
Transformable Bottleneck Networks

Kyle Olszewski13∗, Sergey Tulyakov2, Oliver Woodford2, Hao Li134, and Linjie Luo5∗

1University of Southern California, 2Snap Inc., 3USC ICT, 4Pinscreen Inc., 5ByteDance Inc.

Abstract

We propose a novel approach to performing fine-grained

3D manipulation of image content via a convolutional neu-

ral network, which we call the Transformable Bottleneck

Network (TBN). It applies given spatial transformations

directly to a volumetric bottleneck within our encoder-

bottleneck-decoder architecture. Multi-view supervision

encourages the network to learn to spatially disentangle the

feature space within the bottleneck. The resulting spatial

structure can be manipulated with arbitrary spatial trans-

formations. We demonstrate the efficacy of TBNs for novel

view synthesis, achieving state-of-the-art results on a chal-

lenging benchmark. We demonstrate that the bottlenecks

produced by networks trained for this task contain meaning-

ful spatial structure that allows us to intuitively perform a

variety of image manipulations in 3D, well beyond the rigid

transformations seen during training. These manipulations

include non-uniform scaling, non-rigid warping, and com-

bining content from different images. Finally, we extract

explicit 3D structure from the bottleneck, performing im-

pressive 3D reconstruction from a single input image. 1

1. Introduction

Inferring and manipulating the 3D structure of an image

is a challenging task, but one that enables many exciting ap-

plications. By rigidly transforming this structure, one can

synthesize novel views of the content. More general trans-

formations can be used to perform tasks such as warping or

exaggerating features of an object, or fusing components of

different objects. Convolutional Neural Networks (CNNs)

have shown impressive results on various 2D image synthe-

sis and manipulation tasks, but specifying such fine-grained

and varied 3D manipulations of the image content, while

achieving high-quality synthesis results, remains difficult.

Several approaches to providing transformation param-

eters as an input to, and applying such transformations

within, a network have been explored. A common approach

is to pass spatial transformation parameters as an explicit

input vector to the network [31], optionally with a decoder

∗This work was performed while the author was at Snap Inc.
1Code and data for this project are available on our website:

https://github.com/kyleolsz/TB-Networks
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Figure 1: Applications of TBNs. A Transformable Bottleneck

Network uses one or more images (column 1; here, 4 randomly

sampled views) to encode volumetric bottlenecks (columns 2 & 3),

which are explicitly transformed into and aggregated in an output

view coordinate frame. Transformed bottlenecks are then decoded

to synthesize state-of-the-art novel views (columns 5 & 6), as well

as reconstruct 3D geometry (column 4). Fine-grained and non-

rigid transformations, as well as combinations, can be applied in

3D, allowing creative manipulations (bottom row) that were never

used during training. Images shown are samples of real results.

trained to perform a specific set of transformations [3, 30].

Other approaches include altering the input by augmenting

it with auxiliary channels defining the desired spatial trans-

formation [21], or constructing a renderable representation

that is spatially transformed prior to rendering [19, 32].

We propose a novel approach: directly applying the spa-

tial transformations to a volumetric bottleneck within an

encoder-bottleneck-decoder network architecture. We call

these Transformable Bottleneck Networks (TBNs). The net-

work learns that these 3D transformations correspond to

transformations between source and target images.

There are several advantages to this approach. Firstly,

supervising on multi-view datasets encourages the network

to infer spatial structure—it learns to spatially disentangle

the feature space within the bottleneck. Consequently, even

when training a network using only rigid transformations

corresponding to viewpoint changes, we can manipulate the

network output at test time with arbitrary spatial transfor-

mations (see Figs. 1 & 6). The operations enabled by these
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transformations thus include not only rotation and transla-

tion, but also effects such as non-uniform 3D scaling and

global or local non-rigid warping. Additionally, bottleneck

representations of multiple inputs can be transformed into,

and combined in, the same coordinate frame, allowing them

to be aggregated naturally in feature space. This can re-

solve ambiguities present in a representation from a single

image. While similar to ideas in Spatial Transformer Net-

works (STN) [14, 18] and a 3D reconstruction method [27]

deriving from it, a key distinction of our approach is that the

spatial transformations are input to our network, as opposed

to inferred by the network. It is precisely this difference that

enables TBNs to make such diverse manipulations.

We highlight the power of this approach by applying it

to novel view synthesis (NVS). NVS is a challenging task,

requiring non-trivial 3D understanding from one or more

images in order to predict corresponding images from new

viewpoints. This allows us to demonstrate both the ability

of a TBN to naturally spatially disentangle features within

a 3D bottleneck volume, and the benefits that this confers.

We compare to leading NVS methods [30, 42, 29, 23], on

images from the ShapeNet dataset [1], and attain state-of-

the-art results on both L1 and SSIM metrics (see Table 1,

and Figs. 1 & 3a). We present additional qualitative results

on a synthetic human performance dataset. We also train a

simple voxel occupancy classifier on image segmentations

(i.e. without 3D supervision), and use it to demonstrate ac-

curate 3D reconstructions from a single image. Finally, we

provide qualitative examples of how this bottleneck struc-

ture allows us to perform realistic, varied and creative image

manipulation in 3D (Figs. 1 & 6).

In summary, the main contributions of this work are:

• A novel, transformable bottleneck framework that al-

lows CNNs to perform spatial transformations for

highly controllable image synthesis.

• A state-of-the-art NVS system using TBNs.

• A method for extracting high-quality 3D structure

from this bottleneck, constructed from a single image.

• The ability to perform realistic, varied and creative 3D

image manipulation.

2. Related work

We now review works related to the TBN, in the areas of

image and novel view synthesis, and volumetric reconstruc-

tion2 and rendering.

2.1. Image and novel view synthesis

Many exciting advances in image synthesis and manip-

ulation have emerged recently that enable the application

of specific styles or attributes. Early approaches generated

natural images using samples from a chosen distribution us-

2Image to depth map [6, 17], 3D mesh [10, 13, 35], point cloud [4] and

surfel primitive [8] approaches also exist, but are outside the scope of our

discussion.

ing a generative adversarial (GAN) training scheme [7, 25].

Conditional methods then provided the ability to change the

style of an input image to another style [12, 20]. Initially

such trained networks could only handle one style [43];

more recent works now allow multiple attribute changes us-

ing a single network, by learning to disentangle these at-

tributes from the training images [16, 31, 44].

Novel view synthesis generates an image from a new,

user-specified viewpoint, given one or more images of a

scene from known viewpoints. We focus on methods that,

like ours, can synthesize novel views from a single input im-

age. This is a highly ill-posed problem, requiring strong 3D

understanding and disentanglement of viewpoint and ob-

ject shape from the input image. Since the seminal work

of Hoiem et al. [11], methods have sought to develop more

expressive models to address general NVS. Early CNN so-

lutions regressed output pixel color in the new view [30, 41]

directly from the input image. Some works disentangle their

representations [31, 41], separating pose from object [41]

or face identity [31]. Zhou et al. [42] introduced a flow pre-

diction formulation, inferring an output to input pixel map-

ping instead, to which an explicit occlusion detection and

inpainting module [23] and generalization to an arbitrary

number of input images [29] have been added. Eslami et

al. [3] developed a latent representation that can be aggre-

gated to combine inputs, showing good results on synthetic

geometric scenes.

A drawback of all these approaches is that they condi-

tion their networks to perform the transformation, limiting

the transformations that can be applied to those that have

been learned. Most recently, methods have been proposed

to generate explicit representations of geometry and appear-

ance that are transformed and rendered using standard ren-

dering pipelines [19, 32]. While these representations can

be rendered from arbitrary viewpoints, they are based on

planar representations and are therefore not able to capture

realistic shape, especially when rendered from side views.

Our TBN approach allows us to perform fine-grained and

varied, even non-rigid, 3D manipulations in the bottleneck

volume, synthesizing them into realistic novel views. Here,

the manipulations are applied manually. However, recent

work [36] proposes a learned network for deforming ob-

jects arbitrarily (parameterized by an input shape), an idea

that complements our framework.

2.2. Volumetric reconstruction and rendering

Several recent methods reconstruct an explicit occu-

pancy volume from a single image [2, 5, 15, 27, 33, 39, 38,

40], some of which are trained using only supervision from

2D images [27, 33, 40]. Yan et al. [40] max-pool occupancy

along image rays to produce segmentation masks, and min-

imize their difference w.r.t. the ground-truths. Tulsiani et

al. [33] enforce photo-consistency between projected color

images (given the camera poses) using the correspondences
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Figure 2: A Transformable Bottleneck Network. (a) Network architecture, consisting of three parts: an encoder (2D convolution layers,

reshaping, 3D convolution layers), a resampling layer, and a decoder (a mirror of the encoder architecture). The encoder and decoder are

connected purely via the bottleneck; no skip connections are used. The resampling layer transforms an encoded bottleneck to the target

view via trilinear interpolation. It is parameterless, i.e. transformations are applied explicitly, rather than learned. Multiple inputs can be

aggregated by averaging bottlenecks prior to decoding. (b) A visualization of the conceptual correspondence between an image patch and

a subvolume of the bottleneck. Bottleneck volume visualizations show the cellwise norm of feature vectors. It is interesting that to note

that this norm appears to encode the object shape.

implied by the occupancy volume. In contrast to these ap-

proaches that use explicit occupancy volumes and render-

ing techniques, the implicit approaches proposed by Kar et

al. [15], and in particular Rezende et al. [27], are more

relevant to our work—both the volumetric representation

and the decoder (rendering) are learned, similar to recent

neural rendering work [22]. The former [15], trained on

ground truth geometry to estimate geometry from images,3

uses three learned networks4 and a hand-designed unpro-

jection step to compute a latent volume. The latter [27]

requires the target transformation to be inferred by the net-

work for NVS, whereas ours requires it to be provided as

input, removing any limitations on the transformations that

can be applied at test time.

3. Transformable bottleneck networks

In this section we formally define our Transformable

Bottleneck Network architecture and training method.

3.1. Architecture

A TBN architecture (Fig. 2(a)) consists of three blocks:

1. An encoder network E : Ik → Xk with parame-

ters θE , that takes in an image Ik and, through a se-

ries of 2D convolutions, reshaping, and 3D convolu-

tions,5 outputs a bottleneck representation, Xk, struc-

tured as a volumetric grid of cells, each containing an

n-dimensional feature vector.

2. A parameterless bottleneck resampling layer

S : Xk, Fk→l → X
′

l
, that takes a bottleneck rep-

resentation and user-provided transformation pa-

3The latent representation therefore does not encode appearance.
4For 2D image encoding, recurrent fusion and a 3D grid reasoning.
5See the appendix for the exact architecture.

rameterization, Fk→l, as input, and transforms the

bottleneck via a trilinear resampling operation.

3. A decoder network DI : X
′

l
→ I ′

l
with parameters

θI , whose architecture mirrors that of the encoder, that

decodes the transformed bottleneck, X′

l
, into an output

image, I ′
l
.

Subscripts k and l represent viewpoints. Neither the en-

coder nor the decoder are trained to perform a transforma-

tion: it is fully encapsulated in the bottleneck resampling

layer. As this layer is parameterless, the network cannot

learn how to apply a particular transformation at all; rather,

it is applied explicitly. A single source image synthesis op-

eration, which is end-to-end trainable, is written as:

I ′l = DI(S(E(Ik, θE), Fk→l), θI). (1)

When Fk→l is the identity transform (i.e. k = l), this oper-

ation defines an auto-encoder network.

3.1.1. Handling multiple input views

Our formulation naturally extends to an arbitrary num-

ber of inputs, both for training and testing, without mod-

ifications to either encoder or decoder. The encoded and

transformed representations of all inputs are simply aver-

aged:

X
′

l =
1

|K|

∑

k∈K

S(Xk, Fk→l), (2)

where K is the set of input viewpoints. The number of in-

puts tested on can differ from the number trained on, which

can differ even within a training batch. We later show that

the model trained with a single input view can effectively

aggregate multiple inputs at inference time, and also that a

model trained on multiple inputs can perform state-of-the-

art inference from a single image.
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3.1.2. Bottleneck layout and resampling

The network architecture defines the number of cells

along each side of the bottleneck volume, but not the spa-

tial position of each cell. Indeed, the framework imposes

no constraints on their position, e.g. the voxel grid cells do

not need to be equally spaced. In this work the grid cells

are chosen to be equally spaced,6 with the volume centered

on the target object and axis aligned with the camera co-

ordinate frame. Perspective effects caused by projection

through a pinhole camera, and the camera parameters that

affect them (such as focal length), are learned in the encoder

and decoder networks, rather than handled explicitly.

Since the bottleneck representation is a volume, it can be

resampled via trilinear interpolation, which is fully differ-

entiable [14, Eqn. 9]. This allows it to be spatially trans-

formed. The transformation, Fk→l, is parameterized as a

flow field that, for each output grid cell, defines the 3D point

in the input volume to sample to generate it. The decoder

takes as input a volume of the same dimensions as the en-

coder produces, therefore the flow field also has these di-

mensions. Feature channels form separate volumes that are

resampled independently, then recombined to form the out-

put volume.

When the view transformation is rigid, as in the case of

NVS, the flow field is computed by transforming the cell

coordinates of the novel view by the inverse of the relative

transformation from the input view.7 Non-rigid deforma-

tions can also be applied, enabling creative shape manip-

ulation, which we demonstrate in Sec. 4.4. Importantly, we

do not train on these kinds of transformations.

3.1.3. Geometry decoder

Since the TBN spatially disentangles shape and appear-

ance within the volumetric bottleneck, it should also be able

to reconstruct an object in 3D from the bottleneck represen-

tation. Indeed, prior work [27, 33] shows that training a

3D reconstruction using the NVS task alone, i.e. without

3D supervision, is possible. We extract shape in the form

of a scalar occupancy volume, O, with one value per bot-

tleneck cell, using a separate, shallow network, occupancy

decoder, DO : X → O. To avoid using any 3D supervision

to train this decoder, we then apply another decoding layer,

DS : O → S, that applies a 1D convolution along the z-

axis (the optical axis), followed by a sigmoid, to generate a

scalar segmentation image S, thus:

S = DS(O, θS), O = DO(X, θO), (3)

where θO and θS are the parameters of the occupancy and

segmentation decoders respectively.

3.2. Training

We train the TBN using the NVS task as follows.

6The scale of the spacing is unimportant here, as our NVS experiments

only involve camera rotations around the object center.
7The flow is defined from output voxel to input voxel coordinate.

3.2.1. Appearance supervision

NVS requires a minimum of two images of a given ob-

ject from different, known viewpoints.8 Given {Ik, Il} and

Fk→l, we can compute a reconstruction, I ′
l
, of Il using

equation (1). Using this, we define several losses in image

space with which to train our network parameters. The first

two are a pixel-wise L1 reconstruction loss and an L2 loss in

the feature space of the VGG-19 network, often referred to

as the perceptual loss:

LR(θE , θI) = ||Ik→l − Il||1, (4)

LP(θE , θI) =
∑

i

||Vi(Ik→l)−Vi(Il)||
2

2, (5)

where Vi is the output of the ith layer of the VGG-19 net-

work. To enforce structural similarity of the outputs we

also adopt the structural similarity loss [28, 37], denoted as

LS. Finally, we employ the adversarial loss of Tulyakov et

al. [34], LA, to increase the sharpness of the output image.

3.2.2. Segmentation supervision

Appearance supervision is sufficient for NVS tasks, but

to compute a 3D reconstruction we also require segmenta-

tion supervision,9 in order to learn θO and θS . We therefore

assume that for each image Ii we also have a binary mask

Mi, with ones on the foreground object pixels and zeros

elsewhere.10 Segmentation losses are computed in all input

and output views, using the aggregated bottleneck in the

multi-input case, as follows:

LM(θE , θO, θS) =
∑

k∈K

H(DS(S(Ol, Fl→k), θS),Mk),

+ H(DS(Ol, θS),Ml), (6)

where Ol = DO(X
′

l
, θO) and H is the binary cross en-

tropy cost, summed over all pixels. Summing over all views

achieves a kind of space carving. Correctly reconstructing

unoccupied cells within the visual hull is difficult to learn

as no 3D supervision is used, but appearance supervision

helps address this.

3.2.3. Optimization

The total training loss, with hyper-parameters λi to con-

trol the contribution of each component, is

LT(Θ) = LR + λ1LP + λ2LS + λ3LA + λ4LM, (7)

This loss is fully differentiable, and the network can be

trained end-to-end by minimizing the loss w.r.t. the network

parameters Θ = {θE , θI , θO, θS} using gradient descent.

8Viewpoints are defined by camera rotation and translation, w.r.t. some

arbitrary reference frame; world coordinates are not required.
93D supervision could be used, but requires ground truth 3D data.

10Segmentation supervision is not a hard constraint, therefore segmen-

tations from state-of-the-art methods (e.g. Mask R-CNN [9]) may suffice.

However, we use ground truth masks in this work.
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(b) Comparisons with Sun et al. [29]

Figure 3: Qualitative results and comparisons. (a) Randomly selected NVS samples generated using our method. Left: input images

(3 of the 4 used). Middle: transformable bottleneck and 3D reconstruction. Right: synthesized output views. (b) Samples of synthesized

novel views using the method of Sun et al. [29] and ours. Their method fails to capture overall structure for chairs, and generates unnatural

artifacts on cars, especially around the wheels. Where < 4 input views are used, they are selected in clockwise order, starting top left.

4. Experiments

We train and evaluate our framework on a variety of

tasks. We provide quantitative evaluations for our results

for novel view synthesis using both single and multi-view

input, and compare our results to state-of-the-art methods

on an established benchmark. We also perform 3D object

reconstruction from a single image and quantitatively com-

pare our results to recent work [33]. Finally, we provide

qualitative examples of our approach applying creative ma-

nipulations via non-rigid deformations.

4.1. A note on implementation

Our models are implemented and trained using the Py-

Torch framework [24], for automatic differentiation and

parallelized computation for training and inference. We ex-

tended this framework to include a layer to perform par-

allelizable trilinear resampling of a tensor, in order to ef-

ficiently perform our spatial transformations. We plan to

release the source code for our framework to the research

community upon publication.

Each network was trained on 4 NVIDIA P100s, with

each batch distributed across the GPUs. As we found that

batch size had no discernible effect on the final result, we

selected it to maximize GPU utilization. We trained each

model until convergence on the test image set, which took

approximately 8 days. For more details on the network ar-

chitecture, training process and datasets used in our evalua-

tions and results, please consult the appendix.

4.2. Novel view synthesis

Setup. We use renderings of objects obtained from the

ShapeNet [1] dataset, which provides textured CAD models

from a variety of object categories. We measure the capa-

bility of our approach to synthesize new views of objects

under large transformations, for which ground-truth results

are available. We train and evaluate our approach using the

cars and chairs categories, to demonstrate its performance

on objects with different structural properties. Each model

is rendered as 256 × 256 RGB images at 18 azimuth an-

gles sampled at 20-degree intervals and 3 elevations (0, 10

and 20 degrees), for a total of 54 views per model. We

use standard training and test data splits [23, 29, 42], and

train a separate network for each object category (also stan-

dard), using 4 input images to synthesize the target view.

The network architecture and training method were fixed

across categories.

As described in Section 3.1.1, our framework can use

a variable number of input images. Though trained with

4 input images, we demonstrate that our networks can in-

fer high-quality target images using fewer input images

at test time. Using the experimental protocol of Sun et

al. 2018 [29], which uses up to 4 input images to infer a

target image, we report quantitative results for our approach

and others that can use multiple input images [29, 30, 42],

as well as for an approach accepting single inputs [23].

To further demonstrate the applicability of our method

to non-rigid objects with higher pose diversity and lower

appearance diversity, we also train and qualitatively evalu-

ate a network using a multi-view human action dataset [26].

This dataset uses a limited number (186) of textured CAD

models representing human subjects. However, the subjects

are rigged to perform animation sequences representing a

variety of common activities (running, waving, jumping,

etc.), resulting in a much larger number of renderings. Note
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Methods Car Chair

L1 SSIM L1 SSIM

1
v
ie

w

Tatarchenko et al. 2015 [30] .139 .875 .223 .882

Zhou et al. 2016 [42] .148 .877 .229 .871

Park et al. 2017 [23] .119 .913 .202 .889

Sun et al. 2018 [29] .098 .923 .181 .895

Ours .091 .927 .178 .895

2
v
ie

w
s Tatarchenko et al. 2015 [30] .124 .883 .209 .890

Zhou et al. 2016 [42] .107 .901 .207 .881

Sun et al. 2018 [29] .078 .935 .141 .911

Ours .072 .939 .136 .928

3
v
ie

w
s Tatarchenko et al. 2015 [30] .116 .887 .197 .898

Zhou et al. 2016 [42] .089 .915 .188 .887

Sun et al. 2018 [29] .068 .941 .122 .919

Ours .063 .943 .116 .936

4
v
ie

w
s Tatarchenko et al. 2015 [30] .112 .890 .192 .900

Zhou et al. 2016 [42] .081 .924 .165 .891

Sun et al. 2018 [29] .062 .946 .111 .925

Ours .059 .946 .107 .939

Table 1: Quantitative results on novel view synthesis. We report

the L1 loss (lower is better) and the structural similarity (SSIM) in-

dex (higher is better) for our method and several baseline methods,

for 1 to 4 input views, on both car and chair ShapeNet categories.

that the training process is identical to that used for rigid

objects—input images for a given scene see the subject in a

fixed pose. Thus, the capability to perform non-rigid trans-

formations, as seen in Sec. 4.4, is still implicitly learned by

the network.

Results. Table 1 reports quantitative results across re-

cent methods, for 1 to 4 input views, on car and chair cate-

gories, for both the L1 cost and structural similarity (SSIM)

scores [37]. Though our networks are trained using exactly

4 input views, we obtain state-of-the-art results across all

metrics, categories and number of input views, even in the

challenging case of single-view input.

These results indicate that the TBN excels at NVS, and

outperforms alternatives using both pixelwise and percep-

tual metrics. We further note that our method performs sig-

nificantly better than others in cases involving large trans-

formations of the input images and challenging viewpoints

(see Fig. 3b). This demonstrates that our approach to com-

bining information from these viewpoints is an effective

strategy for synthesizing novel viewpoints, in addition to

having other interesting applications (see below).

Fig. 3a shows qualitative examples on 3 datasets: the

ShapeNet cars and chairs used for our quantitative eval-

uations, and the aforementioned human activity dataset.

Fig. 3b qualitatively compares our results with those of Sun

et al. [29] on several challenging examples requiring large

viewpoint transformations from the chair and car datasets.

Their method has difficulty inferring the proper correspon-

dence between the source and target images for both ob-

ject categories, particularly the more complex and variable

structure of the chairs. Thus, many details are missing or

incorrectly transformed. For cars, errors in the correspon-

dence between local regions of source and target images

cause artifacts, such as the wheel on the front of the car in

row 5. In contrast, our method recovers the overall struc-

ture of both chairs and cars well, improving finer details as

additional input views are added. We note that their results

are in some cases sharper, as they use flow prediction to di-

rectly sample input pixels to construct the output, whereas

our output images are rendered entirely from the bottleneck

representation, as is required for general 3D manipulation.

4.3. Appearance synthesis for 3D reconstruction

As reported above, our method performs well on NVS

with a single view, and progressively improves as more in-

put views are used. We now show that this trend extends to

3D reconstruction. However, given that more views aid re-

construction, and that our network can generate more views,

an interesting question is whether the generative power of

our network can be used to aid the 3D reconstruction task.

We ran experiments to find out.

Setup. To evaluate our method, we use the 3D recon-

struction evaluation framework from the Differentiable Ray

Consistency (DRC) work of Tulsiani et al. [33], which in-

fers a 3D occupancy volume from a single RGB image. We

trained our network on their dataset: multi-view images of

ShapeNet objects, rendered under varying lighting condi-

tions from 10 viewpoints, randomly sampled from uniform

azimuth and elevation distributions with ranges [0, 360) and

[−20, 30], respectively. As our method is trained using a

set of multi-view images and corresponding segmentation

masks, we compare our method to their publicly available

model trained on masked, color images, using 5 random

views of each object. In contrast, for this task our model

was trained using only 2 random views (one input, one out-

put) of each object.

Using the DRC [33] experimental protocol, we report

the mean intersection-over-union (IoU) of the volumes from

our occupancy decoder, computed on the evaluation im-

age set, compared to the ground-truth occupancies obtained

by voxelizing the 3D meshes used to render these images.

Like DRC, we report the IoU attained using the optimal dis-

cretization threshold for each object category.

Results. Figure 4 shows the results of this evaluation.

We report IoU numbers obtained using one real input im-

age, with 0 to 9 additional synthesized views, sampled ei-

ther randomly (red line) or regularly (at 0◦ elevation, blue

line). For comparison, we show results using additional real

images of the target object (green line), randomly sampled

from the evaluation set (regularly sampled images were not

available), as well as the results using DRC [33] with a sin-

gle input image (yellow line). The figure also contains qual-

itative comparisons of results11 using our best method (reg-

ularly sampled synthetic images) with varying numbers of

synthetic images (middle columns), compared to DRC [33]

(left) and the ground truth (right). Our method produces

11We render the voxel grids as meshes using an isosurface method.
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Figure 4: 3D reconstruction results. Quantitative (IoU, follow-

ing the evaluation framework of Tulsiani et al. [33]) and qualitative

results of our method performing 3D reconstruction on the chairs

dataset, from a single input image, supplemented by additional

views synthesized by our network. 0 synthesized views indicates

that only the original input image is used, while 1 to 9 indicate

that we synthesize these additional views and combine the bottle-

necks generated from these viewpoints with those obtained from

the original input view. Results from Tulsiani et al. [33], who use

only one image during inference, are also shown.

good results even with concavities (Fig. 4, row 1), that could

not be obtained solely from the object’s silhouette, demon-

strating that NVS supervision is an able substitute for ge-

ometry supervision when inferring the geometric structure

of such objects.

Using synthesized views from random poses clearly im-

proves the reconstruction quality as more views are incor-

porated into our representation, though does not match the

quality attained when using the same number of real images

instead. Using synthetic views sampled at regular intervals

around the object’s central axis produces significantly bet-

ter results, achieving superior single view 3D reconstruc-

tion to all other methods when using as few as 3 synthetic

views. This dramatic improvement from randomly to regu-

larly sampled synthetic views can be explained by the fact

that information from each of the regularly sampled views

is much more complementary than for the random views,

that could leave parts of the object “unseen” (or unhalluci-

nated). That synthetic views should improve the results at

all is a more nuanced argument.

One might imagine that recycling hallucinated views into

the encoder would simply reinforce the existing reconstruc-

tion. However, we argue the following: the encoder learns

to extract the features that allow an image to be transformed,

and the decoder learns to process the transformed features

so as to produce a plausible image under this transforma-

Input images Output mesh Views of 3D printed reconstruction

Figure 5: Examples of 3D printed objects created using our ap-

proach to 3D reconstruction.

tion. Therefore, consider a chair viewed from only one an-

gle: the encoder could say where in space it believes the

visible parts be, allowing it to be transformed, then the de-

coder could see this partial reconstruction in the bottleneck,

and knowing what chairs look like, hallucinate the unseen

parts. By recycling the synthesized image back through the

encoder, it could then see new parts of the chair, and gen-

erate structure for them also. In essence, it comes down to

where unseen structure is hallucinated within the network.

Since the bandwidths of our encoder and image decoder

are identical, there is no reason for it be in any particular

part. However, because the gradients in the decoder lay-

ers have been passed through fewer other layers, they may

receive a stronger signal for hallucination from the output

view, hence learn it first.

One might expect the occupancy decoder to learn to hal-

lucinate structure as well as the image decoder, but our re-

sults indicate that it doesn’t (see our qualitative reconstruc-

tions with no synthetic views, in Fig. 4). We intuit that this

is because it has much less information (binary vs. color im-

ages) to train on, and concomitantly a significantly smaller

bandwidth. This further validates our hypothesis that ap-

pearance supervision improves 3D reconstruction within

the visual hull, in the absence of 3D supervision.

Physical recreations of real objects. An exciting possi-

bility of image-based reconstruction is being able to recre-

ate old objects from photographs. We took 3 photos each

of 2 real chairs, computed TBNs from these images and

aggregated them using estimated relative poses. We com-

puted occupancy volumes from these, extracted meshes us-

ing an isosurface method, and 3D printed these meshes.

Figure 5 shows the input images, reconstructed meshes and

3D printed objects. Despite the low resolution of the occu-

pancy volume (403 voxels), these physical recreations are

coherent and depict the salient details of each chair.

4.4. Non­rigid transformations

Spatial disentanglement. Due to the convolutional na-

ture of our network, a subvolume of the 3D bottleneck

broadly corresponds to a patch of the input (if encoding)

or output (if decoding) image, as visualized in Fig. 2(b).

Any of the features in the subvolume, or a combination of

them, can account for the appearance of the image patch;

there is no guarantee that the features used will come from

the voxels corresponding to the location in 3D space of the
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Figure 6: Creative, non-rigid manipulations Selected examples

of non-rigid 3D manipulations applied to transformable bottle-

necks, for creative image and video12 synthesis. Manipulations in-

clude: vertical and horizontal stretching, twisting, slicing & stitch-

ing, non-linear inflation. Please see the supplementary video for

animated examples.

surface seen in the patch. In our framework, however, 2D

supervision from multiple directions (both input and output

views) places multiple subvolume constraints on where in-

formation can be stored. Storing information in the cells

corresponding to the location in 3D space of the visible sur-

face is the most efficient layout of information that meets all

of those constraints, thus the one which achieves the lowest

loss given the available network bandwidth. The effect is

therefore achieved implicitly, rather than explicitly.

Creative manipulation. Based on this effect of spatial

disentanglement, arbitrary non-rigid volumetric deforma-

tions can be applied on the transformable bottleneck, re-

sulting in a similar transformation of shape of the rendered

object. We demonstrate this qualitatively with a variety cre-

ative tasks, shown in Figure 6, that are performed by manip-

ulating and combining the volumetric bottlenecks extracted

from input images. Objects can be stretched in different di-

mensions (first and second rows). By rotating the upper and

lower portion of the volume in opposite directions (third

row), we can transform different regions of the target into a

new shape that does not correspond to a single rigid trans-

formation. Non-uniform and/or local scaling can be applied

to inflate or shrink (bottom row) objects. Parts of a bottle-

neck can even be replaced with another part from the same,

or a different bottleneck, creating hybrid objects (fourth and

fifth rows). Many other such manipulations are possible, far

beyond the scope of the rigid transformations trained on.

12While some such manipulations could seem simple to achieve in 2D,

an edited 3D object can also be rendered consistently from any azimuth

(see videos here and in the supplementary video), from a single manipu-

lated bottleneck.

Input images Novel views Manipulated shapes

Figure 7: Interactive manipulation. We use our approach to ro-

tate and deform objects before compositing them into real images.

Interactive creative manipulation. We implemented a

tool to demonstrate a useful real-world application of the

TBN: interactive manipulation and compositing. The user

has one or more13 photos of an object (whose class has been

trained on) they wish to manipulate and place in a photo of

a real world scene. The images are loaded into our appli-

cation, from which a single aggregated bottleneck is com-

puted. An interactive interface then allows the user to rotate,

translate, scale and stretch the object, transforming and ren-

dering the bottleneck in realtime and overlaying the object

in the target image, as they apply the transformations.

Figure 7 contains example inputs and outputs of this pro-

cess, for an interior design visualization use case. Two pho-

tos of a real chair were provided (with estimated relative

pose). Rotations and stretches were then applied interac-

tively, to get a feel for how the chair would look with dif-

ferent orientations and styles. Despite the challenging na-

ture of this example (real photos of a chair with complex

structure, and real-world lighting conditions such as specu-

lar highlights), we achieve highly plausible results.

5. Conclusion

This work has presented a novel approach to applying

spatial transformations in CNNs: applying them directly

to a volumetric bottleneck, within an encoder-bottleneck-

decoder network that we call the Transformable Bottleneck

Network. Our results indicate that TBNs are a powerful

and versatile method for learning and representing the 3D

structure within an image. Using this representation, one

can intuitively perform meaningful spatial transformations

to the extracted bottleneck, enabling a variety of tasks.

We demonstrate state-of-the-art results on NVS of ob-

jects, producing high quality reconstructions by simply ap-

plying a rigid transformation to the bottleneck correspond-

ing to the desired view. We also demonstrate that the 3D

structure learned by the network when trained on the NVS

task can be straightfowardly extracted from the bottleneck,

even without 3D supervision, and furthermore, that the

powerful generative capabilities of the complete encoder-

decoder network can be used to substantially improve the

quality of the 3D reconstructions by re-encoding regularly

spaced, synthetic novel views. Finally, and perhaps most in-

triguingly, we demonstrate that a network trained on purely

rigid transformations can be used to apply arbitrary, non-

rigid, 3D spatial transformations to content in images.

13Multiple images require true or estimated relative poses.
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