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Figure 1: Face swapping and reenactment. Left: Source face swapped onto target. Right: Target video used to control the

expressions of the face appearing in the source image. In both cases, our results appears in the middle. For more information

please visit our website: https://nirkin.com/fsgan.

Abstract

We present Face Swapping GAN (FSGAN) for face swap-

ping and reenactment. Unlike previous work, FSGAN is

subject agnostic and can be applied to pairs of faces with-

out requiring training on those faces. To this end, we de-

scribe a number of technical contributions. We derive a

novel recurrent neural network (RNN)–based approach for

face reenactment which adjusts for both pose and expres-

sion variations and can be applied to a single image or a

video sequence. For video sequences, we introduce contin-

uous interpolation of the face views based on reenactment,

Delaunay Triangulation, and barycentric coordinates. Oc-

cluded face regions are handled by a face completion net-

work. Finally, we use a face blending network for seam-

less blending of the two faces while preserving target skin

color and lighting conditions. This network uses a novel

Poisson blending loss which combines Poisson optimization

with perceptual loss. We compare our approach to exist-

ing state-of-the-art systems and show our results to be both

qualitatively and quantitatively superior.

1. Introduction

Face swapping is the task of transferring a face from

source to target image, so that it seamlessly replaces a face

appearing in the target and produces a realistic result (Fig. 1

left). Face reenactment (aka face transfer or puppeteering)

uses the facial movements and expression deformations of

a control face in one video to guide the motions and de-

formations of a face appearing in a video or image (Fig. 1

right). Both tasks are attracting significant research atten-

tion due to their applications in entertainment [1, 20, 48],

privacy [6, 25, 32], and training data generation.

Previous work proposed either methods for swapping or

for reenactment but rarely both. Earlier methods relied on

underlying 3D face representations [46] to transfer or con-

trol facial appearances. Face shapes were either estimated

from the input image [44, 42, 35] or were fixed [35]. The

3D shape was then aligned with the input images [9] and

used as a proxy when transferring intensities (swapping) or

controlling facial expression and viewpoints (reenactment).

Recently, deep network–based methods were proposed

for face manipulation tasks. Generative adversarial net-

works (GANs) [12], for example, were shown to success-

fully generate realistic images of fake faces. Conditional

GANs (cGANs) [31, 16, 47] were used to transform an im-

age depicting real data from one domain to another and

inspired multiple face reenactment schemes [37, 50, 40].

Finally, the DeepFakes project [11] leveraged cGANs for

face swapping in videos, making swapping widely accessi-

ble to non-experts and receiving significant public attention.

Those methods are capable of generating realistic face im-

ages by replacing the classic graphics pipeline. They all,

however, still implicitly use 3D face representations.

Some methods relied on latent feature space domain sep-

aration [45, 34, 33]. These methods decompose the identity

component of the face from the remaining traits, and en-

code identity as the manifestation of latent feature vectors,

resulting in significant information loss and limiting the

7184



quality of the synthesized images. Subject specific meth-

ods [42, 11, 50, 21] must be trained for each subject or pair

of subjects and so require expensive subject specific data—

typically thousands of face images—to achieve reasonable

results, limiting their potential usage. Finally, a major con-

cern shared by previous face synthesis schemes, particularly

the 3D based methods, is that they all require special care

when handling partially occluded faces.

We propose a deep learning–based approach to face

swapping and reenactment in images and videos. Unlike

previous work, our approach is subject agnostic: it can be

applied to faces of different subjects without requiring sub-

ject specific training. Our Face Swapping GAN (FSGAN)

is end-to-end trainable and produces photo realistic, tempo-

rally coherent results. We make the following contributions:

• Subject agnostic swapping and reenactment. To the

best of our knowledge, our method is the first to si-

multaneously manipulate pose, expression, and iden-

tity without requiring person-specific or pair-specific

training, while producing high quality and temporally

coherent results.

• Multiple view interpolation. We offer a novel scheme

for interpolating between multiple views of the same

face in a continuous manner based on reenactment, De-

launay Triangulation and barycentric coordinates.

• New loss functions. We propose two new losses: A

stepwise consistency loss, for training face reenact-

ment progressively in small steps, and a Poisson blend-

ing loss, to train the face blending network to seam-

lessly integrate the source face into its new context.

We test our method extensively, reporting qualitative and

quantitative ablation results and comparisons with state of

the art. The quality of our results surpasses existing work

even without training on subject specific images.

2. Related work

Methods for manipulating the appearances of face im-

ages, particularly for face swapping and reenactment, have

a long history, going back nearly two decades. These

methods were originally proposed due to privacy con-

cerns [6, 25, 32] though they are increasingly used for recre-

ation [20] or entertainment (e.g., [1, 48]).

3D based methods. The earliest swapping methods re-

quired manual involvement [6]. An automatic method was

proposed a few years later [4]. More recently, Face2Face

transferred expressions from source to target face [44].

Transfer is performed by fitting a 3D morphable face model

(3DMM) [5, 7, 10] to both faces and then applying the ex-

pression components of one face onto the other with care

given to interior mouth regions. The reenactement method

of Suwajanakorn et al. [42] synthesized the mouth part of

the face using a reconstructed 3D model of (former presi-

dent) Obama, guided by face landmarks, and using a simi-

lar strategy for filling the face interior as in Face2Face. The

expression of frontal faces was manipulated by Averbuch-

Elor et al. [3] by transferring the mouth interior from source

to target image using 2D wraps and face landmarks.

Finally, Nirkin et al. [35] proposed a face swapping

method, showing that 3D face shape estimation is unnec-

essary for realistic face swaps. Instead, they used a fixed

3D face shape as the proxy [13, 28, 29]. Like us, they pro-

posed a face segmentation method, though their work was

not end-to-end trainable and required special attention to

occlusions. We show our results to be superior than theirs.

GAN-based methods. GANs [12] were shown to gener-

ate fake images with the same distribution as a target do-

main. Although successful in generating realistic appear-

ances, training GANs can be unstable and restricts their

application to low-resolution images. Subsequent meth-

ods, however, improved the stability of the training pro-

cess [27, 2]. Karras et al. [19] train GANs using a pro-

gressive multiscale scheme, from a low to high image reso-

lutions. CycleGAN [52] proposed a cycle consistency loss,

allowing training of unsupervised generic transformations

between different domains. A cGAN with L1 loss was ap-

plied by Isola et al. [16] to derive the pix2pix method, and

was shown to produce appealing synthesis results for appli-

cations such as transforming edges to faces.

Facial manipulation using GANs. Pix2pixHD [47] used

GANs for high resolution image-to-image translation by ap-

plying a multi-scale cGAN architecture and adding a per-

ceptual loss [17]. GANimation [37] proposed a dual gener-

ator cGAN conditioned on emotion action units, that gen-

erates an attention map. This map was used to interpolate

between the reenacted and original images, to preserve the

background. GANnotation [40] proposed deep facial reen-

actment driven by face landmarks. It generates images pro-

gressively using a triple consistency loss: it first frontalizes

an image using landmarks then processes the frontal face.

Kim et al. [21] recently proposed a hybrid 3D/deep

method. They render a reconstructed 3DMM of a specific

subject using a classic graphic pipeline. The rendered im-

age is then processed by a generator network, trained to map

synthetic views of each subject to photo-realistic images.

Finally, feature disentanglement was proposed as a

means for face manipulation. RSGAN [34] disentangles the

latent representations of face and hair whereas FSNet [33]

proposed a latent space which separates identity and geo-

metric components, such as facial pose and expression.
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Figure 2: Overview of the proposed FSGAN approach. (a) The recurrent reenactment generator Gr and the segmentation

generator Gs. Gr estimates the reenacted face Fr and its segmentation Sr, while Gs estimates the face and hair segmentation

mask St of the target image It. (b) The inpainting generator Gc inpaints the missing parts of F̃r based on St to estimate the

complete reenacted face Fc. (c) The blending generator Gb blends Fc and Ft, using the segmentation mask St.

3. Face swapping GAN

In this work we introduce the Face Swapping GAN (FS-

GAN), illustrated in Fig. 2. Let Is be the source and It the

target images of faces Fs ∈ Is and Ft ∈ It, respectively.

We aim to create a new image based on It, where Ft is re-

placed by Fs while retaining the same pose and expression.

FSGAN consists of three main components. The first,

detailed in Sec. 3.2 (Fig. 2(a)), consists of a reenactment

generator Gr and a segmentation CNN Gs. Gr is given

a heatmaps encoding the facial landmarks of Ft, and gen-

erates the reenacted image Ir, such that Fr depicts Fs at

the same pose and expression of Ft. It also computes Sr:

the segmentation mask of Fr. Component Gs computes the

face and hair segmentations of Ft.

The reenacted image, Ir, may contain missing face parts,

as illustrated in Fig. 2 and Fig. 2(b). We therefore apply the

face inpainting network, Gc, detailed in Sec. 3.4 using the

segmentation St, to estimate the missing pixels. The final

part of the FSGAN, shown in Fig. 2(c) and Sec. 3.5, is the

blending of the completed face Fc into the target image It
to derive the final face swapping result.

The architecture of our face segmentation network, Gs,

is based on U-Net [38], with bilinear interpolation for up-

sampling. All our other generators—Gr, Gc, and Gb—

are based on those used by pix2pixHD [47], with coarse-

to-fine generators and multi-scale discriminators. Unlike

pix2pixHD, our global generator uses a U-Net architecture

with bottleneck blocks [14] instead of simple convolutions

and summation instead of concatenation. As with the seg-

mentation network, we use bilinear interpolation for upsam-

pling in both global generator and enhancers. The actual

number of layers differs between generators.

Following others [50], training subject agnostic face

reenactment is non-trivial and might fail when applied to

unseen face images related by large poses. To address this

challenge, we propose to break large pose changes into

small manageable steps and interpolate between the clos-

est available source images corresponding to a target’s pose.

These steps are explained in the following sections.

3.1. Training losses

Domain specific perceptual loss. To capture fine facial de-

tails we adopt the perceptual loss [17], widely used in recent

work for face synthesis [40], outdoor scenes [47], and super

resolution [24]. Perceptual loss uses the feature maps of a

pretrained VGG network, comparing high frequency details

using a Euclidean distance.

We found it hard to fully capture details inherent to face

images, using a network pretrained on a generic dataset

such as ImageNet. Instead, our network is trained on the

target domain: We therefore train multiple VGG-19 net-

works [41] for face recognition and face attribute classifi-

cation. Let Fi ∈ R
Ci×Hi×Wi be the feature map of the i-th

layer of our network, the perceptual loss is given by

Lperc(x, y) =

n∑

i=1

1

CiHiWi

‖Fi(x)− Fi(y)‖1 . (1)

Reconstruction loss. While the perceptual loss of Eq. (1)

captures fine details well, generators trained using only that

loss, often produce images with inaccurate colors, corre-

sponding to reconstruction of low frequency image content.

We hence also applied a pixelwise L1 loss to the generators:

Lpixel(x, y) = ‖x− y‖1. (2)
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The overall loss is then given by

Lrec(x, y) = λpercLperc(x, y) + λpixelLpixel(x, y). (3)

The loss in Eq. (3) was used with all our generators.

Adversarial loss. To further improve the realism of our

generated images we use an adversarial objective [47]. We

utilized a multi-scale discriminator consisting of multiple

discriminators, D1, D2, ..., Dn, each one operating on a dif-

ferent image resolution. For a generator G and a multi-scale

discriminator D, our adversarial loss is defined by:

Ladv(G,D) = min
G

max
D1,...Dn

n∑

i=1

LGAN (G,Di), (4)

where LGAN (G,D) is defined as:

LGAN (G,D) =E(x,y)[logD(x, y)]

+ Ex[log(1−D(x,G(x)))]. (5)

3.2. Face reenactment and segmentation

Given an image I ∈ R
3×H×W and a heatmap represen-

tation H(p) ∈ R
70×H×W of facial landmarks, p ∈ R

70×2,

we define the face reenactment generator, Gr, as the map-

ping Gr :
{
R

3×H×W ,R70×H×W
}
→ R

3×H×W .

Let vs, vt ∈ R
70×3 and es, et ∈ R

3, be the 3D land-

marks and Euler angles corresponding to Fs and Ft. We

generate intermediate 2D landmark positions pj by interpo-

lating between es and et, and the centroids of vs and vt,

using intermediate points for which we project vs back to

Is. We define the reenactment output recursively for each

iteration 1 ≤ j ≤ n as

Irj , Srj = Gr(Irj−1
;H(pj)), (6)

Ir0 = Is.

Similar to others [37], the last layer of the global gener-

ator and each of the enhancers in Gr is split into two heads:

the first produces the reenacted image and the second the

segmentation mask. In contrast to binary masks used bu

others [37], we consider the face and hair regions separately.

The binary mask implicitly learned by the reenactment net-

work captures most of the head including the hair, which

we segment separately. Moreover, the additional hair seg-

mentation also improves the accuracy of the face segmen-

tation. The face segmentation generator Gs is defined as

Gr : R
3×H×W → R

3×H×W , where given an RGB im-

age it output a 3-channels segmentation mask encoding the

background, face, and hair.

Training. Inspired by the triple consistency loss [40], we

propose a stepwise consistency loss. Given an image pair

(Is, It) of the same subject from a video sequence, let Irn

be the reenactment result after n iterations, and Ĩt, Ĩrn be

the same images with their background removed using the

segmentation masks St and Srj , respectively. The stepwise

consistency loss is defined as: Lrec(Ĩrn , Ĩt). The final ob-

jective for the Gr:

L(Gr) =λstepwiseLrec(Ĩrn , Ĩt) + λrecLrec(Ĩr, Ĩt)

+ λadvLadv + λsegLpixel(Sr, St). (7)

For the objective of Gs we use the standard cross-

entropy loss, Lce, with additional guidance from Gr:

L(Gs) = Lce + λreenactmentLpixel(St, S
t
r), (8)

where St
r is the segmentation mask result of Gr(It;H(pt))

and pt is the 2D landmarks corresponding to It.

We train both Gr and Gs together, in an interleaved fash-

ion. We start with training Gs for one epoch followed

by the training of Gr for an additional epoch, increasing

λreenactment as the training progresses. We have found that

training Gr and Gs together helps filtering noise learned

from coarse face and hair segmentation labels.

3.3. Face view interpolation

Standard computer graphics pipelines project textured

mesh polygons onto a plane for seamless rendering [15].

We propose a novel, alternative scheme for continuous in-

terpolation between face views. This step is an essential

phase of our method, as it allows using the entire source

video sequence, without training our model on a particular

video frame, making it subject agnostic.

Given a set of source subject images, {Is1 , . . . , Isn},

and Euler angles, {e1, . . . , en}, of the corresponding faces

{Fs1 , . . . ,Fsn}, we construct the appearance map of the

source subject, illustrated in Fig. 3(a). This appearance map

embeds head poses in a triangulated plane, allowing head

poses to follow continuous paths.

We start by projecting the Euler angles {e1, . . . , en}
onto a plane by dropping the roll angle. Using a k-d tree

data structure [15], we remove points in the angular do-

main that are too close to each other, prioritizing the points

for which the corresponding Euler angles have a roll an-

gle closer to zero. We further remove motion blurred im-

ages. Using the remaining points, {x1, . . . , xm}, and the

four boundary points, yi ∈ [−75, 75]× [−75, 75], we build

a mesh, M , in the angular domain by Delaunay Triangula-

tion.

For a query Euler angle, et, of a face, Ft, and its corre-

sponding projected point, xt, we find the triangle T ∈ M

that contains xt. Let xi1 , xi2 , xi3 be the vertices of T and

Isi1 , Isi2 , Isi3 be the corresponding face views. We calcu-

late the barycentric coordinates, λ1, λ2, λ3 of xt, with re-
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Figure 3: Face view interpolation. (a) Shows an example of an appearance map of the source subject (Donald Trump). The

green dots represent different views of the source subject, the blue lines represent the Delaunay Triangulation of those views,

and the red X marks the location of the current target’s pose. (b) The interpolated views associated with the vertices of the

selected triangle (represented by the yellow dots). (c) The reenactment result and the current target image.

spect to xi1 , xi2 , xi3 . The interpolation result Ir is then

Ir =

3∑

k=1

λkGr(Isik ;H(pt)), (9)

where pt are the 2D landmarks of Ft. If any vertices of

the triangle are boundary points, we exclude them from the

interpolation and normalize the weights, λi, to sum to one.

A face view query is illustrated in Fig. 3(b,c). To im-

prove interpolation accuracy, we use a horizontal flip to fill

in views when the appearance map is one-sided with respect

to the yaw dimension, and generate artificial views using Gr

when the appearance map is too sparse.

3.4. Face inpainting

Occluded regions in the source face Fs cannot be ren-

dered on the target face, Ft. Nirkin et al. [35] used the seg-

mentations of Fs and Ft to remove occluded regions, ren-

dering (swapping) only regions visible in both source and

target faces. Large occlusions and different facial textures

can cause noticeable artifacts in the resulting images.

To mitigate such problems, we apply a face inpainting

generator, Gc (Fig. 2(b)). Gc renders face image Fs such

that the resulting face rendering Ĩr covers entire segmenta-

tion mask St (of Ft), thereby resolving such occlusion.

Given the reenactment result, Ir, its corresponding seg-

mentation, Sr, and the target image with its background re-

moved, Ĩt, all drawn from the same identity, we first aug-

ment Sr by simulating common face occlusions due to hair,

by randomly removing ellipse-shaped parts, in various sizes

and aspect ratios from the border of Sr. Let Ĩr be Ir with

its background removed using the augmented version of Sr,

and Ic the completed result from applying Gc on Ĩr. We de-

fine our inpainting generator loss as

L(Gc) = λrecLrec(Ic, Ĩt) + λadvLadv, (10)

where Lrec and Ladv are the reconstruction and adversarial

losses of Sec. 3.1.

3.5. Face blending

The last step of the proposed face swapping scheme is

blending of the completed face Fc with its target face Ft

(Fig. 2(c)). Any blending must account for, among oth-

ers, different skin tones and lighting conditions. Inspired by

previous uses of Poisson blending for inpainting [51] and

blending [49], we propose a novel Poisson blending loss.

Let It be the target image, Itr the image of the reenacted

face transferred onto the target image, and St the segmen-

tation mask marking the transferred pixels. Following [36],

we define the Poisson blending optimization as

P (It; I
t
r;St)) = argmin

f
‖∇f −∇Itr‖

2
2

s.t. f(i, j) = It(i, j), ∀ St(i, j) = 0,
(11)

where ∇ (·) is the gradient operator. We combine the Pois-

son optimization in Eq. (11) with the perceptual loss. The

Poisson blending loss is then L(Gb)

L(Gb) = λrecLrec(Gb(It; I
t
r;St), P (It; I

t
r;St))+λadvLadv.

4. Datasets and training

4.1. Datasets and processing

We use the video sequences of the IJB-C dataset [30]

to train our generator, Gr, for which we automatically ex-
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tracted the frames depicting particular subjects. IJB-C con-

tains ∼11k face videos, of which we used 5,500 which were

in high definition. Similar to the frame pruning approach of

Sec. 3.3, we prune the face views that are too close together

as well as motion-blurred frames.

We apply the segmentation CNN, Gs, to the frames, and

prune the frames for which less than 15% of the pixels in the

face bounding box were classified as face pixels. We used

dlib’s face verification1 to group frames according to the

subject identity, and limit the number of frames per subject

to 100, by choosing frames with the maximal variance in 2D

landmarks. In each training iteration, we choose the frames

Is and It from two randomly chosen subjects.

We trained VGG-19 CNNs for the perceptual loss on

the VGGFace2 dataset [8] for face recognition and the

CelebA [26] dataset for face attribute classification. The

VGGFace2 dataset contains 3.3M images depicting 9,131

identities, whereas CelebA contains 202,599 images, anno-

tated with 40 binary attributes.

We trained the segmentation CNN, Gs, on data used by

others [35], consisting of ∼10k face images labeled with

face segmentations. We also used the LFW Parts Labels

set [18] with ∼3k images labeled for face and hair segmen-

tations, removing the neck regions using facial landmarks.

We used additional 1k images and corresponding hair

segmentations from the Figaro dataset [43]. Finally, Face-

Forensics++ [39] provides 1000 videos, from which they

generated 1000 synthetic videos on random pairs using

DeepFakes [11] and Face2Face [44].

4.2. Training details

We train the proposed generators from scratch, where the

weights were initialized randomly using a normal distribu-

tion. We use Adam optimization [23] (β1 = 0.5, β2 =
0.999) and a learning rate of 0.0002. We reduce this

rate by half every ten epochs. The following parameters

were used for all the generators: λperc = 1, λpixel =
0.1, λadv = 0.001, λseg = 0.1, λrec = 1, λstepwise = 1,

where λreenactment is linearly increased from 0 to 1 during

training. All of our networks were trained on eight NVIDIA

Tesla V100 GPUs and an Intel Xeon CPU. Training of Gs

required six hours to converge, while the rest of the net-

works converged in two days. All our networks, except

for Gs, were trained using a progressive multi scale ap-

proach, starting with a resolution of 128×128 and ending

at 256×256. Inference rate is ∼30fps for reenactment and

∼10fps for swapping on one NVIDIA Tesla V100 GPU.

5. Experimental results

We performed extensive qualitative and quantitative ex-

periments to verify the proposed scheme. We compare our

1Available: http://dlib.net/

Figure 4: Qualitative face reenactment results. Row 1: The

source face for reenactment. Row 2: Our reenactment re-

sults (without background removal). Row 3: The target face

from which to transfer the pose and expression.

method to two previous face swapping methods: Deep-

Fakes [11] and Nirkin et al. [35], and the Face2Face reen-

actment scheme [44]. We conduct all our experiments on

videos from FaceForensics++ [39], by running our method

on the same pairs they used. We further report ablation

studies showing the importance of each component in our

pipeline.

5.1. Qualitative face reenactment results

Fig. 4 shows our raw face reenactment results, without

background removal. We chose examples of varying ethnic-

ity, pose, and expression. A specifically interesting example

can be seen in the rightmost column, showing our method’s

ability to cope with extreme expressions. To show the im-

portance of iterative reenactment, Fig 5 provides reenact-

ments of the same subject for both small and large angle

differences. As evident from the last column, for large an-

gle differences, the identity and texture are better preserved

using multiple iterations.

5.2. Qualitative face swapping results

Fig. 6 offers face swapping examples taken from Face-

Forensics++ videos, without training our model on these

videos. We chose examples that represent different poses

and expression, face shapes, and hair occlusions. Be-

cause Nirkin et al. [35] is an image-to-image face swapping

method, to be fair in our comparison, for each frame in the

target video we select the source frame with the most simi-

lar pose. To compare FSGAN in a video-to-video scenario,

we use our face view interpolation described in Sec. 3.3.

5.3. Comparison to Face2Face

We compare our method to Face2Face [44] on the ex-

pression only reenactment problem. Given a pair of faces
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Figure 5: Reenactment limitations. Top left image trans-

formed onto each of the images in Row 1 (using the same

subject for clarity). Row 2: Reenactment with one iteration.

Row 3: Three iterations.

Figure 6: Qualitative face swapping results on [39]. Results

for source photo swapped onto target provided for Nirkin et

al. [35], DeepFakes [11] and our method on images of faces

of subjects it was not trained on.

Fs ∈ Is and Ft ∈ It the goal is to transfer the expression

from Is to It. To this end, we modify the corresponding

2D landmarks of Ft by swapping in the mouth points of the

2D landmarks of Fs, similarly to how we generate the in-

termediate landmarks in Sec. 3.2. The reenactment result

is then given by Gr(It;H(p̂t)), where p̂t are the modified

landmarks. The examples are shown in Fig. 7.

5.4. Quantitative results

We report quantitative results, conforming to how we

defined the face swapping problem: we validate how well

methods preserve the source subject identity, while retain-

Figure 7: Comparison to Face2Face [44] on FaceForen-

sics++ [39]. As demonstrated, our method exhibits far less

artifacts than Face2Face.

ing the same pose and expression of the target subject. To

this end, we first compare the face swapping result, Fb, of

each frame to its nearest neighbor in pose from the subject

face views. We use the dlib [22] face verification method

to compare identities and the structural similarity index

method (SSIM) to compare their quality. To measure pose

accuracy, we calculate the Euclidean distance between the

Euler angles of Fb to the original target image, It. Similarly,

the accuracy of the expression is measured as the Euclidean

distance between the 2D landmarks. Pose error is measured

in degrees and the expression error is measured in pixels.

We computes the mean and variance of those measurements

on the first 100 frames of the first 500 videos in FaceForen-

sics++, averaging them across the videos. As baselines, we

use Nirkin et al. [35] and DeepFakes [11].

Evident from the first two columns of Table 1, our ap-

proach preserves identity and image quality similarly to pre-

vious methods. The two rightmost metrics in Table 1 show

that our method retains pose and expression much better

than its baselines. Note that the human eye is very sensitive

to artifacts on faces. This should be reflected in the quality

score but those artifacts usually capture only a small part of
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Figure 8: Ablation study. From columns 3 and 5, without the completion network, Gc, the transferred face does not cover the

entire target face, leaving obvious artifacts. Columns 3 and 4 show that without the blending network, Gb, the skin color and

lighting conditions of the transferred face are inconsistent with its new context.

Method verification ↓ SSIM ↑ euler ↓ landmarks ↓

Nirkin et al. [35] 0.39 ± 0.00 0.49 ± 0.00 3.15 ± 0.04 26.5 ± 17.7

DeepFakes [11] 0.38 ± 0.00 0.50 ± 0.00 4.05 ± 0.04 34.1 ± 16.6

FSGAN 0.38 ± 0.00 0.51 ± 0.00 2.49 ± 0.04 22.2 ± 17.7

Table 1: Quantitative swapping results. On FaceForen-

sics++ videos [39].

the image and so the SSIM score does not reflect them well.

5.5. Ablation study

We performed ablation tests with four configurations of

our method: Gr only, Gr + Gc, Gr + Gb, and our full

pipeline. The segmentation network, Gs, is used in all con-

figurations. Qualitative results are provided in Fig. 8.

Quantitative ablation results are reported in Table 2. Ver-

ification scores show that source identities are preserved

across all pipeline networks. From Euler and landmarks

scores we see that target poses and expressions are best re-

tained with the full pipeline. Error differences are not ex-

treme, suggesting that the inpainting and blending genera-

tors, Gc and Gb, respectively, preserve pose and expression

similarly well. There is a slight drop in the SSIM, due to the

additional networks and processing added to the pipeline.

6. Conclusion

Limitations. Fig. 5 shows our reenactment results for dif-

ferent facial yaw angles. Evidently, the larger the angular

Method verification ↓ SSIM ↑ euler ↓ landmarks ↓

FSGAN (Gr) 0.38 ± 0.00 0.54 ± 0.00 3.16 ± 0.03 22.6 ± 16.5

FSGAN (Gr +Gc) 0.38 ± 0.00 0.54 ± 0.00 3.21 ± 0.08 24.5 ± 17.2

FSGAN (Gr +Gb) 0.38 ± 0.00 0.52 ± 0.00 2.75 ± 0.05 23.6 ± 17.9

FSGAN (Gr +Gc +Gb) 0.38 ± 0.00 0.51 ± 0.00 2.49 ± 0.04 22.2 ± 17.7

Table 2: Quantitative ablation results. On FaceForensics++

videos [39].

differences, the more identity and texture quality degrade.

Moreover, too many iterations of the face reenactment gen-

erator blur the texture. Unlike 3DMM based methods, e.g.,

Face2Face [44], which warp textures directly from the im-

age, our method is limited to the resolution of the training

data. Another limitation arises from using a sparse land-

mark tracking method that does not fully capture the com-

plexity of facial expressions.

Discussion. Our method eliminates laborious, subject-
specific, data collection and model training, making face
swapping and reenactment accessible to non-experts. We
feel strongly that it is of paramount importance to pub-
lish such technologies, in order to drive the development
of technical counter-measures for detecting such forgeries,
as well as compel law makers to set clear policies for ad-
dressing their implications. Suppressing the publication of
such methods would not stop their development, but rather
make them available to select few and potentially blindside
policy makers if it is misused.
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