
Image Generation From Small Datasets via Batch Statistics Adaptation

Atsuhiro Noguchi1 and Tatsuya Harada1,2

1The University of Tokyo, 2RIKEN

Figure 1: Interpolation results generated by BigGAN adapted to only 25 human and anime face images. The left- and right-

most images are the generated images that correspond to training samples, and the other images are generated by linearly

changing the latent vector. In spite of the small amount of training data, our method achieves a smooth interpolation.

Abstract

Thanks to the recent development of deep generative

models, it is becoming possible to generate high-quality

images with both fidelity and diversity. However, the

training of such generative models requires a large dataset.

To reduce the amount of data required, we propose a new

method for transferring prior knowledge of the pre-trained

generator, which is trained with a large dataset, to a small

dataset in a different domain. Using such prior knowledge,

the model can generate images leveraging some common

sense that cannot be acquired from a small dataset. In

this work, we propose a novel method focusing on the pa-

rameters for batch statistics, scale and shift, of the hidden

layers in the generator. By training only these parameters

in a supervised manner, we achieved stable training of the

generator, and our method can generate higher quality

images compared to previous methods without collapsing,

even when the dataset is small (∼100). Our results show

that the diversity of the filters acquired in the pre-trained

generator is important for the performance on the target

domain. Our method makes it possible to add a new class

or domain to a pre-trained generator without disturbing the

performance on the original domain. Code is available at

github.com/nogu-atsu/small-dataset-image-generation

1. Introduction

In recent years, image generation using deep genera-

tive models has rapidly developed, and some state-of-the-art

methods can generate images that cannot be distinguished

from real data [14, 6, 24, 33, 11, 20, 36, 8, 18]. Typ-

ical generative models include Variational Auto-Encoders

(VAEs) [14, 25], Generative Adversarial Networks (GANs)

[6], and Auto-Regressive (AR) models [33]. Although these

methods can generate novel images that are not included in

the training dataset, these generative models have many pa-

rameters. For instance, Spectral Normalization GAN with

a projection discriminator (SNGAN projection) [20, 21]

for 128 × 128 sized images has 90 M trainable parame-

ters. Accordingly, we need a large dataset to train such

a large network without overfitting. In general, a large

dataset (∼10,000) is required to train generative models

[24, 11, 20, 21]. However, constructing such a huge dataset

requires significant effort, and a conventional generative

model cannot be applied to a domain in which collecting

sufficient data is difficult. Therefore, training a genera-

tive model from a small dataset is crucial. Moreover, be-

cause generative models can learn the data distribution, they

have an advantage not only in generating images but also

in improving the performance of classification and abnor-

mality detection models through semi-supervised learning

[13, 27]. If we can train a generator from a small dataset,

the performance of these tasks can be improved by interpo-

lating the training data.

The transfer of prior knowledge is effective to train deep-

learning models from a sparsely annotated or small dataset.

For a feature extractor model, transfer learning, in which

a feature extractor model is trained using a large labeled

dataset and is transferred to another domain with sparse

2750

annotation, has been widely studied [23, 17, 5, 32, 3, 2].

Training on a target dataset starting from the weights of the

pre-trained model is called fine-tuning [23]. Even when

fine-tuning the model with a dataset in a completely dif-

ferent domain from the dataset used to train the pre-trained

model, the performance tends to be better than training from

scratch. This is because a pre-trained model acquires gen-

erally useful weights that cannot be obtained using a small

target dataset. A method for transferring prior knowledge

to another dataset has been proposed for generative models

as well [34, 28]. It was shown that transferring prior knowl-

edge also improves the performance of generative models.

To adapt prior knowledge, we focus on the scale and shift

parameters of batch statistics in the generator. These param-

eters can be seen to control the active filter in the convolu-

tion layer, and it can be stated that updating the scale and

shift parameters selects filters which are useful for gener-

ating images similar to the target domain. We propose a

new transfer method for a generator that updates only the

scale and shift parameters in the generator. By updating

only these parameters and fixing all kernel parameters in

the generator, we can reduce the number of images required

to train the generator. We conducted experiments by apply-

ing this method to a very small dataset consisting of less

than 100 images and showed that the quality is higher than

that of previous methods, and that it is possible to generate

images capturing the data semantics.

2. Related works

In this paper, we propose a novel method for transferring

a pre-trained generative model to realize image generation

from a small dataset. We introduce related studies on gen-

erative models in subsection 2.1, transfer learning for gen-

erative models in subsection 2.2, and transfer learning that

uses scale and shift parameters in subsection 2.3.

2.1. Deep generative model

Studies on data generation using deep learning tech-

niques have been developed rapidly in recent years, and

methods that can generate data such as images and lan-

guages have been widely studied [14, 25, 6, 33]. Typical

generative models include VAEs [14, 25], GANs [6], and

AR models [33]. VAEs model variational inference and

learn to maximize the variational lower bound of likelihood.

GANs consist of two networks, a generator and a discrim-

inator. The generator generates data close to the training

data, and the discriminator identifies whether the input data

are training or generated data. By training these models in

an adversarial manner, the generator becomes able to gen-

erate data that are indistinguishable from the training data.

AR models express the data distribution as a product of the

conditional probabilities, and sequentially generates data.

Techniques that can generate consistent high-quality images

through any of these methods have recently been developed

[8, 20, 36, 4, 18].

Every model has a large number of trainable parameters,

and a large dataset is necessary to prevent overfitting. For

example, in SNGAN projection for 128 × 128 sized im-

ages, there are 90 M trainable parameters. With GANs, in

particular, the discriminator estimates the distance between

the distributions of the real and generated data. Therefore,

training a discriminator requires a large dataset sufficient

to fill in the distribution of the real data. The training of

these models often uses a dataset on the order of more than

10,000 examples. Because it is extremely time-consuming

to construct such a large dataset, it is an important task to

reduce the amount of data necessary to train a generative

model. Since a generative model learns the distribution of

data, there is an advantage in that it can be used for clas-

sification tasks, abnormality detection, and so on through

semi-supervised learning [13, 27], and it is expected that

the construction of a generative model from a small dataset

can contribute to these fields.

2.2. Transfer learning for generative models

It is known that transfer learning is effective in improv-

ing the performance for sparsely annotated or limited data

[23, 17, 5, 32, 3, 34]. Transfer learning transfers the knowl-

edge acquired through training on a large dataset to another

dataset of a different domain for which there are insufficient

labels.

A method for transferring generative models learned

with a sufficient amount of data to another dataset was de-

veloped [28, 34]. In [28], the techniques for knowledge

transfer for neural language model is proposed, and in [34],

a pre-trained GAN model is fine-tuned to the target domain

to transfer the knowledge. These techniques enable the

generative model to converge faster and obtain better per-

formance than with normal training. Results suggest that

transferring pre-trained knowledge is effective for genera-

tive models as well. However, especially in image genera-

tion [34], 1,000 training examples are still necessary.

2.3. Transfer learning with scale and shift

There are some transfer learning methods that modu-

late only scale and shift parameters in the hidden activa-

tions [15, 30]. Adaptive batch normalization [15] performs

domain adaptation for the segmentation task by replacing

the statistics of the source domain with those of the target

domain, achieving performance accuracy competitive with

other deep-learning based methods. Meta-transfer learn-

ing [30] performs few-shot learning by updating only the

scale and shift parameters, and achieves better performance

than when fine-tuning all kernel parameters. These methods

show that the scaling and shifting operation is effective for

transferring knowledge to feature extractor models.

2751

The question is whether these operations can also trans-

fer generative knowledge in the generator to images that do

not appear in the training samples. To confirm the trans-

ferability, we investigate the role of the batch statistics and

analyze them in the pre-trained model in the next section.

3. Role of Batch Statistics

In this research, we use scale and shift parameters to

transfer the knowledge acquired in the pre-trained gener-

ator. To show the property of the scale and shift parameters,

we discuss the role of these parameters from the point of

view of filter selection, and analyze how the filters are se-

lected in the pre-trained SNGAN projection [20, 21] model.

3.1. Scale and shift for filter selection

In this subsection, we provide a brief analysis of our

method in terms of filter selection. A convolution can

be seen as a combination of filters that convert a three-

dimensional tensor into a scalar. The number of filters is

the same as the number of output channels of the convo-

lutional layer. In this case, applying the scale and shift to

the results of the convolution operation is equivalent to the

following convolutional operation.

conv(x;W) · γ + β

= conv(x;W · γ + β)

= conv(x; {γ1W1 + β1, ..., γcout
Wcout

+ βcout
}) (1)

Here, W is a four-dimensional tensor representing the

weight of the convolution, and Wi represents the ith filter

in the convolution. In addition, cout is the number of out-

put channels for the convolution. This means that changing

the scale γ is equivalent to changing the activation strength

of the filter of each convolution. In addition, changing the

shift β means changing the activation threshold of the fil-

ter. When γi and βi are large, the corresponding neuron

becomes easy to activate, and when γi and βi are small, it

becomes less active. We conducted an experiment and con-

firmed that there is a positive correlation between γ and β

and the activation rate of the filter. The result is given in the

supplementary materials. Therefore, it is shown that chang-

ing the scale and shift parameters is equal to performing

filter selection and controlling the activation in a Convolu-

tional Neural Network (CNN).

3.2. Analysis of scale and shift in SNGAN

In SNGAN projection [20, 21], class conditional batch

normalization is used, where different scales and shifts are

applied for each class. That is, by using different γ and

β during batch normalization [9], the model creates a dif-

ference in the distribution for each class. In the previous

subsection, we stated that these parameters control the ac-

tivity of the filter. In this subsection, we discuss how filters

Resblock 1 Resblock 2 Resblock 4Resblock 3 Resblock 5

γ

β

Figure 2: T-SNE on γ and β for each layer, where γ and β

are scale and shift parameters respectively.

are selected for each class in SNGAN trained on ImageNet.

Because there is a correlation between the activation of the

filter and γ and β, we only have to check the γ and β ac-

quired for each class.

For SNGAN trained on ImageNet, we plotted the distri-

bution of γ and β using T-SNE, as shown in Figure 2. Each

point corresponds to each class. We plotted some classes in

the categories “dogs”, “birds”, “arthropods”, and “devices”

using different colors, and used WordNet [19] to categorize

these classes. Based on this, it turns out that a similar scale

and shift are used for semantically similar classes.

This suggests that SNGAN trained using ImageNet ac-

quires various filters, and the model learns the method for

selecting useful filters for the generation of each class. If

there are sufficiently diverse filters in the trained generator,

it seems that there is a possibility for data of different do-

mains to be generated by learning a method for selecting

useful filters based on the semantics.

4. Method

In this paper, we propose a method for adapting pre-

trained generative models to datasets of different domains.

Our method only requires a pre-trained generator, and we

can leverage any type of generator using a CNN, such as

GANs or VAEs. By introducing scale and shift parame-

ters to each hidden activation of the generator, and updating

only these parameters, the generative model can be trans-

ferred to a small dataset, reducing the number of trainable

parameters.

4.1. Learnable parameters

To use the prior knowledge obtained, the adapted gener-

ator is trained from the weights acquired in the pre-trained

generator. However, the number of parameters in a CNN

generator is extremely large, and if the available training

data size has relatively few samples, the model tends to im-

mediately overfit to the dataset. Therefore, we do not up-

date the kernel parameters of the model in any way, and use

2752

scale and shift to control the activation of the filters. This

means that updating these parameters may be sufficient for

adaptation if there are diverse filters in the generator. We

introduce the scale and shift parameters for each channel of

the hidden layer distribution of each layer (excluding the fi-

nal layer) and update only these parameters to conduct an

adaptation.

G
(l)
Adapt = G(l) · γ(l) + β(l) (2)

Here, G(l) is the feature representation of the lth layer of the

generator, G
(l)
Adapt is the feature of the lth layer after adapta-

tion, γ(l) represents the scale parameter of the distribution

for adaptation, and β(l) represents the shift parameter of the

distribution. The initial value of the γ element is 1, and the

initial value of the β element is zero.

Because γ and β are used in the batch normalization

layer, we update these parameters for the scale and shift

without adding new statistics parameters. We fix run-

ning mean and running var during training. For class con-

ditional batch normalization used in SNGAN projection,

different γ and β values in the batch normalization are used

for each class labels. In this case, we initialize γ and β to 1

and zero, respectively, and then fine-tune them.

4.2. Training

For GANs, the discriminator distinguishes between real

images in the dataset and the generated images, and the gen-

erator generates realistic images by conducting adversarial

training [6]. However, this method is based on the fact that

training data densely fill the distribution, and it suffers from

overfitting for small datasets, resulting in unstable training.

Therefore, it is desirable to conduct training in a supervised

learning framework such as VAEs. However, it is difficult

to learn an encoder (such as VAEs) from scratch when only

a small dataset is available.

To train the generator using supervised learning, the cor-

rect target data corresponding to the latent vectors are nec-

essary. Therefore, in this study, we realize supervised learn-

ing by simultaneously estimating the latent variable z for

all training data such that the generated data are close to the

image in the training dataset, which is similar to Generative

Latent Optimization [1]. The proposed pipeline is shown

in Figure 3. During training, loss function L modelled as

the distance function to the target image is optimized. L

uses the L1 loss, which is the distance at the pixel level, and

perceptual loss [10], which is the distance at the semantic

𝑧"

Latent

vector

(trainable)

Generated

image

𝑥"
Training data

𝛾, 𝛽

𝐺

Pre-trained

generator

Statistics

(trainable)

L1 loss
+

Perceptual loss

Figure 3: Proposed pipeline. During training, the scale and

shift of the generator and latent variable z are updated to

minimize the loss using the L1 and perceptual losses be-

tween all training data and the generated data.

level.

L =
∑

i

1

cxhxwx

||xi −GAdapt(zi + ϵ)||1

+
∑

i

∑

l∈layers

λl
C

clhlwl

||C(l)(xi)− C(l)(GAdapt(zi + ϵ))||

+ λz(

k∑

j

1

dz
min
i

||zi − rj ||
2
2 +

b∑

i

1

dz
min
j

||zi − rj ||
2
2)

+ λγ,β

∑

l

1

dlγ,β
(||γl − 1||22 + ||βl||

2
2) (3)

Here, xi is the ith image, and zi is the latent vector corre-

sponding to xi. In addition, c, h, w, and d are the channel,

height, width, and dimension of each feature, respectively,

C(l) is the feature of the lth layer of the trained classifier C,

layers are the layers used for perceptual loss, b is batch-

size, λ is the coefficient used to determine the balance of

each term, and rj ∼ N (0, I) is a vector randomly sampled

from the normal distribution. Here, k is a number suffi-

ciently larger than the amount of training data, and ϵ is a

small random vector to avoid local minina. The first and

second terms are used to make the generated image close

to the training image at the pixel and semantic levels. The

third term is used to regularize z as a standard normal distri-

bution. The fourth term prevents overfitting. In this study,

we used VGG16 [29] for C.

Here, z corresponding to each training data is initialized

with a zero vector and is learned via loss minimization using

the gradient descent method.

4.3. Inference

During inference, by inputting a randomly sampled vec-

tor z according to the standard normal distribution to the

generator, it is possible to generate images randomly. How-

ever, the generator only learns the relationship between la-

tent vectors and sparse training samples, resulting in the

2753

poor performance for z which is far from any training sam-

ples. To solve this problem, we sample z from a truncated

normal distribution, and this technique is known as the trun-

cation trick [4]. The details are described in 5.3.

5. Experiments

Some experiments were conducted to evaluate the dif-

ficulty and possibility of image generation from a small

dataset, as well as the stability of the proposed method. We

also compared our method to existing studies. For the gen-

erator, we used SNGAN [20] and BigGAN [4]. Considering

the computational costs, we used SNGAN for the compari-

son experiments. We used 128 × 128 images for SNGAN

and 256 × 256 images for BigGAN. All experiments in this

paper are not class conditional, but our method can be easily

extended to be class-conditional by learning BatchNorm-

statistics for each class independently, which is similar to

SNGAN and BigGAN.

5.1. Datasets and evaluation metrics

We used the facial images from FFHQ dataset [12] and

anime face dataset1 and images of passion flowers from

the Oxfrod 102 flower dataset [22]. The domains used in

this experiment, “human face”, “anime face”, and “pas-

sion flower” are not contained in the classes of ImageNet

and can, therefore, be considered different domains to Ima-

geNet. Especially, anime faces never appear in ImageNet.

We employed the commonly-used Fréchet inception dis-

tance (FID) [7] for the evaluation of generated images. To

effectively evaluate overfitting to training samples, we cal-

culated the distance between 10,000 generated images and

randomly sampled 10,000 images from the whole datasets.

Though FID is a widely used evaluation metric, it is known

that FID is not stable for calculating the distance for small

sets of images. Because the flower dataset consists of only

251 images, we also report the more stable Kernel Maxi-

mum Mean Discrepancy (KMMD) for all experiments. We

calculate KMMD with a Gaussian kernel between the fea-

tures in a pre-trained inception network of training and gen-

erated images. Lower FID and KMMD indicate better per-

formance.

5.2. Image generation from a small dataset using
comparison methods

In this section, to confirm the difficulty of training gen-

erative models from a small dataset, we conducted exper-

iments on the following seven methods, two of which are

previous approaches, and the others are methods similar to

our method.

GAN from scratch: In this method, we trained a GAN

from scratch on a small dataset. We used the SNGAN

1www.gwern.net/Danbooru2018

model used in [20].

Transfer GAN [34]: The pre-trained generator and dis-

criminator are fine-tuned on a small dataset.

Transfer GAN (scale and shift): This method is similar

to our method, but does not apply supervised training, and

instead uses unsupervised training with the discriminator.

In this method, only the scale and shift parameters in the

generator and discriminator are updated to prevent overfit-

ting. In SNGAN, spectral normalization on the discrimi-

nator guarantees the discriminator as a Lipschitz function

[20]. Therefore, to maintain this constraint, we also applied

spectral normalization to the scale parameters. That is, the

scale was divided by the maximum value of the scale.

Encoder-generator network: Our method directly esti-

mates latent vector z. However, the simplest way to esti-

mate z corresponding to each training data is to use an en-

coder network. In this experiment, we used a small encoder

in addition to a pre-trained generator. The encoder and the

scale and shift in the generator are updated during training,

in which the generator is trained just like our method. The

loss function is the sum of the L1 loss and perceptual loss.

Ordinary training with proposed loss: This method uses

the same loss function as the proposed method, but updates

all parameters or only a few layers of the generator instead

of batch statistics. We tested three settings, updating only

the first linear layer, updating the last residual block and any

later layers, and updating all layers. These are called “Up-

date first”, “Update last”, and “Update all”, respectively.

During these experiments, images were generated from

25 images sampled from each dataset. For the anime face

dataset, we sampled images that have similar style features

to limit the diversity of images. The details are provided in

the supplementary material. We used the SNGAN projec-

tion model pre-trained on the ImageNet 1K dataset [26].

To compare the training stability between our method

and these methods, these models were trained for the same

number of iterations as our method. For Transfer GAN, we

stopped training before mode collapsing, and for “Update

all”, we stopped training earlier because the model overfits

early. Figure 4 shows random generative results and evalu-

ation metrics from each method and dataset.

GANs trained from scratch take time to converge, and

blurry or meaningless objects can be generated. Transfer

GAN converges more quickly, but the output is collapsed to

a few modes. Transfer GAN (scale and shift) does not col-

lapse but generates meaningless objects. This means that

the kernels of the pre-trained discriminator are optimized

to estimate the distance between the generated and training

images during pre-training, and is not suitable for estimat-

ing the distance of the distributions in the target domain.

An encoder-generator takes time to converge, and blurred

images are generated. Updating the first linear kernel can

transfer global structure, but texture information cannot be

2754

Figure 4: Performance comparison on 25 training images

for each method.

transferred. Updating the last layers can only generate un-

certain images because the model cannot acquire a global

feature. Updating all layers overfits easily to training sam-

ples and can just generate intermediate color per pixel (See

Figure 4 (c), Figure 7, and the interpolation comparison in

the supplementary materials).

These results show that adversarial training is unsuitable

Figure 5: Sampled images from different truncated distri-

butions. The number shown is the truncation threshold.

Figure 6: Interpolation between two generated images from

adapted SNGAN on the human face dataset and anime face

dataset containing 25 training samples.

for image generation from a small dataset because the train-

ing is not stable. Besides, the supervised training tested in

this experiment is also unsuitable for image generation from

a small dataset because we have to train many parameters.

Moreover, both global and local features must be transferred

to generate target images, but updating all parameters eas-

ily overfit to training samples. These results indicate the

difficulty of this task.

5.3. Proposed method on small dataset

In this section, we conducted experiments with the pro-

posed method and evaluated the performance. We used the

same dataset and pre-trained model as used in the previous

section.

On the bottom row for each dataset in Figure 4 show

the images generated from latent vectors z sampled ran-

domly from a truncated normal distribution. We used 0.3

or 0.4 for the truncation threshold. By truncating, it was

confirmed that consistent images were generated. Figure 5

shows images sampled from a normal distribution changing

the truncation threshold. We confirmed that sampling with

small truncation threshold can generate images with higher

fidelity, and with larger threshold can generate images with

diversity.

From Figure 4, we can see that the model converges sta-

bly without collapsing and can generate more consistent

images. This is because the method effectively reuses the

pretrained convolutional kernel parameters. Because the

model only learns the relationship between latent vectors

and sparse training samples, random generation is more

difficult than interpolation. Figure 6 and Figure 7 shows

the results of interpolation between two latent vectors z.

Although the amount of training data is small, a smooth

and consistent interpolation is achieved compared to other

methods.

Comparing the performance with the other methods, our

2755

Update all

Ours

Figure 7: comparison of update all and ours on flower

dataset. The proposed method performs more consistent in-

terpolation.

method can generate images with better FID and KMMD

in general. From this, it was shown that, even with a very

small dataset such as 25 images, the proposed method can

generate data with a semantic consistency in domains that

other methods cannot.

5.4. Dataset size and image quality

In this section, we evaluate the relationship between the

size of the dataset and the quality of the generated images.

Besides, we compared the performance of our method,

Transfer GAN [34], and “Update all” when changing the

size of the dataset.

The images generated randomly from the proposed mod-

els learned from each dataset of each data size are shown

in Figure 8 and the generative results from TransferGAN

and “Update all” are shown in the supplementary materials.

The scores for each model are shown in Figure 9. We report

FID for the anime face dataset and KMMD for the flower

dataset. The generated images shown in Figure 8 and in

the supplementary materials show that when the size of the

training dataset becomes large, blurred images compared to

other methods tend to be generated. The evaluation scores

in Figure 9 show that for the anime face dataset, the pro-

posed method works well compared to other methods when

the data size is smaller than 500, and for the flower dataset,

the proposed method generates better images compared to

Transfer GAN when the data size is smaller than 100. These

results show that the quality of the generated images is lim-

ited for large datasets. On the other hand, the adversarial

approach is very powerful when the dataset size increases.

Also, “updating all” performs better than our method when

the datasize is large for the anime face dataset. This would

be because it has higher degrees of freedom of trainable pa-

rameters.

As a result, though our model works well for small

datasets, its performance is limited when the dataset size

becomes large. This could be solved by combining adver-

sarial approaches or increasing the trainable parameters.

5.5. Source domain selection

In this subsection, we conducted an experiment to inves-

tigate when the generator can be transferred to the target

domain. As discussed in 3.2, the diversity of the filter ac-

quired in the pre-trained generator is thought to affect the

Figure 8: Randomly sampled human face, anime face, and

flower images for each data size. The data sizes used for

training are 25, 50, 100, and 500 from top to bottom for

human face images (left), anime face images (middle), and

flower images (right).

Anime face Flower

Figure 9: Comparison of FID on the anime face dataset

(left) and KMMD on the flower dataset (right) between our

method, Transfer GAN [34], and “Update all”. Note that

it is meaningless to compare the performance between dif-

ferent dataset sizes because the data distributions for each

dataset size are different.

quality of the generated images after the transfer. To inves-

tigate, we compared the transferred results to the anime face

dataset and flower dataset adapted from a randomly initial-

ized generator, a generator pre-trained on the face dataset

[16], the LSUN bedroom dataset [35], and the ImageNet

1K. It can be inferred that a generator trained using the face

and bedroom datasets has useful filters for image genera-

tion compared to a randomly initialized generator, although

the diversity of the acquired filters is small compared to the

generator trained using ImageNet.

Figure 10 shows the results of four experimental settings.

As shown in the figure, the generator pre-trained on Ima-

geNet 1K can generate images with the best quality. The

generators transferred from other datasets generate blurry

or meaningless images. This result shows that the diversity

of the acquired filters in the source domain is important for

adaptation. This does not limit our method as generators

pre-trained on ImageNet are publically available.

5.6. Higher resolution image synthesis

We also applied our method to a pre-trained BigGAN-

256 model on ImageNet. For conditional batch normaliza-

tion, the parameters to calculate statistics were updated dur-

ing training as they are calculated with neural nets. Because

2756

ImageNet

Human face

Bedroom

None

(Random weight)

Figure 10: Comparison of the image quality for different

source datasets.

Figure 11: Randomly sampled 256 × 256 images from

adapted BigGAN on each dataset containing 25 training

samples. The truncation threshold is 0.2.

Figure 12: Randomly sampled 256 × 256 images from

adapted BigGAN on each dataset containing 50 training

samples. The truncation threshold is 0.2.

Figure 13: Interpolation between two generated 256 × 256

images from adapted BigGAN on flower datasets contain-

ing 25 training samples.

these neural nets have strong regularizations and are less

likely to overfit, the last term in the Equation (3) was not

used for the statistics in the conditional batch normalization

layer. We tested BigGAN on datasets consisting of 25 and

50 training samples. We found that updating the first linear

kernel with a very small learning rate (10−7) can generate

sharper images for BigGAN. The random generative results

are shown in Figure 11 and 12, and the interpolation results

are shown in Figure 1 and 13. Our method works well on

higher resolution images.

Figure 14: Consecutive domain morphing, showing morphs

from “cheeseburger” in ImageNet to “human face” in FFHQ

dataset (top), from “cheeseburger” to “anime face” (mid-

dle), and from “cheeseburger” to “flower” (bottom).

5.7. Domain addition to an existing generator

The proposed method does not update the kernel param-

eters in the generator. Therefore, we can add new classes or

domains without disturbing the performance on the source

domain. This can be seen as low-shot learning [31] for a

generator, and is a completely new task that is enabled only

by our method.

From this, by changing the scale and shift parameters

and latent vector, we can perform smooth morphing be-

tween different domains, similar to what is performed in

[20, 4]. We conducted this domain morphing between

“cheeseburger” in ImageNet generated by the pre-trained

generator and each target dataset. Smooth morphing is

achieved, and the results are shown in Figure 14. This re-

sult shows that the generator uses the common knowledge

for both source and target dataset.

6. Conclusion

In this work, we proposed a simple yet effective method

for image generation from small datasets. By transferring

the prior knowledge of a pre-trained generator and updating

only the scale and shift parameters, it is possible to generate

new images from much fewer images than required for reg-

ular generator training. Our results show that the proposed

method can generate higher quality images using a small

training dataset relative to existing methods. This method

can be used for a new task, low-shot learning for the gener-

ative model. As the proposed method can be leveraged for

small dataset augmentation, future works include extending

the method for classification tasks and few-shot learning.

7. Acknowledgement

This work was supported by JST CREST Grant Num-

ber JPMJCR1403, Japan. We would like to thank Anto-

nio Tejero de Pablos, Audrey Chung, Hiroharu Kato, James

Borg, Takuhiro Kaneko, and Yusuke Mukuta for helpful dis-

cussions.

2757

References

[1] Piotr Bojanowski, Armand Joulin, David Lopez-Paz, and

Arthur Szlam. Optimizing the latent space of generative net-

works. In ICML, 2018.

[2] Konstantinos Bousmalis, Nathan Silberman, David Dohan,

Dumitru Erhan, and Dilip Krishnan. Unsupervised pixel-

level domain adaptation with generative adversarial net-

works. In CVPR, 2017.

[3] Konstantinos Bousmalis, George Trigeorgis, Nathan Silber-

man, Dilip Krishnan, and Dumitru Erhan. Domain separa-

tion networks. In NIPS, 2016.

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

scale gan training for high fidelity natural image synthesis.

In ICLR, 2019.

[5] Yaroslav Ganin and Victor Lempitsky. Unsupervised Do-

main Adaptation by Backpropagation. In ICML, 2015.

[6] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative Adversarial Nets. In NIPS, 2014.

[7] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,

Bernhard Nessler, and Sepp Hochreiter. Gans trained by a

two time-scale update rule converge to a local nash equilib-

rium. In NIPS, 2017.

[8] Huaibo Huang, Zhihang Li, Ran He, Zhenan Sun, and Tieniu

Tan. IntroVAE: Introspective Variational Autoencoders for

Photographic Image Synthesis. In NIPS, 2018.

[9] Sergey Ioffe and Christian Szegedy. Batch Normalization:

Accelerating Deep Network Training by Reducing Internal

Covariate Shift. In ICML, 2015.

[10] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

ECCV, 2016.

[11] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.

Progressive Growing of GANs for Improved Quality, Stabil-

ity, and Variation. In ICLR, 2018.

[12] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks. In

CVPR, 2018.

[13] Diederik P Kingma, Danilo J Rezende, Shakir Mohamed,

and Max Welling. Semi-supervised Learning with Deep

Generative Models. In NIPS, 2014.

[14] Diederik P Kingma and Max Welling. Auto-Encoding Vari-

ational Bayes. In ICLR, 2014.

[15] Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and

Xiaodi Hou. Revisiting batch normalization for practical do-

main adaptation. In ICLR, 2017.

[16] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.

Deep learning face attributes in the wild. In ICCV, 2015.

[17] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I

Jordan. Learning transferable features with deep adaptation

networks. In ICML, 2015.

[18] Jacob Menick and Nal Kalchbrenner. Generating high fi-

delity images with subscale pixel networks and multidimen-

sional upscaling. In ICLR, 2019.

[19] George A Miller. Wordnet: a lexical database for english.

Communications of the ACM, 38(11):39–41, 1995.

[20] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and

Yuichi Yoshida. Spectral normalization for generative ad-

versarial networks. In ICLR, 2018.

[21] Takeru Miyato and Masanori Koyama. cGANs with projec-

tion discriminator. In ICLR, 2018.

[22] Maria-Elena Nilsback and Andrew Zisserman. Automated

flower classification over a large number of classes. In

ICVGIP, 2008.

[23] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic.

Learning and transferring mid-level image representations

using convolutional neural networks. In CVPR, 2014.

[24] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-

vised representation learning with deep convolutional gener-

ative adversarial networks. In ICLR, 2016.

[25] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wier-

stra. Stochastic backpropagation and approximate inference

in deep generative models. In ICML, 2014.

[26] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. IJCV, 115(3):211–252,

2015.

[27] Thomas Schlegl, Philipp Seeböck, Sebastian M. Waldstein,

Ursula Schmidt-Erfurth, and Georg Langs. Unsupervised

Anomaly Detection with Generative Adversarial Networks

to Guide Marker Discovery. In IPMI, 2017.

[28] Sungho Shin, Kyuyeon Hwang, and Wonyong Sung. Gener-

ative knowledge transfer for neural language models. arXiv

preprint arXiv:1608.04077, 2016.

[29] Karen Simonyan and Andrew Zisserman. Very deep con-

volutional networks for large-scale image recognition. In

ICLR, 2015.

[30] Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele.

Meta-transfer learning for few-shot learning. In CVPR,

2019.

[31] Sebastian Thrun. Is learning the n-th thing any easier than

learning the first? In NIPS, 1996.

[32] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell.

Adversarial discriminative domain adaptation. In CVPR,

2017.

[33] Aäron Van Den Oord, Nal Kalchbrenner, and Koray

Kavukcuoglu. Pixel Recurrent Neural Networks. In ICLR,

2016.

[34] Yaxing Wang, Chenshen Wu, Luis Herranz, Joost van de

Weijer, Abel Gonzalez-Garcia, and Bogdan Raducanu.

Transferring GANs: generating images from limited data. In

ECCV, 2018.

[35] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas

Funkhouser, and Jianxiong Xiao. Lsun: Construction of a

large-scale image dataset using deep learning with humans

in the loop. arXiv preprint arXiv:1506.03365, 2015.

[36] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augus-

tus Odena. Self-attention generative adversarial networks. In

ICML, 2019.

2758

