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Abstract

Existing video-based human pose estimation methods ex-

tensively apply large networks onto every frame in the video

to localize body joints, which suffer high computational cost

and hardly meet the low-latency requirement in realistic

applications. To address this issue, we propose a novel Dy-

namic Kernel Distillation (DKD) model to facilitate small

networks for estimating human poses in videos, thus signifi-

cantly lifting the efficiency. In particular, DKD introduces a

light-weight distillator to online distill pose kernels via lever-

aging temporal cues from the previous frame in a one-shot

feed-forward manner. Then, DKD simplifies body joint local-

ization into a matching procedure between the pose kernels

and the current frame, which can be efficiently computed via

simple convolution. In this way, DKD fast transfers pose

knowledge from one frame to provide compact guidance for

body joint localization in the following frame, which enables

utilization of small networks in video-based pose estimation.

To facilitate the training process, DKD exploits a temporally

adversarial training strategy that introduces a temporal dis-

criminator to help generate temporally coherent pose kernels

and pose estimation results within a long range. Experiments

on Penn Action and Sub-JHMDB benchmarks demonstrate

outperforming efficiency of DKD, specifically, 10× flops re-

duction and 2× speedup over previous best model, and its

state-of-the-art accuracy.

1. Introduction

Human pose estimation in videos aims to generate frame-

wise joint localization of the human body. It is important for

many applications including surveillance [8], computer ani-

mation [18], and AR/VR [19]. Compared to its still-image

based counterpart, this task is more challenging due to its

low-latency requirement and various distracting factors, e.g.,

motion blur, pose variation and viewpoint change.
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Figure 1. Comparison between (a) our DKD model and (b) the

traditional model for video-based human pose estimation. DKD

online distills coherent pose knowledge and simplifies body joint

localization into a matching procedure, facilitating small networks

to efficiently estimate human pose in videos while achieving out-

performing accuracy. See text for details.

Prior CNN based methods to solve this task [10, 22, 25,

20] usually use a large network to extract representative fea-

tures for every frame and localize body joints based on them

via pixel-wise classification. Some recent works also incor-

porate temporal cues from optical flow [9] or RNN units [30]

to improve the performance, as shown in Fig. 1 (b). Despite

their notable accuracy, these methods suffer expensive com-

putation cost from the large model size, and hardly meet

the low-latency requirement for realistic applications. The

efficiency of video-based pose estimation still needs to be

largely enhanced.

In this paper, we propose to enhance efficiency of human

pose estimation in videos by fully leveraging temporal cues

to enable small networks to localize body joints accurately.

Such an idea is motivated by observing the computational

bottleneck for prior models. Considering the temporal con-

sistency across adjacent frames, it is not necessary to pass

every frame through a large network for feature extraction.

Instead, the model only needs to learn how to effectively

transfer knowledge of pose localization in previous frames

to the subsequent frames. Such transfer can help alleviate
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the requirements of large models and reduce the overall

computational cost.

To implement the above idea, we design a novel Dynamic

Kernel Distillation (DKD) model. As shown in Fig. 1 (a),

DKD online distills pose knowledge from the previous frame

into pose kernels through a light-weight distillator. Then,

DKD simplifies body joint localization into a matching

procedure between the pose kernels and the current frame

through simple convolution. In this way, DKD fast re-uses

pose knowledge from one frame and provides compact guid-

ance for a small network to learn discriminative features for

accurate human pose estimation.

In particular, DKD introduces a light-weight CNN based

pose kernel distillator. It takes features and pose estimations

of the previous frame as input and infers pose kernels suitable

for the current frame. These pose kernels carry knowledge

of body joint configuration patterns from the previous frame

to the current frame, and guide a small network to learn

compact features matchable to the pose kernels for efficient

pose estimation. Accordingly, body joint localization is cast

as a matching procedure via applying pose kernels on feature

maps output from small networks with simple convolution

to search for regions with similar patterns. Since it gets

rid of the need for using large networks, DKD performs

significantly faster than prior models. In addition, this 2D

convolution based matching scheme is significantly cheaper

than additional optical flow [9], the decoding phase of an

RNN unit [30] or the expensive 3D convolutions [16]. More-

over, the distillator framewisely updates the pose kernels

according to current joint representations and configurations.

This dynamic feature makes DKD more flexible and robust

in analyzing various scenarios in videos.

To further leverage temporal cues to facilitate the distilla-

tor to infer suitable pose kernels, DKD introduces a tempo-

rally adversarial training method that adopts a discriminator

to help estimate consistent poses in consecutive frames. The

temporally adversarial discriminator learns to distinguish the

groundtruth change of joint confidence maps over neighbor-

ing frames from the predicted change, and thus supervises

DKD to generate temporally coherent poses. In contrast

to previous adversarial training methods [6, 5] that learn

structure priors in the spatial dimension for recognition over

still images, our method constrains the pose variations in the

temporal dimension of videos, enforcing plausible changes

of estimated poses in videos. In addition, this discriminator

can be removed during the inference phase, thus introducing

no additional computation.

The whole framework of the proposed DKD model is end-

to-end learnable. Comprehensive experiments on two widely

used benchmarks Penn Action [33] and Sub-JHMDB [15]

demonstrate the efficiency and effectiveness of our DKD

model for resolving human pose estimation in videos. Our

main contributions are in three folds: 1) We propose a novel

model to facilitate small networks in video-based pose esti-

mation with lifted efficiency, by using a light-weight distilla-

tor to online distill the pose knowledge and simplifying body

joint localization into a matching procedure with simple con-

volution. 2) We introduce the first temporally adversarial

training strategy for encouraging the coherence of estimated

poses in the temporal dimension of videos. 3) Our model

achieves outperforming efficiency, i.e. 10x flops reduction

and 2x speedup over previous best model, also with state-of-

the-art accuracy.

2. Related work

For human pose estimation in videos, existing CNN based

methods [12, 11, 25, 20, 10] usually focus on leveraging tem-

poral cues to extract complementary information for refining

the preliminary results output from a large network for ev-

ery frame. In [14], Iqbal et al. incorporate deep learned

representations into an action conditioned pictorial struc-

tured model to refine pose estimation results of each frame.

In [12] and [10], 3D convolutions are exploited on video

clips for implicitly capturing the temporal contexts between

frames. In [25], Song et al. propose a Thin-Slicing network

that uses dense optical flow to warp and align heatmaps of

neighboring frames and then performs spatial-temporal in-

ference via message passing through the graph constructed

by joint candidates and their relationships among aligned

heatmaps. [11] and [20] sequentially estimate human poses

in videos following the Encoder-RNN-Decoder framework.

Given a frame, this kind of framework first uses an encoder

network to learn high-level image representations, then RNN

units to explicitly propagate temporal information between

neighboring frames and produce hidden states, and finally

a decoder network to take hidden states as input and output

pose estimation results of current frame. For ensuring good

performance, however, these methods always require large

network to compactly learn intermediate representations or

preliminary poses. Their efficiency is rather limited.

Different from existing methods, our DKD model distills

coherent pose knowledge from temporal cues and simplifies

body joint localization as a matching problem, thus allowing

small networks to accurately and efficiently estimate human

poses in videos, which is explained in more detail below.

3. Proposed approach

3.1. Formulation

We first mathematically formulate the proposed Dynamic

Kernel Distillation (DKD) model for human pose estimation

in videos. For a video V={It}
T
t=1 including T frames, we

use It∈R
M×N×3 to denote its tth frame, where M and N

are the height and width of It, respectively. DKD aims to

estimate a set of confidence maps H={ht}
T
t=1 for all frames

in V . The ht∈R
m×n×K is of spatial size m×n, where K
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Figure 2. The architecture of the proposed Dynamic Kernel Distillation model. (a) The overall framework of the DKD model for inferencing

human poses in videos. ⊗ denotes the convolution operation and ⊕ the concatenation. (b) The network backbone utilized in the pose

initializer and frame encoder. (c) The network architecture of the pose kernel distillator.

is the number of body joints, and each of its elements en-

codes the confidence of a joint at the corresponding position.

Accordingly, DKD performs online human pose estimation

frame-by-frame in a sequential manner, by leveraging tempo-

ral cues between neighboring frames. In particular, its core

is composed of a pose kernel distillator with a temporally

adversarial training strategy.

Pose kernel distillation Given a frame It, DKD intro-

duces a pose kernel distillator Φ(·) to transfer pose knowl-

edge provided by It to guide pose estimation in the next

frame It+1. In particular, it leverages temporal cues repre-

sented with the combination of feature maps ft and confi-

dence maps ht, to online distill pose kernels kt via a simple

feed-forward computation

kt = Φ(ft, ht), (1)

where kt∈R
S×S×C×K and S is the kernel size. The distilled

pose kernels kt encode knowledge of body joint patterns and

provide compact guidance for pose estimation in the poste-

rior frame, which is learnable with light-weight networks.

Accordingly, DKD exploits a small frame encoder F(·) to

learn high-level image representations ft+1 of frame It+1 to

match these distilled pose kernels, alleviating the demand

of large networks that troubles prior works [25, 20]. Then,

DKD applies the distilled pose kernels kt on feature maps

ft+1, in a sliding window manner to search for the region

with similar patterns as each body joint, namely,

h
j
t+1 = k

j
t ⊗ ft+1, (2)

where ⊗ denotes the convolution operation, and

h
j
t+1∈R

m×n, k
j
t∈R

S×S×C are the confidence map

and pose kernels of the jth joint, respectively. With the

above formulation, DKD casts human pose estimation to a

matching problem and locates the position with maximum

response on h
j
t+1 in the (t+1)th frame as the jth body joint.

In this way, the pose kernel distillator equips DKD with

the capability of transferring pose knowledge among neigh-

boring frames and enables small network to estimate human

pose in videos. Its distilled pose kernels can be applied to

fast localize body joints with simple convolution, further

improving the efficiency. In addition, it can directly leverage

temporal cues of one frame to assist body joint localization in

the following frame, without requiring auxiliary optical flow

models [25] or decoders appended to RNN units [20]. It can

also fast distill pose kernels in a one-shot manner, avoiding

complex iterating utilized by previous online kernel learn-

ing models [4, 27]. Moreover, it framewisely updates pose

kernels and improves the robustness of our model to joint

appearance and configuration variations.

It is worth noting that, for the first frame, due to the lack

of preceding temporal cues, we utilize another pose model

P(·), usually larger than F(·), to initialize its confidence map,

i.e., h1=P(I1). In particular, Φ(·) together with F(·) and

P(·) instantiate the pose generator. Given pose annotations

{ĥt}
T
t=1, to learn the pose generator, we define the loss as

LG=

T
∑

t=1

ℓ2(ht, ĥt), (3)

where ℓ2 denotes the Mean Square Error loss.

Temporally adversarial training To further leverage tem-

poral cues, DKD adopts the adversarial training strategy

to learn proper supervision in the temporal dimension for

improving the pose kernel distillator. Adversarial training

was only exploited for images in the spatial dimension in

prior works [6, 5]. In contrast, our proposed temporally

adversarial training strategy aims to provide constraints for

pose changes in the temporal dimension, helping estimate

coherent human poses in consecutive frames of videos. In-

spired by [6], DKD introduces a discriminator D(·) to distin-

guish the changes of groundtruth confidence maps between

neighboring frames from predicted ones. The discrimina-

tor D(·) takes as input two neighboring confidence maps

(either from groundtruth or prediction) concatenated with

the corresponding images, and reconstructs the change of

the confidence maps. For real (groundtruth) samples ĥt and
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ĥt+1, the discriminator D(·) targets at approaching their

change d̂t=ĥt+1−ĥt, while for fake (predicted) samples

ht and ht+1, keeping the reconstructed change away from

dt=ht+1−ht. Therefore, the discriminator can better differ-

entiate groundtruth change from erroneous predictions. In

this way, the discriminator D(·) criticizes pixel-wise varia-

tions of confidence maps and judges whether joint positions

are in rational movements, to encourage the pose kernel dis-

tillator to distill suitable pose kernels and ensure consistency

of estimated poses between neighboring frames. To train the

discriminator D(·), we define its loss function as

LD=λ

T−1
∑

t=1

ℓ2(d
f
t, dt)−

T−1
∑

t=1

ℓ2(d
r
t, d̂t), (4)

where drt=D(It, ĥt, It+1, ĥt+1) denotes the output from the

discriminator for real samples and dft=D(It, ht, It+1, ht+1)
denotes the one for fake samples. λ is a variable for dynami-

cally balancing the relative learning speed between the pose

generator and temporally adversarial discriminator.

The temporally adversarial training conventionally fol-

lows a two-player minmax game. Therefore, the final objec-

tive function of the DKD model is written as

min
P,F,Φ

max
D

LG + ηLD, (5)

where η is a constant for weighting generator loss and dis-

criminator loss, set as 0.1. The training process to optimize

the above object function will be illustrated in Section 3.3.

3.2. Network architecture

Pose initializer For the first frame I1, DKD utilizes a

pose initializer P(·) to directly estimate its confidence maps

h1. Here, P(·) exploits the network following [29], which

achieves outstanding performance with a simple architecture.

The network follows a U-shape architecture. It first encodes

down-sized feature maps from the input image, and then

gradually recovers high-resolution feature maps by append-

ing several deconvolution layers, as shown in Fig. 2 (b). In

particular, we use ResNet [13] as the backbone and append

two deconvolution layers, resulting in a total stride of the

network of 8. The other settings follow [29].

Frame encoder DKD utilizes an encoder F(·) to extract

high-level features ft of frame It to match the pose kernels

from the pose kernel distillator. Here, we design F(·) with

the same network architecture as the pose initializer P(·),
with only the last classification layer removed from P(·).
Note, the backbone of F(·) is much smaller than P(·).

Pose kernel distillator The pose kernel distillator Φ(·) in

DKD takes as input the temporal information, represented by

the concatenation of feature maps ft and confidence maps

ht, and distills the pose kernels kt in a one-shot feed-forward

manner. We implement Φ(·) with a CNN, including three

convolution layers followed by BatchNorm and ReLU layers

and two pooling layers. Its architecture is shown in Fig. 2

(c). This light-weight CNN guarantees the efficiency of Φ(·).
However, it is inefficient and infeasible for Φ(·) to directly

learn all kernels kt∈R
S×S×C×K due to their large scale

which brings high computational complexity and also the

risk of overfitting. To avoid these issues, inspired by [3],

DKD exploits Φ(·) to learn the kernel bases k′t instead of

full size kt via performing the following factorization:

kt = U ⊗ k′t ⊗C V, (6)

where ⊗ is the convolution operation, ⊗C the channel-wise

convolution, and U∈R1×1×C×K , V ∈R1×1×C×C are coef-

ficients over the kernel bases k′t∈R
S×S×C . In this way, the

size of actual outputs k′t from the pose kernel distillator is

smaller than original kt by a magnitude, thus enhancing the

efficiency of the DKD model.

To generate the confidence maps ht+1 of It+1, the calcu-

lation between kt and ft+1 is implemented with convolution

layers. In particular, we first use a 1×1 convolution param-

eterized by V on ft+1. Then we apply k′t in a dynamic

convolution layer [21], which is the same with traditional

convolution layer, just replacing the pre-learned static con-

volution kernels with the dynamically learned ones. Finally,

we adopt another 1×1 convolution with U to produce ht+1.

To scale the estimation results with the pose kernels, we add

a BatchNorm layer in the last to facilitate the training.

Temporally adversarial discriminator DKD utilizes the

temporally adversarial discriminator D(·) to enhance the

learning process of the pose kernel distillator with confi-

dence map variations as auxiliary temporal supervision. We

design D(·) with the same network backbone as the frame

encoder F(·) to balance the learning capability between pose

generator and discriminator.

3.3. Training and inference

In this subsection, we will explain the training and infer-

ence process of the DKD model for human pose estimation

in videos. Specifically, DKD exploits a temporally adver-

sarial training strategy. The discriminator is optimized via

maximizing the loss function defined in Eqn. (5) for dis-

tinguishing the changes of groundtruth confidence maps

from estimated ones between neighboring frames. On the

other hand, the generator produces a set of confidence maps

for consecutive frames in a video and meanwhile fools the

discriminator via making the changes of estimated poses

approach those of groundtruth ones. To synchronize the

learning speed between generator and discriminator, we fol-

low [2, 6] to update λ in Eqn. (4) for each iteration i:

λi+1 = λi + γ
(

T−1
∑

t=1

ℓ2(d
r
t, d̂t)−

T−1
∑

t=1

ℓ2(d
f
t, dt)

)

(7)
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Algorithm 1: Training process for our DKD model.

input :video {It}Tt=1
, groundtruth {ĥt}Tt=1

, iteration number E

initialization: LD ← 0, LG ← 0
for iteration i, i=1 to E do

Forward pose initializer h1 ← P(I1)

Update loss LG ← ℓ2(h1, ĥ1)
for frame t, t=1 to T do

if t equals 1 then
Encode image representations f1 ← F(I1)

end

else

Forward discriminator dr
t−1
←D(It−1, ĥt−1, It, ĥt)

Update loss LD ← LD − ℓ2(drt−1
, d̂t−1)

Update pose kernels kt−1 ← Φ(ft−1, ht−1)
Encode image representations ft ← F(It)
Estimate confidence map ht with Eqn. (2)

Update loss LG ← LG + ℓ2(ht, ĥt)
Forward discriminator df

t−1
←D(It−1, ht−1, It, ht)

Update loss LD ← LD + λiℓ2(d
f
t−1

, dt−1)

Update loss LG ← LG + ηℓ2(dft−1
, dt−1)

end

end

Update discriminator D(·) with −LD via backpropagation

Update P(·), Φ(·), and F(·) with LG via backpropagation

Update λi with Eqn. (7)

end

where γ is a hyper-parameter controlling the update rate and

set as 0.1. λ is initialized as 0 and bounded in [0, 1]. As

defined in Eqn. (7), when the generator successfully fools

the discriminator, λ will be increased to make the optimizer

emphasize improving the discriminator, and vice versa. The

overall training process is illustrated in Algorithm 1.

During inference, the discriminator D(·) is removed.

Given a video, DKD first utilizes the pose initializer P(·) to

estimate the confidence maps h1 of the first frame. Then,

h1 is combined with the feature maps f1 from the encoder

F(·) as input to the pose kernel distillator Φ(·) for distilling

the initial pose kernels k1. For the second and subsequent

frames, DKD applies the framewisely updated pose kernels

kt on the feature maps ft+1=F(It+1) of the posterior frame

to estimate the confidence maps ht+1. Finally, DKD outputs

body joint positions for each frame by localizing the maxi-

mum responses on the corresponding confidence maps. The

overall inference procedure of DKD is given in Fig. 2 (a).

4. Experiments

4.1. Experimental setup

Datasets We evaluate our model on two widely used

benchmarks: Penn Action [33] and Sub-JHMDB [15]. Penn

Action dataset is a large-scale unconstrained video dataset.

It contains 2,326 video clips, 1,258 for training and 1,068

for testing. Each person in a frame is annotated with 13 body

joints, including the coordinates and visibility. Following

conventions, evaluations on the Penn Action dataset only

consider the visible joints. Sub-JHMDB is another dataset

for video based human pose estimation. It provides labels

for 15 body joints. Different from Penn Action dataset, it

only annotates visible joints for complete bodies. It contains

316 video clips with 11,200 frames in total. The ratio for

the number of training and testing videos is roughly 3:1. In

addition, it includes three different split schemes. Following

previous works [20, 25], we separately conduct evaluations

on these three splits and report the average precision.

Data augmentation For both the Penn Action dataset and

Sub-JHMDB dataset, we perform data augmentation follow-

ing conventional strategies, including random scaling with

a factor from [0.8, 1.4], random rotation in [−40◦, 40◦] and

random flipping. The same augmentation setting is applied

to all the frames in a training video clip. In addition, each

frame is cropped based on the person center on the original

image and padded to 256×256 as input for training.

Implementation For fair comparison with previous

works [20, 25], we first pre-train the pose initializer and

the frame encoder for single-person pose estimation on the

MPII [1] dataset. Then, we fine-tune the pre-trained models

together with the randomly initialized pose kernel distillator

and the temporally adversarial discriminator on Penn Action

dataset and Sub-JHMDB dataset for 40 epochs, respectively.

In particular, each training sample contains 5 frames, which

are consecutively sampled from a video. We set the channel

number C of the pose kernels kt as 256 and the kernel size S

as 7. We implement our DKD model with Pytorch [24] and

use RMSprop as the optimizer [26]. We set the initial learn-

ing rate as 0.0005 and drop it with a multiplier 0.1 at the 15th

and 25th epochs. For evaluation, we perform seven-scale

testing with flipping.

Evaluation metrics We evaluate the performance with

PCK [32]—the localization of a body joint is considered to

be correct if it falls within α·L pixels of the groundtruth. α

controls the relative threshold and conventionally set as 0.2.

L is the reference distance, set as L=max(H,W ) following

prior works [20, 25] with H and W being height and width

of the person bounding box. We term this metric as PCK

normalized by person size. This metric is somewhat loose to

precisely evaluate the model performance as person size is

usually relatively large. Thereby, we follow the conventions

of still-image based pose estimation [17, 7, 31, 28], and

also adopt another metric that takes torso size as reference

distance. We term it as PCK normalized by torso size.

4.2. Ablation analysis

We first conduct ablation studies on Penn Action dataset

to analyze the efficacy of each core component of our

DKD model: the pose kernel distillator and the tempo-

rally adversarial training. We fix the backbone of the

pose initializer as ResNet101. We vary the backbone of
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Table 1. Ablation studies on Penn Action dataset with PCK normal-

ized by torso size as evaluation metric.

Methods Flops(G) Head Sho. Elb. Wri. Hip Knee Ank. PCK

Baseline(ResNet101) 11.02 96.1 90.7 91.4 89.5 86.2 92.2 88.9 90.7

DKD(ResNet50) 8.65 96.6 93.7 92.9 91.2 88.8 94.3 93.7 92.9

DKD(ResNet50)-w/o-TAT 8.65 96.6 92.6 92.9 90.8 87.5 93.4 92.4 92.1

DKD(ResNet50)-w/o-PKD 7.66 96.0 91.8 92.4 90.4 88.3 93.5 89.8 91.6

Baseline(ResNet50) 7.66 96.0 90.5 89.4 87.6 83.8 89.7 86.0 88.8

DKD(ResNet34) 7.68 96.4 91.9 93.0 90.8 88.6 93.5 91.9 92.1

DKD(ResNet34)-w/o-TAT 7.68 96.4 91.2 92.7 89.9 87.3 93.3 90.9 91.4

DKD(ResNet34)-w/o-PKD 6.69 95.9 91.1 91.9 89.3 87.7 92.5 90.3 91.0

Baseline(ResNet34) 6.69 95.8 88.7 88.5 86.7 83.6 89.6 85.3 87.3

DKD(ResNet18) 5.27 95.7 90.0 92.2 89.4 86.8 92.3 89.5 90.6

DKD(ResNet18)-w/o-TAT 5.27 95.5 89.3 91.9 89.1 85.0 91.6 89.0 89.9

DKD(ResNet18)-w/o-PKD 4.28 95.0 89.1 92.4 88.7 85.5 91.4 87.7 89.7

Baseline(ResNet18) 4.28 94.7 86.0 87.7 84.6 81.1 87.4 84.3 86.1

(a)

(b)

(c)

(d)

(e)

Figure 3. Comparison of confidence maps estimated from the

proposed model DKD(ResNet34) and the baseline one Base-

line(ResNet34). (a) are input frames. (b) and (d) are estimated

confidence maps from our model for right elbow and right hip,

respectively, and (c) and (e) from baseline. Best viewed in color.

frame encoder ranging in ResNet18/34/50, since it dom-

inates the computational cost of pose estimation of our

model. We use DKD(ResNetx) to denote our full model,

where x∈{18, 34, 50} represents the backbone depth of the

frame encoder. We use DKD(ResNetx)-w/o-TAT to denote

the model without the temporally adversarial training and

DKD(ResNetx)-w/o-PKD the model without the pose kernel

distillator. We use Baseline(ResNetx) to denote the single-

image pose estimation model without using temporal cues.

Results are shown in Tab. 1.

From Tab. 1, we can see that DKD(ResNet34) and

DKD(ResNet50) use smaller networks for frame feature

learning while achieve much better performance than Base-

line(ResNet101) which is much deeper. We can also see

DKD(ResNet18) achieves comparable performance to Base-

line(ResNet101) (90.6% PCK vs 90.7% PCK), with up to

2× flop reduction (5.27G vs 11.02G Flops). These results

verify the efficacy of DKD to enable small networks to esti-

mate human pose in videos, bring efficiency enhancement

while achieving outperforming accuracy.

Table 2. Comparison of temporally vs. spatially adversarial training,

and pose kernel distillator vs. Convolutional LSTM. The accuracy

is measured with PCK normalized by torso size.

Methods Flops(G) Head Sho. Elb. Wri. Hip Knee Ank. PCK

DKD(ResNet34) 7.68 96.4 91.9 93.0 90.8 88.6 93.5 91.9 92.1

DKD(ResNet34)-w-SAT 7.68 96.4 91.4 92.8 90.1 87.7 93.4 91.2 91.6

DKD(ResNet34)-w-LSTM 10.16 95.7 89.5 92.9 90.2 86.9 93.5 90.1 91.1

By comparing the DKD(ResNetx)-w/o-TATs and the

Baseline(ResNetx)s, we find that the computation overhead

of the pose kernel distillator is small, only bringing slight

flops increase, e.g., with ResNet50 as backbone, from 7.66G

to 8.65G. We can also find the pose kernel distillator im-

proves frame-level performance for human pose estimation

over baselines by 4.3% in average. Besides, DKD(ResNetx)-

w/o-TATs always outperform DKD(ResNetx)-w/o-PKDs,

this implies the distilled pose kernels carry knowledge of

body joint patterns and provide compact guidance for pose

estimation between neighboring frames, which are absent in

still-image based inference. The above results verify the effi-

cacy of the pose kernel distillator for efficiently transferring

pose knowledge to assist poses estimation in videos.

By comparing the time cost of the DKD(ResNetx)-w/o-

PKDs and the Baseline(ResNetx)s, we find temporally ad-

versarial training does not hurt inference speed, since the

discriminator is used only in training. In addition, the tem-

porally adversarial training consistently improves the base-

line performance for all body joints, in particular for the

joints difficult to localize, e.g., DKD(ResNet34)-w/o-PKD

improves the accuracy of ankles from 85.3% PCK to 90.3%
PCK. This demonstrates the proposed temporally adversarial

training is effective for regularizing temporal changes over

pose predictions during model training.

Combining temporally adversarial training with the pose

kernel distillator, the full DKD model further boosts the

performance over all the ablated models, showing they are

complementary to each other. Especially, DKD(ResNetx)s

achieves average 5.5% performance gain over the corre-

sponding vanilla baselines Baseline(ResNetx)s.

To better reveal the advantages of our DKD model

over single-frame based models, we visualize the confi-

dence maps estimated from DKD(ResNet34) and Baseline

(ResNet34) for the elbow and ankle in Fig. 3. By comparing

Fig. 3 (b) and (c), we can observe that our DKD model pro-

duces pose kernels of the correct person of interest with more

accurate response. In contrast, the baseline model produces

false alarms on the elbow of another person in the frame. We

can also see that the proposed model can produce consistent

confidence maps for the hip in Fig. 3 (d) while the baseline

model produces unstable estimations even with fixed hip

Fig. 3 (e). These results further validate the capability of

the proposed model for generating accurate and temporally

consistent human pose estimations in videos.

Next, we analyze how well our pose kernel distillator
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performs for propagating temporal information via compar-

ing it with the state-of-the-art Convolutional LSTMs [20].

We also compare our temporally adversarial training with

the spatially one in [6]. All the compared models adopt

the ResNet101 as the backbone of the pose initializer and

ResNet34 as the frame encoder. Except for the compared

components, all the other settings are the same. Results

are shown in Tab. 2. We use DKD(ResNet34)-w-LSTM to

denote the model utilizing Convolutional LSTM for tempo-

ral cues propagation instead of our pose kernel distillator

in the DKD model. We can observe that DKD(ResNet34)-

w-LSTM degrades the accuracy of DKD(ResNet34) for all

body joints, especially for wrist and ankle. In addition, it

increases the flops from 7.68G to 10.16G. These results eval-

uate the superiority of the pose kernel distillator in both

efficiency and efficacy for transferring pose knowledge be-

tween neighboring frames over traditional RNN units.

We use DKD(ResNet34)-w-SAT to denote the model in

which our temporally adversarial training is replaced with

the spatially one in [6]. Specifically, [6] introduces a discrim-

inator to distinguish the single-frame groundtruth confidence

maps from estimated ones for obtaining structural spatial

constraints on poses. We can see DKD(ResNet34) consis-

tently outperforms DKD(ResNet34)-w-SAT. In addition, by

comparing DKD(ResNet34)-w-SAT with DKD(ResNet34)-

w/o-TAT in Tab. 1, spatially adversarial training only brings

limited improvement. These results further verify the effi-

cacy of using adversarial training in temporal dimension.

4.3. Comparisons with state­of­the­arts

Tab. 3 show the comparisons of our DKD model with

state-of-the-arts on Penn Action dataset. In particular,

the method proposed in [20] follows the Encoder-RNNs-

Decoder framework with Convolutional LSTMs, while [25]

exploits optical flow models to align confidence maps of

neighboring frames. We report the performance of our model

with both person and torso size as reference distance under

the PCK evaluation metric. For comparison with current

best model [20], we report both its performance with PCK

normalized by torso size, flops and running time1. For our

DKD model, we fix the backbone of the pose initializer as

ResNet101. We vary the backbone of frame encoder rang-

ing in ResNet18/34/50. Since both of state-of-the-arts [20]

and [25] use the same network as Convolutional Pose Ma-

chines (CPM) [28], we also experiment our DKD model with

a frame encoder as a simplified version of CPM by replacing

its kernels with size larger than 3 to 3×3 kernels, denoted as

DKD(SmallCPM), to further verifying the efficacy of DKD

to facilitate small networks in video-based pose estimation.

1We reproduce the results of [20] with PCK normalized by torso

size via running the codes released by the authors on the repo:

https://github.com/lawy623/LSTM Pose Machines. The running time is

counted on GPU GTX 1080ti for both [20] and our model.

Table 3. Comparison with state-of-the-arts on Penn Action dataset.

Methods Flops(G) Time(ms) Head Sho. Elb. Wri. Hip Knee Ank. PCK

Normalized by Person Size

Park et al. [23] - - 62.8 52.0 32.3 23.3 53.3 50.2 43.0 45.3

Nie et al. [22] - - 64.2 55.4 33.8 24.4 56.4 54.1 48.0 48.0

Iqal et al. [14] - - 89.1 86.4 73.9 73.0 85.3 79.9 80.3 81.1

Gkioxari et al. [11] - - 95.6 93.8 90.4 90.7 91.8 90.8 91.5 91.8

Song et al. [25] - - 98.0 97.3 95.1 94.7 97.1 97.1 96.9 96.5

Luo et al. [20] 70.98 25 98.9 98.6 96.6 96.6 98.2 98.2 97.5 97.7

DKD(SmallCPM) 9.96 12 98.4 97.3 96.1 95.5 97.0 97.3 96.6 96.8

DKD(ResNet50) 8.65 11 98.8 98.7 96.8 97.0 98.2 98.1 97.2 97.8

Normalized by Torso Size

Luo et al. [20] 70.98 25 96.0 93.6 92.4 91.1 88.3 94.2 93.5 92.6

DKD(SmallCPM) 9.96 12 96.0 93.5 92.0 90.6 87.8 94.0 93.1 92.4

DKD(ResNet50) 8.65 11 96.6 93.7 92.9 91.2 88.8 94.3 93.7 92.9
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Figure 4. Extensive analysis for comparing our method with state-

of-the-art [20] on (a) PCK over different thresholds with α ranging

from 0 to 0.2; (b) speed vs. accuracy.

From Tab. 3, we can observe that our best model

DKD(ResNet50) reduces the computation flops by a mag-

nitude over [20] (8.65G vs 70.98G) and achieves 2x faster

speed (11ms vs 25ms per image), verifying the outperform-

ing efficiency of our model. In addition, we can see under

PCK normalized by person size, DKD(ResNet50) achieves

comparable accuracy with state-of-the-art [20]. When using

PCK normalized by torso size, DKD(ResNet50) achieves su-

perior accuracy over [20] (92.9% PCK vs 92.6% PCK) and

with better performance for all of the body joints. We also

compare our model with [20] via evaluating the performance

with PCK normalized by torso size when varying threshold

α from 0 to 0.2 with 0.01 as the step size, and results are

shown in Fig. 4 (a). We can see that DKD consistently out-

performs [20] under more critic metrics by decreasing α.

These results demonstrate the superior speed and accuracy

of our model for human pose estimation in videos.

By comparing DKD(SmallCPM) with [20], we can find

our DKD model maintains high accuracy (92.4% PCK vs

92.6% PCK) in case of significant simplification to the net-

work (9.96G vs 70.98G Flops). This result verifies the effec-

tiveness of our DKD model for alleviating the demands of

large networks for video-based human pose estimation.

To evaluate the effects of different frame encoder back-

bones on the efficiency and efficacy of DKD, we plot speed

vs. accuracy analysis for different models in Fig. 4 (b). We

can observe that reducing depth of frame encoder backbone

from ResNet50 to ResNet18 slightly degrades the accuracy,

but speeds up 2x from 11ms to 6.5ms per image. In addi-

tion, we can see that DKD(ResNet18) achieves comparable
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Figure 5. Qualitative results on (a) Penn Action dataset and (b) Sub-JHMDB dataset. Best viewed in color and 2x zoom.

Table 4. Comparison with state-of-the-arts on Sub-JHMDB dataset.

Methods Head Sho. Elb. Wri. Hip Knee Ank. PCK

Normalized by Person Size

Park et al. [23] 79.0 60.3 28.7 16.0 74.8 59.2 49.3 52.5

Nie et al. [22] 80.3 63.5 32.5 21.6 76.3 62.7 53.1 55.7

Iqal et al. [14] 90.3 76.9 59.3 55.0 85.9 76.4 73.0 73.8

Song et al. [25] 97.1 95.7 87.5 81.6 98.0 92.7 89.8 92.1

Luo et al. [20] 98.2 96.5 89.6 86.0 98.7 95.6 90.9 93.6

DKD(ResNet50) 98.3 96.6 90.4 87.1 99.1 96.0 92.9 94.0

Normalized by Torso Size

Luo et al. [20] 92.7 75.6 66.8 64.8 78.0 73.1 73.3 73.6

DKD(ResNet50) 94.4 78.9 69.8 67.6 81.8 79.0 78.8 77.4

performance with [20] but 4x faster. These results further

validate the efficacy of our DKD model to facilitate small

networks in video-based pose estimation.

Tab. 4 show the comparisons of our DKD model with

state-of-the-arts on Sub-JHMDB dataset. We can see that

our DKD model achieves new state-of-the-art 94.0% PCK

and performs best for all the body joints. When using the

stricter metric PCK normalized by torso size, the superiority

of our model over [20] is more significant, achieving over

5% improvement (77.4% PCK vs 73.6% PCK) on average.

In addition, we can find that our model well applies to small-

scale datasets, such as Sub-JHMDB with only 316 videos.

These small datasets are challenging since they provide only

limited training samples, while in our DKD model, the one-

shot pose kernel distillator is able to fast adapt pose kernels,

without requiring a large number of training samples for

iteratively tuning classifiers as in existing methods.

Qualitative results Fig. 5 shows the qualitative results to

visualize efficacy of the DKD model for human pose estima-

tion in videos on Penn Action and Sub-JHMDB, respectively.

We can observe DKD can accurately estimate human poses

in various challenging scenarios, e.g., cluttered backgrounds

(the 1st row of Fig. 5 (a)), scale variations (the 1st row of

Fig. 5 (b)), motion blur (the 2nd rows of Fig. 5 (a) and (b)).

In addition, it can leverage temporal cues to handle occa-

sional disappearance of a body joint caused by occlusion, as

shown in the 3rd row of Fig. 5 (a), and encourage pose con-

sistency in presence of fast and large-degree pose variations,

as shown in the 3rd and 4th rows of Fig. 5 (b). Moreover,

it is robust to various view-point and lighting conditions,

as shown in the 5th rows of Fig. 5 (a) and (b), respectively.

These results further verify the effectiveness of DKD.

5. Conclusion

This paper presents a Dynamic Kernel Distillation (DKD)

model for improving efficiency of human pose estimation

in videos. In particular, it adopts a pose kernel distillator

to online distill the pose kernels from temporal cues of one

frame in a one-shot feed-forward manner. The distilled pose

kernels encode knowledge of body joint patterns and pro-

vide compact guidance for pose estimation in the posterior

frame. With these pose kernels, DKD simplifies body joint

localization into a matching procedure with simple convo-

lution. In this way, DKD fast transfers pose knowledge

between neighboring frames and enables small networks to

accurately estimate human poses in videos, thus significantly

lifting the efficiency. DKD also introduces the temporally

adversarial training strategy via constraining the changes

of estimated confidence maps between neighboring frames.

The whole framework can be end-to-end trained and inferred.

Experiments on two benchmarks demonstrate that our model

achieves state-of-the-art efficiency with only 1/10 flops and

2x faster speed of the previous best model, and also outper-

forming accuracy for human pose estimation in videos.
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