisons, we use the same pre-

extracted I3D features as STPN.

Microvideos are short, untrimmed video clips available

on social media platforms, such as Instagram and Snapchat.

These videos are authored to be exciting, and hence of-

ten have much higher foreground/background content ratio

than regular videos. We aim to leverage this new source of

data and its accompanying tags to improve action localiza-

tion performance. We download 100 most-recent Instagram

videos containing tags constructed from THUMOS14’s ac-

tion names. For example, for ‘BaseballPitch’, we query

Instagram for videos with tag #baseballpitch. Duplicated

and mis-tagged videos are removed. The retention rate de-

pends on the action labels, ranging from 15% to 89% with

the average retention rate at 45%. It takes less than 2 hours

to curate video-level labels for 2000 videos. The final set

contains a total of 915 microvideos. The duration for these

videos ranges from 6 to 15 seconds. Each video often 1-

2 action instances. Example microvideos are shown in our

supplementary materials. In our experiments, we simply

add these microvideos to the THUMOS14 train set and keep

the rest of the experiment unchanged.

We follow the standard evaluation protocol based on

mean Average Precision (mAP) values at different levels of

intersection over union (IoU) thresholds. The evaluation is

conducted using the benchmarking code for the temporal

action localization task provided by ActivityNet2.

4.2. Implementation Details

For fair comparisons, experiment settings are kept simi-

lar to STPN [19]. Specifically, we use two-stream I3D net-

works trained on Kinetics [17] as segment-level feature ex-

tractor. I3D features are extracted using publicly-available

code and models3. We follow the preprocessing steps for

RGB and optical flow recommended by the software. For

the flow stream, we use an OpenCV implementation to cal-

culate the dense optical flow using the Gunnar Farneback’s

algorithm [8]. Instead of sampling a fixed number of seg-

ments per video like STPN, we load all the segments for

one video and process only one video per batch.

The loss function weights in Eq. 11 are set as α = β =
γ = 0.1. This specific setting is provided for ease of repro-

ducibility. However, as long as these values are around 10x

smaller than foreground class loss weight, converged mod-

els have similar performance. Intuitively, video-level labels

provide the most valuable supervision. The higher fore-

ground class loss weight encourages the model to first pro-

duce correct video-level labels. Once the foreground loss is

saturated, minimizing the other losses improves boundary

decisions between foreground and background.

The network is implemented in TensorFlow and trained

2https://github.com/activitynet/ActivityNet/blob/master/Evaluation/
3https://github.com/deepmind/kinetics-i3d
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Figure 4: With background modeling, our model is able to produce better attention weights, T-CAM signals and subsequently better

detections. The first two action instances (green ellipses) are detected by our methods but completely missed by STPN. While both

algorithms detect the last two action instances (last red and green ellipses), ours is able to obtain more accurate boundaries.

using the Adam optimizer with learning rate 10−4. At test-

ing time, we reject classes whose video-level probabilities

are below 0.1. If no foreground class has probability great

than 0.1, we generate proposals and detections for the high-

est foreground class. We propose using a large set of thresh-

olds ranging from 0 to 0.5 with the 0.025 increment. All

proposals are combined in one large set. We use an NMS

overlap threshold of 0.5.

5. Results

We perform ablation studies on different combinations of

loss terms to further understand the contribution of each

loss. Results in Table 1 suggest the addition of each loss im-

proves localization performance. Combining these losses in

training leads to even better results, implying that each pro-

vides complementary cues.

Figure 4 shows an example comparing the intermediate

outputs between our model and STPN. Our model is able to

produce better attentions, T-CAMs, and, consequently, bet-

ter action detections. Our model is able to detect instances

that are completely missed by the previous model. This

leads to an overall improvement in the recall rate and aver-

age precision of the localization model across different IoU

overlap thresholds. For action instances detected by both

models, our model is able to obtain more accurate temporal

boundaries. This leads to AP improvements for stricter IoU

overlap thresholds.

Comparisons with state-of-the-art Table 2 compares the

action localization results of our approach on THUMOS14

to other weakly-supervised and fully-supervised localiza-

tion systems published in the last three years. For IoUs less

than 0.5, we improve mAP by 10% mAP over STPN [19].

We also significantly outperform more recent state-of-the-

art weakly-supervised action localization systems. Our

model is also comparable to other fully-supervised systems,

especially in the lower IoU regime. In higher IoU over-

lap regimes, our model doesn’t perform as well as Chao et

al. [4]. This suggests that our model knows where actions

happen, but is not able to precisely articulate the boundaries

as well as fully-supervised methods. This is reasonable as

our weakly-supervised models are not privy to boundary an-

notations for which fully-supervised methods have full ac-

cess.

Table 3 compares our results against other state-of-the-

art approaches on the ActivityNet 1.3 validation set. Sim-

ilar to THUMOS14, our method significantly outperforms

existing weakly-supervised approaches while maintaining

competitive with other fully-supervised methods.

Micro-videos as supplemental training data Even though

THUMOS14 has a uniform number of training videos

across each action class, the class distribution of action in-

stances is heavily skewed (ranging from 30 instances of

BaseballPitch to 499 instances of Diving). As a result, cate-

gories with higher instance count (Diving, HammerThrow)

have higher mAP while those with fewer action instances

(BaseballPitch, TennisSwing, CleanAndJerk) have lower

mAP. The addition of microvideos re-balances the skewed

class distribution for action instances and improves the gen-
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Table 2: Comparisons with recent techniques on THUMOS14. Our method yields 10% improvement over the original system [19]. We

significantly outperform other weakly supervised approaches [25, 21], 5% mAP@0.5. In general, our model performance is comparable

to fully-supervised methods in lower IoU regimes. Higher IoU requires more accurate action boundary decisions, which is difficult to do

without the actual boundary supervision.

Supervision Method
AP@IoU

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fully

supervised

Heilbron et al. [14] – – – – 13.5 – – – –

Richard et al. [23] 39.7 35.7 30.0 23.2 15.2 – – – –

Shou et al. [26] 47.7 43.5 36.3 28.7 19.0 10.3 05.3 – –

Yeung et al. [34] 48.9 44.0 36.0 26.4 17.1 – – – –

Yuan et al. [35] 51.4 42.6 33.6 26.1 18.8 – – – –

Escordia et al. [6] – – – – 13.9 – – – –

Shou et al. [24] – – 40.1 29.4 23.3 13.1 07.9 – –

Yuan et al.[36] 51.0 45.2 36.5 27.8 17.8 – – – –

Xu et al.[32] 54.5 51.5 44.8 35.6 28.9 – – – –

Zhao et al. [37] 66.0 59.4 51.9 41.0 29.8 – – – –

Chao et al. [4] 59.8 57.1 53.2 48.5 42.8 33.8 20.8 – –

Alwassel et al. [1] – – 51.8 42.4 30.8 20.2 11.1 – –

Weakly

supervised

Wang et al. [30] 44.4 37.7 28.2 21.1 13.7 – – – –

Singh & Lee [29] 36.4 27.8 19.5 12.7 06.8 – – – –

Nguyen et al.[19] 52.0 44.7 35.5 25.8 16.9 9.9 4.3 1.2 0.2

Paul et al.[21] 55.2 49.6 40.1 31.1 22.8 – 7.6 – –

Shou et al.[25] – – 35.8 29.0 21.2 13.4 5.8 – –

Ours 60.4 56.0 46.6 37.5 26.8 17.6 9.0 3.3 0.4

Ours + MV 64.2 59.5 49.1 38.4 27.5 17.3 8.6 3.2 0.5

Table 3: Results on the ActivityNet1.3 validation set.

Method
AP@IoU

0.5 0.75 0.95

Fully

supervised

Singh & Cuzzolin [28] 34.5 – –

Wang & Tao [31] 45.1 4.1 0.0

Shou et al. [24] 45.3 26.0 0.2

Xiong et al. [37] 39.1 23.5 5.5

Montes et al. [18] 22.5 – –

Xu et al. [33] 26.8 – –

Chao et al. [4] 38.2 18.3 1.30

Weakly supervised
Nguyen et al. [19] 29.3 16.9 2.6

Ours 36.4 19.2 2.9

eralizability for categories with lower action instance count.

We observe improvements of at least 3%AP@IoU=0.5 for

5 action categories with the lowest instance count.

Table 2 shows models trained with additional mi-

crovideos (‘Ours + MV’) improve significantly for IoU

thresholds from 0.1 to 0.5, while maintaining similar per-

formance at the higher IoU regime. This suggests the ad-

dition of microvideos allows models to recognize action in-

stances better, but does not help with generating highly pre-

cise boundaries. These results, along with the ease of col-

lecting and curating microvideos, presents a promising di-

rection of using microvideos as a weakly-supervised train-

ing supplement for actional localization.

Failure modes Figure 5 examines current failure modes of

our approach. Figure 5a shows multiple action instances

happening close to each other, with little or no background

between them. When little background happens between

actions, the model fails to correctly split the actions. Fig-

ure 5b shows an example of composite actions CleanAnd-

Jerk. The person performing these action usually stands

still between these actions, hence the model breaks this

into two components. In Figure 5c, we see another diffi-

culty, namely the subjectivity of boundary annotations. In

training videos, the action of ‘BasketballDunk’ usually in-

volves someone running to the basket, jumping and dunk-

ing the ball. Human annotations however just consider the

last piece of the action as the ground-truth. It is chal-

lenging for weakly-supervised methods to find the correct

human-agreed boundaries in this case, limiting performance

in higher IoU regimes. For a better visual sense of these

failure cases, we refer the reader to our supplementary ma-

terials.

Discussion Without sparsity loss, the majority of

STPN’s attention weights λt remain close to 1, rendering

them useless for detection generation. The sparsity loss

forces the attention module to output more diverse values

for attention weights. However, this loss in combination

with video-level foreground loss encourages the model to

select the smallest number of frames necessary to predict

the video-level labels. After a certain point in the train-

ing process, localization performance starts to deteriorate

significantly as the sparsity loss continues to eliminate rele-

vant frames. This requires early stopping to prevent perfor-

mance drop. In contrast, our model uses top-down T-CAMs
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groundtruths

attentions

T-CAM

detections

(a) Failure due to similar background across consecutive instances (Tennis).

groundtruths

attentions

T-CAM

detections

(b) Failure due to action composed of two mini-actions (CleanAndJerk).

groundtruths

attentions

T-CAM

detections

(c) Failure due to subjective boundaries (Basketball).

Figure 5: Qualitative examples of failure cases where it is difficult to resolve action locations with only video-level supervision.

as a form of self-supervision for the attention weights. As a

result, our model can simply be trained to convergence.

Conclusion We introduced a method for learning action

localization from weakly supervised training data which

outperforms existing approaches and even some fully su-

pervised models. We attribute the success of this approach

to building up an explicit model for background content in

the video. By coupling top-down models for action with

bottom-up models for clustering, we are able to learn a la-

tent attention signal that can be used to propose action in-

tervals using simple thresholding without the need for more

complex sparsity or temporal priors on action extent. Per-

haps most exciting is that the resulting model can make

use of additional weakly supervised data which is readily

collected online. Despite domain shift between Instagram

videos and THUMOS14, we are still able to improve per-

formance across many categories, demonstrating the power

of the weakly supervised approach to overcome the costs

associated with expensive video annotation.
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