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Abstract

We propose the onion-peel networks for video comple-

tion. Given a set of reference images and a target image

with holes, our network fills the hole by referring the con-

tents in the reference images. Our onion-peel network pro-

gressively fills the hole from the hole boundary enabling it

to exploit richer contextual information for the missing re-

gions every step. Given a sufficient number of recurrences,

even a large hole can be inpainted successfully. To attend to

the missing information visible in the reference images, we

propose an asymmetric attention block that computes simi-

larities between the hole boundary pixels in the target and

the non-hole pixels in the references in a non-local manner.

With our attention block, our network can have an unlimited

spatial-temporal window size and fill the holes with globally

coherent contents. In addition, our framework is applica-

ble to the image completion guided by the reference images

without any modification, which is difficult to do with the

previous methods. We validate that our method produces

visually pleasing image and video inpainting results in re-

alistic test cases.

1. Introduction

Recently, we have seen rapid progress in the image com-

pletion task – synthesizing missing pixels in an image – us-

ing deep neural networks [14, 37, 25, 20, 36]. Generative

adversarial networks [8] are often used to hallucinate miss-

ing contents and have shown impressive results. Despite the

progress in image completion, video completion has been

rarely explored using deep networks and still remains in

an early stage. In video completion, we need to fill miss-

ing regions with coherent contents through time rather than

synthesizing contents at each frame independently. When

removing an object in a video, the region occluded by the

object may be visible in other (potentially distant) frames,

and filling the region without considering the original con-

tent in other frames will severely break the temporal con-

sistency. Therefore, it is difficult to directly extent ideas of

image inpainting networks to the video completion problem

using 3D convolutional or recurrent networks because their
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Figure 1: Video completion results from Huang et al. [13],

VINet [17], and our method. Our method is able to handle

challenging cases where the flow computation is not easy

due to occlusions or large holes.

temporal receptive fields are too limited or directional.

For video completion, the traditional approach like the

global flow field based optimization technique [13] pro-

duces outputs with state-of-the-art quality. Although it per-

forms well in many cases, it is slow because it is computa-

tionally intensive and difficult to parallelize. In addition, it

suffers from challenging cases where optical flows are noisy

(e.g. occlusions or large holes). Recently, two deep learn-

ing based video completion methods have been proposed.

CombCN [30] is built by combining 2D and 3D CNNs, but

it is only validated on low-resolution videos of aligned faces

and vehicles with fixed square holes, making it difficult to

be used for real object removal cases. VINet [17] is de-

signed as a recurrent network and internally computes the

flow fields from 5 adjacent frames1 to the target frame. Due

to the network design, its temporal window is restricted to

the nearby frames, therefore, it is difficult to inpaint holes

with the faithful content that can be visible outside the tem-

poral window. Both works are meaningful in tackling the

challenging video completion task using deep networks and

1[t-6, t-3, t-1, t+3, t+6], where the current frame is at t
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produce video inpainting results much faster than the tra-

ditional methods, however, they hardly improve the output

quality over the traditional methods.

In this paper, we propose a novel deep network called

Onion-Peel Network (OPN) for video completion. Given

video frames with inpainting masks, we use a set of (sam-

pled) frames as the reference and fill the hole of the target

frame by taking the contents from the reference frames, or

synthesizing coherent contents if there is no missing con-

tent visible in the reference. Our network inpaints the hole

region one layer (peel) at a time by gradually eroding the

hole [23, 24]2. By doing so, our network can exploit richer

contextual information for the missing regions at each step.

Given a sufficient number of recurrences, even a large hole

can be inpainted successfully.

To pick up the missing contents that are visible in the ref-

erence images, we propose an asymmetric attention block

that computes similarities between the peel pixels in the tar-

get and the non-hole pixels in the references in a non-local

manner. With our attention block, our network can have an

unlimited spatial-temporal window to the reference and in-

paint holes with globally coherent contents. Our attention-

based approach is also free from optical flow computations,

thus we are able to handle challenging scenes with occlu-

sions or large holes hardly modeled by flows.

In addition to video completion, our network is also ap-

plicable to image completion with reference images. Un-

like the single-image inpainting task, we take a target im-

age with additional reference images as input and we aim

to complete the target image faithfully to the reference. It

is useful for image editing as people tend to take multiple

photographs of a scene in different angles and time. Using

a group of photos, our method enables one to remove unde-

sired objects without damaging the original contents. While

this scenario can be considered as a special case of video

completion with only a few frames, previous video com-

pletion methods have difficulties in handling this because

computing optical flow between distant frames is challeng-

ing.

To summarize, we make the following contributions for

accurate video completion:

– We propose the novel onion-peel network for flow-free

video completion that works by the spatio-temporal at-

tention mechanism.

– We propose the asymmetric attention block that allows

non-local matching between the hole and the non-hole

pixels.

– Our framework is applicable to the image completion

guided by the reference images that is hard to be achieved

by the previous image and video completion methods.

– We validate that our method produces comparable results

2The term ”onion peel” originated from the initialization technique

in [23, 24] for the randomized search through the PatchMatch [1]

to the state-of-the-art methods with fast computational

time.

2. Related Work

Given the usefulness and difficulty of the problem, there

is a large body of literature on the image and video comple-

tion. We review representative and recent studies that are

closely related to our method. We refer the survey papers –

image [9] and video [15] completion – for a comprehensive

review.

2.1. Image Completion.

Example-based methods. Example-based methods rely on

the self-examples to inpaint the missing regions [4, 11, 21].

In specific, a missing region is reconstructed by referencing

the information outside the missing region. Furthermore,

PatchMatch [1], a randomized search method for a fast ap-

proximation of the nearest neighbor field, accelerates the

inpainting for the high quality results [24, 12]. A commer-

cial solution in Adobe Photoshop belongs to this category.

Learning-based Methods. For learning-based methods,

deep generative models are trained to synthesize missing

contents in a data-driven manner. Generative adversarial

networks [8] are often adopted for this purpose [25, 37, 14,

36]. To specifically handle incomplete data in the inpainting

problem, the partial [20] and gated convolution [36] were

proposed as an alternative to the normal convolution opera-

tor. We use the gated convolution layer in our network.

In this work, we tackles the multi-image completion that

shares the similar concept of the example-based methods.

The difference is that we find the example information from

the reference images rather than from the same image.

2.2. Video Completion

Patch-based Methods. Wexler et al. [34] present a global

optimization approach that alternates between the nearest

neighbor search for the 3D spatio-temporal patches and the

pixel reconstruction. Newson et al. [23] extends [34] by em-

ploying the PatchMatch [1] to accelerate the nearest neigh-

bor search. Huang et al. [13] presented the non-parametric

optimization method based on the dense optical flow field.

The authors combine the spatial patch-based optimization

and the flow field estimation to achieve spatially and tempo-

rally coherent inpainting. While this method is recognized

as the state-of-the-art, the execution time is extremely long

due to the computational complexity.

Compared to the above methods that perform the global

optimization, our method runs an order of magnitude faster

as it is based on feed-forward neural network. In addition,

our data-driven approach is more flexible in handling un-

seen backgrounds.
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Figure 2: Overview of our network. We use the gated convolution layer as a basic building block. s and d indicate the stride

and the filter dilation of the gated convolution layer. If not indicated, we set s=1 and d=1.

Data-driven Methods. Recently, data-driven methods for

video completion through the deep networks have been pro-

posed [30, 17]. In [30], the authors propose to use a com-

bination of 3D and 2D CNNs, where the 3D sub-network

is working with low-resolution video to reduce the compu-

tation. In [17], an image-based encoder-decoder network

is designed to collect information from the nearby frames.

Specifically, a set of the optical flow is estimated to aggre-

gate information from the neighbor frames.

As mentioned earlier, those approaches have a limitation

on their spatial-temporal window, which is crucial for the

global coherency. Therefore, these methods are not ex-

pected to produce plausible results when a wide tempo-

ral window is required (e.g., the object is big or moving

slowly). On the other hand, our approach exploits a non-

local pixel matching to have a global temporal window, thus

it is free from such problems.

3. Onion-peel Network

The overview of our network for video completion is

shown in Fig. 2. Given each video frame annotated with

regions to be filled, the goal is to fill the hole region by

looking at the other frames in the video for the right pix-

els. We call the image to be filled as the target image and

the other images as the reference images. At each step, the

onion-peel network fills only the peel region of the target

image by referring to valid regions on the reference images.

The peel region is defined as the set of pixels that are on

the boundary of the hole region. We process the target im-

age recursively to gradually fill the hole using the reference

images.

In our network, the target image as well as the reference

images are first embedded into the key and the value feature

maps through the shared encoder network. We use the key

features to find correspondences between the pixels in the

target and the reference images. The key features on the

peel region in the target image will be matched to every key

feature on all valid (non-hole) regions of the reference im-

ages using the asymmetric attention block. The result of the

matching is a spatio-temporal attention map, giving infor-

mation about which pixel in which frame is important to fill

the pixels in the peel region. The value is an abstract fea-

ture representation of an image to be used for reconstructing

output images. Using the attention map from the key match-

ing, we retrieve value features on the non-hole region of the

reference frames according to the matching score. An ex-

ample of the key matching and the value retrieval is shown

in Fig. 3. The retrieved value features from the reference

feature map are added to corresponding value features on
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Target image

Reference images

: key matching

: value retrieval

Figure 3: A visualization of attentions computed in our

asymmetric attention block. The thickness of arrows rep-

resents the matching (softmax) score.

the peel region in the target feature map. Then the decoder

takes the updated target value feature map with the peel re-

gion mask and inpaints the peel region of the target image.

3.1. Inference

We present two applications of the proposed onion-peel

network: reference-guided image completion and video

completion. For the image completion, reference images

are embedded into key and value feature maps through the

encoder. Then, the whole network (encoder, asymmetric at-

tention block, and decoder) is applied to the target image

recursively to fill the peel region iteratively until the hole is

completely filled. For the video completion, the procedure

of the image inpainting is looped over every frame sequen-

tially. In the case of video, a set of the reference images is

sampled from the video. In our implementation, we sam-

pled every 5-th frame as the references.

The detailed procedure of the video inpainting is de-

scribed in Alg. 1. Image completion is a specific case of

the video completion with one target image and a set of ref-

erence images. Here, we define i-th video frame as Xi and

its hole mask as Hi. The peel region P is defined as the

hole pixels that are within the Euclidean distance of p to the

nearest non-hole pixel. We set p to 8. The validity map Vi

indicates genuine non-hole pixels that are not filled by the

algorithm. Because the reference frames are not changed

during inpainting a video, we run the encoder for the refer-

ence frames only once.

3.2. Network Design

Encoder. The input to the encoder network consists of an

RGB image, the hole mask, and the validity map. The hole

pixels on the RGB image are filled with the neutral (grey)

values. These inputs are concatenated along the channel

axis to form a 5-channel image before being fed into the

Algorithm 1: Onion-peel hole filling.

Inputs : video X , hole H , validity V , peel width p

Output: completion video X

for l in reference frame indices do

kl,vl = Encoder(Xl, Hl, Vl)
end

for i in target frame indices do

X0
i = Xi

H0
i = Hi

j = 0

while ‖Hj
i ‖ do

P j = get peel(Hj
i , p)

q, r = Encoder(Xj
i , H

j
i , Vi)

z = AsymAtteBlk(q, r, P j ,k∀\i,v∀\i, V∀\i)

X̂
j+1

i = Decoder(z)

X
j+1

i = (1− P j)⊙X
j
i + P j ⊙ X̂

j+1

i

H
j+1

i = H
j
i − P j

j = j + 1

end

end

first layer. We use the gated convolutional layer as a basic

building block as it is useful for handling void information

like a hole [36]. The encoder downsamples the feature map

up to the 1/4 scale of the original size to secure the high-

frequency details. The dilated convolution is used to further

enlarge the receptive field size, and similar design choices

can be found in recent image completion works [14, 37].

The encoder has two output heads each for the key and the

value embedding, and this is implemented as two parallel

gated convolutional layers.

The same encoder network is used for both the target

image and the reference images to embed them into the key

and the value feature maps. We denote the key and the value

map from the target frame as q and r, and the key and the

value maps from the reference frames as k and v.

Asymmetric Attention Block. The key and the value fea-

ture maps from the target image and the reference images

are fed into the asymmetric attention block. A detailed il-

lustration is shown in Fig. 4. In this module, inspired by

recent attention mechanisms [29, 33], the key feature maps

from the target and the reference are non-locally matched

to compute a soft attention map over the reference images.

Then, the attention map is used for the retrieval of the ref-

erence value features. As the network aims to reconstruct

the peel region of the target image by looking the non-hole

region of the reference images, we constrain the matching

targets accordingly using the peel P and the validity map V .

Specifically, before the key matching, pixels on the target

and the reference embedding maps are indexed by P and
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Figure 4: Asymmetric attention block. Variables after in-

dexing are marked with high asterisks. h and w are the spa-

tial resolution of feature maps, and n is the number of the

reference frame. c and m is the number of pixels on the peel

region and non-hole regions.
⊗

and
⊕

represent the ma-

trix multiplication and element-wise addition, respectively.

V , respectively. This results in smaller matrices (marked

with high asterisks in Fig. 4) where the column size is the

number of pixels on the peel and the valid region, respec-

tively. By doing so, we can specify the region of interests

and the computational cost is significantly reduced as the

key matching and value retrieval are implemented as a ma-

trix inner-product. The matching scores s∗ are cosine sim-

ilarities normalized by the softmax function. The reference

value features are then retrieved by the weighted summation

with the computed matching scores. The retrieved values

u∗ are added to the target values q∗ and assigned back to

the original peel position (P ). An example of this attention

mechanism is visualized in Fig. 3.

Decoder. The decoder takes the output of the asymmetric

attention block to reconstruct the peel region of the target

image. We make the decoder to focus on the recovery of

the peel region through our loss function which put more

weight on that area (see Sec. 3.3 for detail). The decoder

network is designed to be symmetric to the encoder net-

work. The nearest neighbor upsampling is used to enlarge

the feature map and the peel region of raw decoder output is

combined with the non-hole region of the input target frame.

3.3. Training

Synthetic Training Data. Our framework is designed to

retrieve the missing information from spatially and tempo-

rally distant pixels on the reference images. This design

choice allows us to easily synthesize the training data. For

Reference images

Target image 

Initial state (!") After 2 recursions  (!#) After 4 recursions  (!$)

… …

Figure 5: Example of the training sample and the intermedi-

ate outputs. All the intermediate outputs are used for com-

puting losses.

each training sample, we prepare one target and four refer-

ence images taken from the same scene. The network inputs

are images with holes made using masks, and the network

is trained to reconstruct the image pixels of the hole region

in the target image.

To synthesize such training samples, two ingredients are

required: a set of images and masks. For images, we used

two sources: Places2 dataset [38] and YouTube videos that

we collected ourselves. Places2 dataset [38] consists of

1.8 million images from 365 scene categories. With this

dataset, we synthesized 5 background images by apply-

ing random affine transforms to an image such as rotation,

translation, and cropping. The variety of contents in this

dataset is useful for learning the generalization for various

types of scenes.

In addition, we collected YouTube videos to learn a re-

alistic scene transition between video frames. A total of

351 videos were collected from YouTube by searching for

keywords like cities, nature, and world. Then, each video

is chopped into short clips by detecting scene changes re-

sulting in 7000 video clips. During the training, 5 frames

are randomly sampled from each video clip. The source of

training data is randomly picked at an equal chance.

For masks, we collected various object-shaped masks

from the image datasets annotated with object masks (in-

stance segmentation [6, 10] and salient object detection [27,

3]). Then, these masks are randomly moved and deformed

by random affine transforms to simulate moving objects.

An example of our training data is shown in Fig. 5.

Loss Functions. The loss function is designed to capture

both the per-pixel reconstruction accuracy and the percep-

tual similarity. To achieve this, we minimize the L1 distance

to the groundtruth in the pixel space and the deep feature
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Reference images Yu et al. Content aware fill OursInput image

Figure 6: Examples of image completion using a group of photos. The images are from Youtube-VOS [35].

space at each recurrence step. Example intermediate out-

puts are shown in Fig. 5.

The pixel losses are defined as follows:

Lpeel =
∑

j

‖P j ⊙ (X̂j − Y )‖1,

Lvalid =
∑

j

‖V ⊙ (X̂j − Y )‖1,
(1)

where j indexes over the number of the recurrence, X̂j is

the raw output of the decoder before the composition at

j-th recursion, Y is the groundtruth, and ⊙ indicates the

element-wise multiplication.

Similarly, the perceptual loss is defined as the combina-

tion of the content and the style loss as follows:

Lcontent =

3∑

s=1

∑

j

‖φs(X
j)− φs(Y )‖1,

Lstyle =
3∑

s=1

∑

j

‖G(φs(X
j))− G(φs(Y ))‖1,

(2)

where φs(·) is the mapping to s-th pooled feature map of

VGG-16 network [28] pre-trained on ImageNet, and G(·) is

a function for computing Gram matrix [7].

We compute the pixel losses directly on the decoder out-

put and the perceptual loss after merging the peel pixels of

the output with the non-hole region input. The total loss is

the weighted summation of all the loss functions.

Ltotal = 100 · Lpeel + Lvalid

+ 0.05 · Lcontent + 120 · Lstyle + 0.01 · Ltv,
(3)

where Ltv is the total variation regularization term [16]. The

balancing hyperparameters are adopted from [20].

Training Details. We used 256×256 images for the train-

ing and set the maximum number of the recursion as 5. For

all experiments, the mini-batch size is set to 4 per GPU and

Adam optimizer [18] is used. The learning rate starts with

1e-4 and divided by 10 every 100,000 iteration. The train-

ing takes about 5 days using four NVIDIA V100 GPUs.

3.4. Video Temporal Consistency

In the case of video completion, a video is processed

frame-by-frame and the output videos often show flicker-

ing artifacts. To remedy this, we post-process our video

outputs with an additional temporal consistency networks.

The network is designed and trained for stabilizing videos

inspired by [19] . Specifically, an encoder-decoder network

equipped with a convolutional GRU at the core is trained

to balance between the temporal stability with the previous

frame and the perceptual similarity with the current frame.

We modified the original method to match our need which is

to stabilize the inpainted contents. Further details are cov-

ered in the supplementary materials and the effect of this

post-processing is discussed in Sec. 4.3.

4. Experiments

In this section, we present our results on two experimen-

tal settings: reference-guided image completion and video

completion.

We conducted our experiments using the test im-

ages/videos with a resolution of 424×240. Our code and

model will be available online.N To obtain the results of

other methods, we either used the available official codes or

asked the authors for their results3.

3 Yu et al. [37]: https://github.com/JiahuiYu/generative inpainting,

Huang et al. [13]: https://filebox.ece.vt.edu/∼jbhuang/project/vidcomp/

index.html, and VINet [17]: requested to the authors.
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4.1. Reference­guided Image Completion

In this setting, an algorithm aims to reconstruct the hole

regions on an image using several reference images where

the missing parts are partially visible.

Test Data. There are few related inpainting methods

[31, 22, 5, 2] that leverage reference views, but those are ei-

ther limited to specific configurations or patch-based meth-

ods. To the best of our knowledge, there is no deep learn-

ing method and standard test data specifically targeting this

task. Therefore, we built a test set that consists of groups of

photos, with each group having a set of photos of the same

scene but in a different camera angle and time. Each photo

also needs to be annotated with the undesired objects.

Rather than collecting images that meet the requirements

from scratch, we start from a video dataset labeled with

objects. We take Youtube-VOS [35] as the starting point.

From there, we manually select videos that contain the ap-

propriate scenes, and 5 frames are uniformly sampled from

each video to form a group of photos. Among 5 images, one

is used as the target image and other four images are used

as the reference images.

Comparison. We compare our method against the state-of-

the-art learning-based [37] and example-based [1] comple-

tion methods.

– Yu et al. [37] is a generative model for single-image com-

pletion built upon the generative adversarial network [8].

We used a model trained on Places2 data [38].

– Content aware fill [1], a feature built into Adobe Photo-

shop, is the most popular tool for the image completion. To

allow it to take advantages of the reference frames, we first

concatenated the target and reference images, then we let it

fill all the holes using all the available cues.

As shown in Fig. 6, the previous methods have difficul-

ties in inpainting a large missing area and show artifacts.

In comparison, our method is able to deal with a large

hole through the onion peeling. As expected, the single-

image based method (Yu et al.) tends to hallucinate con-

tents, and inpainted results are not consistent with the ref-

erence frames. The example-based method (content aware

fill) also fails to deliver pleasing results as it sometimes

pastes wrong contents due to errors in the patch matching.

On the other hand, our method is able to fill holes with the

actual contents by exploiting the reference images. In the

top row of Fig. 6, the red car completely occluded by a boy

is recovered.

4.2. Video Completion

In this section, our method is evaluated on the video

completion task both quantitatively and qualitatively.

User Study. We conducted a user study to subjec-

tively compare our method against the state-of-the-art

optimization-based [13] and learning-based [17] video

completion methods.

For the test videos, we used videos from DAVIS [26],

where every video frame has pixel-wise annotation for an

object. We used 24 videos from DAVIS with additional an-

notations that include the shadow regions provided by [13].

We conducted the user study through Amazon Mechan-

ical Turk. For each video, the input and results from the

3 methods were shown to the participants, and the partici-

pants were asked to rank the results from 1 to 3. We allowed

the participants to give a tie. Each test video was evaluated

by 100 participants, and the averaged rank was as follows:

Huang et al. [13] VINet [17] Ours

1.93 2.19 1.95

(lower is better)

By the average rank, the quality of VINet [17] is not on

par with the other two methods. The average ranks were

very close between our method and [13], although [13]

had a slight edge. Note that our methods runs more than

50 times faster than [13]. Per-video statistics are shown

in Fig. 7 and some sample results are shown in Fig. 8.

Quantitative Evaluation. It is widely known that quan-

titatively evaluating the object removal is a hard task as

the ground truth is not available. To make test videos with

known backgrounds, we synthesized imaginary objects on

top of the existing videos. To achieve this, we shuffled the

pairs of video and mask from DAVIS. A total of 26 test

videos were obtained this way, and used for comparing the

pixel-wise reconstruction accuracy.

In Table 1, we quantitatively compare our method

against the single-image [37] and the video completion [13]

method. In addition to PSNR and SSIM, we provide Video
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Figure 8: Visual comparison with video completion methods [13, 17] on DAVIS [26].

Input One-shot Onion-peel (!=8)

Figure 9: The effect of the onion peeling.

Middle frame

Temporal profile

Input Before After

Figure 10: Our results before and after applying the post-

processing. (top) the input and results at the middle frame.

(bottom) temporal profile of the orange scan line. The slices

of video frames were stacked along the vertical-axis.

Fréchet Inception Distance (VFID) [32] which is a video

perceptual measure known to match well with human per-

ception. Our method shows the best accuracy on all the

measures. While the test videos are not real, we believe this

synthetic experiments are helpful to understand the capabil-

ity of different methods.

4.3. Analysis

Onion Peeling. The core of our algorithm is the progressive

image completion called the onion peeling. To validate its

PSNR SSIM VFID Time

Yu et al. [37] 23.34 0.824 0.059 1.40s

Huang et al. [13] 28.04 0.858 0.035 910s

Ours 30.19 0.900 0.026 15.8s

Table 1: Quantitative evaluation. The PSNR, SSIM and

VFID are shown along with the execution time (sec/video).

effect, we trained a variant of our model that inpaints the

whole mask at one-shot. The one-shot variant runs about

3× faster than our onion-peel network (p=8), but the output

quality is not as good. One-shot model often fails to handle

large holes as shown in Fig. 9.

Post-processing. For video completion, we run

post-processing for temporal consistency as described

in Sec. 3.4. In Fig. 10, we show the completion results be-

fore and after the post-processing. It clearly shows that the

post-processing makes our results more temporally coher-

ent as the temporal profiles are more smooth. However, as a

side effect, the temporal consistency network tends to blur

video frames (Fig. 10).

5. Conclusion

We have presented a novel application of deep network

for the image/video completion. For the video completion,

our method shows a competitive quality to the state-of-

the-art optimization based method while running in a

fraction of time. Without any modification, our network is

applicable to the image completion guided by the reference

frames, which is hardly achieved by the existing methods.

Acknowledgment. This work was supported by the ICT R&D

program of MSIT/IITP (2014-0-00059) and the Technology In-

novation Program (10073129) funded By the Ministry of Trade,

industry & Energy (MOTIE, Korea).

4410



References

[1] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and

Dan B Goldman. Patchmatch: a randomized correspondence

algorithm for structural image editing. ACM Transactions on

Graphics (TOG), 28(3):24, 2009. 2, 7

[2] Connelly Barnes, Fang-Lue Zhang, Liming Lou, Xian Wu,

and Shi-Min Hu. Patchtable: Efficient patch queries for large

datasets and applications. ACM Transactions on Graphics

(TOG), 34(4):97, 2015. 7

[3] Ming-Ming Cheng, Niloy J Mitra, Xiaolei Huang, Philip HS

Torr, and Shi-Min Hu. Global contrast based salient region

detection. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 37(3):569–582, 2015. 5

[4] Antonio Criminisi, Patrick Pérez, and Kentaro Toyama.
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