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Abstract

Inter-personal anatomical differences limit the accuracy

of person-independent gaze estimation networks. Yet there

is a need to lower gaze errors further to enable applications

requiring higher quality. Further gains can be achieved by

personalizing gaze networks, ideally with few calibration

samples. However, over-parameterized neural networks are

not amenable to learning from few examples as they can

quickly over-fit. We embrace these challenges and propose

a novel framework for Few-shot Adaptive GaZE Estima-

tion (FAZE) for learning person-specific gaze networks with

very few (≤ 9) calibration samples. FAZE learns a rotation-

aware latent representation of gaze via a disentangling

encoder-decoder architecture along with a highly adaptable

gaze estimator trained using meta-learning. It is capable

of adapting to any new person to yield significant perfor-

mance gains with as few as 3 samples, yielding state-of-the-

art performance of 3.18◦ on GazeCapture, a 19% improve-

ment over prior art. We open-source our code at https:

//github.com/NVlabs/few_shot_gaze 1.

1. Introduction

Estimation of human gaze has numerous applications in

human-computer interaction [7], virtual reality [28], auto-

motive [41] and content creation [46], among others. Many

of these applications require high levels of accuracy (cf.

[3, 37, 15, 2]). While appearance-based gaze estimation

techniques that use Convolutional Neural Networks (CNN)

have significantly surpassed classical methods [51] for in-

the-wild settings, there still remains a significant gap to-

wards applicability in high-accuracy domains. The cur-

rently lowest reported person-independent error of 4.3◦ [6]

is equivalent to 4.7cm at a distance of 60cm, which restricts

use of such techniques to public display interactions [54] or

crowd-sourced attention analysis [24].

*The first two authors contributed equally.
1This includes a real-time demo which takes < 10 seconds to record

9 calibration points for a new user and ∼ 1 minute to train a personalized

network on a laptop with an NVIDIA GTX GeForce 1060 GPU.
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Figure 1: Overview of the FAZE framework. Given a set of

training images with ground-truth gaze direction informa-

tion, we first learn a latent feature representation, which is

tailored specifically for the task of gaze estimation. Given

the features, we then learn an adaptable gaze estimation net-

work, AdaGEN, using meta-learning which can be adapted

easily to a robust person-specific gaze estimation network

(PS-GEN) with very little calibration data.

High-accuracy gaze estimation from images is difficult

because it requires either explicit or implicit fitting of a

person-specific eye-ball model to the image data and the es-

timation of their visual and optical axes. Moreover, it is well

understood that inter-subject anatomical differences affect

gaze estimation accuracy [9]. Classical model-based tech-

niques can often be personalized via few (9 or less) samples

(e.g., [9, 11]) but are not robust to image variations in un-

controlled settings. While feasible, subject-specific train-

ing of CNNs requires thousands of samples and is clearly

impractical [53]. Few-shot personalization of CNNs is dif-

ficult because training of highly overparametrized models

with only few training samples will lead to over-fitting.
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We tackle these many-fold challenges by proposing

FAZE, a framework for learning gaze estimation networks

for new subjects using very few calibration samples (Fig. 1).

It consists of: i) learning a rotation-aware latent represen-

tation of gaze via a disentangling transforming encoder-

decoder architecture ii) with these features learning a

highly adaptable gaze estimator using meta-learning, and

iii) adapting it to any new person to yield significant perfor-

mance gains with as few as 3 samples.

In order to learn a robust representation for gaze, we

take inspiration from recent work on transforming encoder-

decoder architectures [12, 47] and design a rotation-

equivariant pair of encoder-decoder functions. We disen-

tangle the factors of appearance, gaze and head pose in the

latent space and enforce equivariance by decoding explic-

itly rotated latent codes to images of the same person but

with a different gaze direction compared to the input (via

a ℓ1 reconstruction loss). The equivariance property of our

gaze representation further allows us to devise a novel em-

bedding consistency loss term that further minimizes the

intra-person differences in the gaze representation. We then

leverage the proposed latent embedding to learn person-

specific gaze estimators from few samples. To this end we

use a meta-learning algorithm to learn how to learn such

estimators. We take inspiration from the recent success of

meta-learning [1] for few-shot learning in several other vi-

sion tasks [5, 10, 25]. To the best of our knowledge, we are

the first to cast few-shot learning of person-specific gaze es-

timators as one of multi-task learning where each subject is

seen as a new task in the meta-learning sense.

We evaluate the proposed framework on two benchmark

datasets and show that our meta-learned network with its la-

tent gaze features can be successfully adapted with very few

(k ≤ 9) samples to produce accurate person-specific mod-

els. We demonstrate the validity of our design choices with

detailed empirical evidence, and demonstrate that our pro-

posed framework outperforms state-of-the-art methods by

significant margins. In particular, we demonstrate improve-

ments of 13% (3.94◦ → 3.42◦) on the MPIIGaze dataset,

and 19% (3.91◦ → 3.18◦) on the GazeCapture dataset over

the approach of [20] using just 3 calibration samples.

To summarize, the main contributions of our work are:

• FAZE, a novel framework for learning person-specific

gaze networks with few calibration samples, fusing

the benefits of rotation-equivariant feature learning and

meta-learning.

• A novel encoder-decoder architecture that disentangles

gaze direction, head pose and appearance factors.

• A novel and effective application of meta-learning to

the task of few-shot personalization.

• State-of-the-art performance (3.14◦ with k = 9 on

MPIIGaze), with consistent improvements over exist-

ing methods for 1 ≤ k ≤ 256.

2. Related Work

Gaze Estimation. Appearance-based gaze estimation [40]

methods that map images directly to gaze have recently sur-

passed classical model-based approaches [11] for in-the-

wild settings. Earlier approaches in this direction assume

images captured in restricted laboratory settings and use di-

rect regression methods [22, 21] or learning-by-synthesis

approaches combined with random forests to separate head-

pose clusters [39]. More recently, the availability of large

scale datasets such as MPIIGaze [51] and GazeCapture

[17], and progress in CNNs have rapidly moved the field

forward. MPIIGaze has become a benchmark dataset for

in-the-wild gaze estimation. For the competitive person-

independent within-MPIIGaze leave-one-person-out evalu-

ation, gaze errors have progressively decreased from 6.3◦

for naively applying a LeNet-5 architecture to eye-input

[51] to the current best of 4.3◦ with an ensemble of multi-

modal networks based on VGG-16 [6]. Proposed advance-

ments include the use of more complex CNNs [53]; more

meaningful use of face [52, 17] and multi-modal input

[17, 6, 48]; explicit handling of differences in the two eyes

[4]; greater robustness to head pose [55, 30]; improvements

in data normalization [49]; learning more informed inter-

mediate representations [26]; using ensembles of networks

[6]; and using synthetic data [36, 45, 19, 27, 30].

However, person-independent gaze errors are still insuf-

ficient for many applications [3, 37, 15, 2]. While signifi-

cant gains can be obtained by training person-specific mod-

els, it requires many thousands of training images per sub-

ject [53]. On the other hand, CNNs are prone to over-fitting

if trained with very few (k ≤ 9) samples. In order to ad-

dress this issue, existing approaches try to adapt person-

independent CNN-based features [17, 27] or points-of-

regard (PoR) [50] to person-specific ones via hand-designed

heuristic functions. Some methods also train a Siamese net-

work with pairs of images of the same subject [20].

Learned Equivariance. Generalizing models learned for

regression tasks to new data is a challenging problem. How-

ever, recent works show improvements from enforcing the

learning of equivariant mappings between input, latent fea-

tures, and label spaces [13, 33], via so-called transform-

ing encoder-decoder architectures [12]. In [47], this idea

is expanded to learn complex phenomena such as the orien-

tation of synthetic light sources and in [33] the method is

applied to real-world multi-view imagery to improve semi-

supervised human pose estimation. In contrast, we learn

from very noisy real-world data while successfully disen-

tangling the two noisily-labeled phenomena of gaze direc-

tion and head orientation.

Few-shot Learning. Few-shot learning aims to learn a new

task with very few examples [18]. This is a non-trivial prob-
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lem for highly over-parameterized deep networks as it leads

to over-fitting. Recently, several promising meta-learning

[38, 44, 32, 34, 5, 23, 31] techniques have been proposed

that learn how to learn unique but similar tasks in a few-

shot manner using CNNs. They have been shown to be suc-

cessful for various few-shot visual learning tasks including

object recognition [5], segmentation [29], viewpoint esti-

mation [42] and online adaptation of trackers [25]. Inspired

by their success, we use meta-learning to learn how to learn

person-specific gaze networks from few examples. To the

best of our knowledge we are the first to cast person-specific

gaze estimation as a multi-task problem in the context of

meta-learning, where each subject is seen as a new task for

the meta-learner. Our insight is that meta-learning lends it-

self well to few-shot gaze personalization and leads to per-

formance improvements.

3. Method

In this section, we describe how we perform gaze esti-

mation from challenging in-the-wild imagery, with minimal

burden to the user. The latter objective can be fulfilled by

designing our framework to adapt well even with very few

calibration samples (k ≤ 9). We first provide an overview

of the FAZE framework and its three stages.

3.1. The FAZE framework

We design FAZE (Fig. 1) with the understanding that a

person-specific gaze estimator must encode factors partic-

ular to the person, yet at the same time, leverage insights

from observing the eye-region appearance variations across

a large number of people with different head pose and gaze

direction configurations. The latter is important for build-

ing models that are robust to extraneous factors such as poor

image quality. Thus, the first step in FAZE is to learn a gen-

eralizable latent embedding space that encodes information

pertaining to the gaze-direction, including person-specific

aspects. We detail this in Sec. 3.2.

Provided that good and consistent features can be

learned, we can leverage meta-learning to learn how to learn

few-shot person-specific gaze estimators for these features.

This results in few-shot learners which generalize better

to new people (tasks) without overfitting. Specifically, we

use the MAML meta-learning algorithm [5]. For our task,

MAML learns a set of initial network weights which allow

for fine-tuning without the usual over-fitting issues that oc-

cur with low k. Effectively, it produces a highly Adaptable

Gaze Estimation Network (AdaGEN). The final step con-

cerns the adaptation of MAML-initialized weights to pro-

duce person-specific models (PS-GEN) for each user. We

describe this in Sec. 3.3.

Encoder

Gaze MLP

Decoder

copy

x y z Gaze direction

16      Appearance code

 3x2    Gaze direction code

3x16  Head rotation code

Figure 2: Disentangling appearance, gaze and head pose

variations from an image with our Disentangling Trans-

forming Encoder-Decoder (DT-ED). We learn to translate

between pairs of images of the same person by rotating the

gaze and head pose codes. The encoder-decoder are super-

vised by a pixel-wise L1 loss (Eq. 3), with the gaze embed-

ding additionally supervised via gaze regression (Eq. 5).

3.2. Gaze­Equivariant Feature Learning

In this section, we explain how the learning of a function,

which understands equivalent rotations in input data and

output label can lead to better generalization in the context

of our final task of person-specific gaze estimation. In addi-

tion, we: (a) show how to disentangle eyeball and head rota-

tion factors leading to better distillation of gaze information,

and (b) introduce a frontalized embedding consistency loss

term to specifically aid in learning consistent frontal gaze

codes for a particular subject.

3.2.1 Architecture Overview

In learning a generalizable latent embedding space repre-

senting gaze, we apply the understanding that a relative

change in gaze direction is easier to learn in a person-

independent manner [20]. We extend the transforming

encoder-decoder architecture [12, 47] to consider three dis-

tinct factors apparent in our problem setting: gaze direction,

head orientation, and other factors related to the appearance

of the eye region in given images (Fig. 2). We disentangle

the three factors by explicitly applying separate and known

differences in rotations (eye gaze and head orientation) to

the respective sub-codes. We refer to this architecture as the

Disentangling Transforming Encoder-Decoder (DT-ED).

For a given input image x, we define an encoder E :
x → z and a decoder D : z → x̂ such that D (E(x)) = x̂.

We consider the latent space embedding z as being formed

of 3 parts representing: appearance (za), gaze direction or

eyeball rotation (zg), and head pose (zh), which can be ex-

pressed as: z =
{

za; zg; zh
}

where gaze and head codes

are flattened to yield a single column. We define zg as

having dimensions (3× F g) and zh as having dimensions
(

3× Fh
)

with F ∈ N. With these dimensions, it is possi-

ble to apply a rotation matrix to explicitly rotate these 3D
latent space embeddings using rotation matrices.
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(a) Only varying gaze direction, (θg, φg) ∈ [−25◦, 25◦]

(b) Only varying head orientation,
(

θh, φh
)

∈ [−20◦, 20◦]

Figure 3: Our disentangled rotation-aware embedding

spaces for gaze direction and head pose are demonstrated

by predicting embeddings ẑg , ẑh from a given sample, ro-

tating it to 15 points each, and then decoding them.

The frontal orientation of eyes and heads in our setting

can be represented as (0, 0) in Euler angles notation for az-

imuth and elevation, respectively assuming no roll, and us-

ing the x− y convention. Then, the rotation of the eyes and

the head from the frontal orientation can be described us-

ing (θg, φg) and
(

θh, φh
)

in Euler angles and converted to

rotation matrices defined as,

R(θ, φ) =





cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ









1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 .

(1)

While training DT-ED, we input a pair of images of a

person xa and xb. We can calculate R
g
ba = R

g
b (R

g
a)

−1
to

describe the change in gaze direction in going from sample

a to sample b of the same person. Likewise for head ro-

tation, Rh
ba = Rh

b

(

Rh
a

)−1
. This can be done using the

ground-truth labels for gaze (ga and gb) and head pose

(ha and hb) for the pair of input samples. The rotation of

the latent code zga can then be expressed via the operation

ẑ
g
b = R

g
abz

g
a. At training time, we enforce this code to be

equivalent to the one extracted from image xb, via a recon-

struction loss (Eq. 3). We assume the rotated codes ẑhb and

ẑ
g
b , along with the appearance-code zaa, to be sufficient for

reconstructing xb through the decoder function such that,

D (ẑb) = xb. More specifically, given the encoder output

E (xa) = za =
{

zaa; z
g
a; z

h
a

}

, we assume the rotated ver-

sion of xa to match the embedding of xb, that is we assume
{

ẑab ; ẑ
g
b ; ẑ

h
b

}

=
{

zaa; R
g
baz

g
a; R

h
baz

h
a

}

(See Fig. 2).

This approach indeed applies successfully to noisy real-

world imagery, as shown in Fig. 3 where we map a sam-

ple into the gaze and head pose latent spaces, rotate to the

frontal orientation, and then again rotate by a pre-defined

set of 15 yaw and pitch values and reconstruct the image

via the decoder. We can see that the factors of gaze direction

and head pose are fully disentangled and DT-ED succeeds

in the challenging task of eye-region frontalization and re-

direction from monocular RGB input.

We train the FAZE transforming encoder-decoder archi-

tecture using a multi-objective loss function defined as,

Lfull = λreconLrecon + λECLEC + λgazeLgaze, (2)

where we empirically set λrecon = 1, λEC = 2, and λgaze =
0.1. The individual loss terms are explained in the following

sub-sections.

3.2.2 Reconstruction Loss

To guide learning of the encoding-decoding process, we ap-

ply a simple ℓ1 reconstruction loss. Given an input image

xb and reconstructed x̂b obtained by decoding the rotated

embeddings ẑb of image xa, the loss term is defined as,

Lrecon (xb, x̂b) =
1

|xb|

∑

u∈xb,û∈x̂b

|û− u| , (3)

where u and û are pixels of images xb and x̂b respectively.

3.2.3 Embedding consistency Loss

We introduce a novel embedding consistency term, which

ensures that the encoder network always embeds images of

a person with different appearance but identical gaze direc-

tion to similar features. Usually this would require paired

images with only gaze directions changed. However, it is in-

tractable to collect such data in the real world, so we instead

exploit the learned equivariance of DT-ED. Before measur-

ing the consistency between latent gaze features from dif-

ferent samples, we first frontalize them by applying the in-

verse of the rotation matrix Rg
a using ground-truth gaze di-

rection ga. It should be noted that naively enforcing all

gaze features to be similar across persons may disregard the

inter-subject anatomical differences which should result in

different latent embeddings. Hence, we apply the embed-

ding consistency to intra-subject pairs of images only. We

validate this choice through experiments in Sec. 5.1.

Given a batch of B image samples during training, we

formally compute the embedding consistency loss using,

LEC =
1

B

B
∑

i=1

max
j=1...B

id(i)=id(j)

d
(

f(zgi ), f(z
g
j )
)

, (4)

where f(zg) = (Rg)
−1

zg corresponds to frontalized la-

tent gaze features. The function id(i) provides the person-

identity of the i-th sample in the batch, and d is a function

based on mean column-wise angular distance (between 3D

vectors). The max function minimizes differences between

intra-person features that are furthest apart, and is similar to

the idea of batch-hard online triplet mining [35].

During training, we linearly increase λEC from 0 until

sufficient mini-batches to cover 106 images have been pro-

cessed, to allow for more natural embeddings to arise before

applying consistency.
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3.2.4 Gaze Direction Loss

Lastly, we add the additional objective of gaze estimation

via G : zg → ĝ, parameterized by a simple multi-layer per-

ceptron (MLP). The gaze direction loss is calculated using,

Lgaze (ĝ, g) = arccos

(

ĝ · g

‖ĝ‖‖g‖

)

. (5)

3.3. Person­specific Gaze Estimation

Having learned a robust feature extractor, which is tai-

lored specifically for gaze estimation, our final goal is to

learn a personalized gaze estimator with as few calibration

samples as possible. A straightforward solution for doing

this is to train a person-independent model with the training

data used to train DT-ED and simply fine-tune it with the

available calibration samples for the given subject. How-

ever, in practical setups where only a few calibration sam-

ples are available, this approach can quickly lead to over-

fitting (see experiments in Fig. 4a). In order to alleviate

this problem, we propose to use the meta-learning method

MAML [5], which learns a highly adaptable gaze network

(AdaGEN).

Adaptable Gaze Estimator (AdaGEN) Training. We

wish to learn weights θ∗ for the AdaGEN gaze predic-

tion model M such that it becomes a successful few-shot

learner. In other words, when Mθ∗ is fine-tuned with only

a few “calibration” examples of a new person P not present

in the training set, it can generalize well to unseen “val-

idation” examples of the same person. We achieve this by

training it with the MAML meta learning algorithm adapted

for few-shot learning.

In conventional CNN training the objective is to min-

imize the training loss for all the examples of all train-

ing subjects. In contrast, for few-shot learning, MAML

explicitly minimizes the generalization loss of a network

after minimizing its training loss for a few examples

of a particular subject via a standard optimization algo-

rithm, e.g., stochastic gradient descent (SGD). Addition-

ally, MAML repeats this procedure for all subjects in the

training set and hence learns from several closely related

“tasks” (subjects) to become a successful few shot learner

for any new unseen task (subject). We identify that person-

specific factors may have few parameters, with only slight

but important variations across people such that all people

constitute a set of closely related tasks. Our insight is that

meta-learning lends itself well to such a problem of person-

alization.

The overall procedure of meta-learning to learn the

optimal θ∗ is as follows. We divide the entire set of

persons S into meta-training (Strain) and meta-testing

(Stest) subsets of non-overlapping subjects. During each

meta-training iteration n, we randomly select one person

Ptrain from Strain and create a meta-training sample for

the person (via random sampling), defined as Ptrain =
{Dtrain

c ,Dtrain
v }, containing a calibration set Dtrain

c =
{(zgi,gi)|i = 1 . . . k} of k training examples, and a val-

idation set Dtrain
v = {(zgj ,gj)|j = 1 . . . l} of another

l examples for the same person. Here, zg and g refer to

the latent gaze representation learned by DT-ED and the

ground-truth 3D gaze vector, respectively. Both k and l are

typically small (≤ 20) and k represents the “shot” size used

in few-shot learning.

The first step in the meta-learning procedure is to com-

pute the loss for the few-shot calibration set Dtrain
c and up-

date the weights θn at step n via one (or more) gradient

steps and a learning rate α as,

θ′n = f(θn) = θn − α∇Lc
Ptrain(θn). (6)

With the updated weights θ′n, we then compute the loss

for the validation set Dtrain
v of the subject Ptrain as

Lv
Ptrain(θ′n) = Lv

Ptrain(f(θn)) and its gradients w.r.t the

initial weights of the network θn at that training iteration n.

Lastly, we update θn with a learning rate of η to explicitly

minimize the validation loss as,

θn+1 = θn − η∇Lv
Ptrain(f(θn)). (7)

We repeat these training iterations until convergence to

get the optimal weights θ∗.

Final Person-specific Adaptation. Having learned our

encoder and our optimal few-shot person-specific learner

Mθ∗ , we are now well poised to produce person-specific

models for each new person Ptest from Stest. We fine-tune

Mθ∗ with the k calibration images Dtest
c to create a person-

alized model for Ptest as

θPtest = θ∗ − α∇Lc
Ptest(θ∗), (8)

and test the performance of the personalized model

Mθ
Ptest

on person Ptest’s validation set Dtest
v .

4. Implementation Details

4.1. Data pre­processing

Our data pre-processing pipeline is based on [49], a revi-

sion of the data normalization procedure introduced in [39].

In a nutshell, the data normalization procedure ensures that

a common virtual camera points at the same reference point

in space with the head upright. This requires the rotation,

tilt, and forward translation of the virtual camera. Please

refer to [49] for a formal and complete description, and our

supplementary materials for a detailed list of changes.
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4.2. Neural Network Configurations

DT-ED. The functions E and D in our transforming

encoder-decoder architecture can be implemented with any

CNN architecture. We select the DenseNet architecture [14]

both for our DT-ED as well as for our re-implementation

of state-of-the-art person-specific gaze estimation methods

[20, 50]. The latent codes za, zg , and zh are defined to have

dimensions (64), (3× 2), and (3× 16) respectively. Please

refer to supplementary materials for further details.

Gaze MLP. Our gaze estimation function G is parame-

terized by a multi-layer perceptron with 64 hidden layer

neurons and SELU [16] activation. The MLP outputs 3-

dimensional unit gaze direction vectors.

4.3. Training

DT-ED. Following [8], we use a batch size of 1536 and

apply linear learning rate scaling and ramp-up for the first

106 training samples. We use NVIDIA’s Apex library2 for

mixed-precision training. and train our model for 50 epochs

with a base learning rate of 5× 10−5, l2 weight regulariza-

tion of 10−4, and use instance normalization [43].

Gaze MLP. During meta-learning, we use α = 10−5 with

SGD (Eq. 6), and η = 10−3 (Eq. 7) with the Adam opti-

mizer (α and β in [5]), and do 5 updates per inner loop itera-

tion. For sampling Dtrain
v we set l = 100. During standard

eye-tracker calibration, one cannot assume the knowledge

of extra ground-truth beyond the k samples. Thus, we per-

form the final fine-tuning operation (Eq. 8) for 1000 steps

for all values of k and for all people.

4.4. Datasets

GazeCapture [17] is the largest available in-the-wild gaze

dataset. We mined camera intrinsic parameters from the

web for the devices used, and applied our pre-processing

pipeline (Sec. 4.1) to yield input images. For training the

DT-ED as well as for meta-learning, we use data from 993
people in the training set specified in [17], each with 1766
samples, on average, for a total of 1.7M samples. To ensure

within-subject diversity of sampled image-pairs at training

time, we only select subjects with ≥ 400 samples. For

computing our final evaluation metric, we use the last 500
entries from 109 subjects that have at least 1000 samples

each. We select the k-shot samples for meta-training and

fine-tuning randomly from the remaining samples.

MPIIGaze [51] is the most established benchmark dataset

for in-the-wild gaze estimation. In comparison to GazeCap-

ture it has higher within-person variations in appearance in-

cluding illumination, make-up, and facial hair changes, po-

tentially making it more challenging. We use the images

2https://github.com/NVIDIA/apex

specified in the MPIIFaceGaze subset [52] only for evalu-

ation purposes. The MPIIFaceGaze subset consists of 15
subjects each with 2500 samples on average. We reserve

the last 500 images of each subject for final evaluations as

is done in [53] and select k calibration samples for personal-

ization by sampling randomly from the remaining samples.

5. Results

For all methods, we report person-specific gaze estima-

tion errors for a range of k calibration samples. For each

data point, we perform the evaluation 10 times using k ran-

domly chosen calibration samples. Each evaluation or trial

yields a mean gaze estimation error in degrees over all sub-

jects in the test set. The mean error over all such trials

is plotted, with its standard deviation represented by the

shaded areas above and below the curves. The values at

k = 0 are determined via G (zg). We train this MLP on the

GazeCapture training subset, without any person-specific

adaptation.

5.1. Ablation Study

We evaluate our method under different settings to better

understand the impact of our various design choices. For

all experiments, we train the models using the GazeCap-

ture dataset’s training set and test on the MPIIGaze dataset.

This challenging experiment allows us to demonstrate the

generalization capability of our approach across different

datasets. The ablation studies are summarized in Fig. 4. We

provide additional plots of the results of this ablation study

on the test partition of the GazeCapture dataset in the sup-

plementary material.

MAML vs. Finetuning. In Fig. 4a, we first evaluate the im-

pact of meta-learning a few-shot person-adaptive gaze esti-

mator using MAML (Sec. 3.3) and compare its performance

with naive finetuning. When no person-specific adaptation

is performed (i.e., k = 0), the person-independent baseline

model G (zg) with the features learned using a vanilla au-

toencoder (AE) results in a mean test error of 7.17◦. Using

MAML for person-specific adaptation with only one cali-

bration sample decreases the error to 6.61◦. The error re-

duces further as we increase k and reaches a mean value

of 5.38◦ for k = 32. In contrast, naively finetuning (AE-

Finetuning) the gaze estimator results in severe over-fitting

and yields very high test errors, in particular, for very low

k values. In fact, for k ≤ 3, the error increases to above

the person-independent baseline model. Since the model

initialized with weights learned by MAML clearly outper-

forms vanilla finetuning, in the rest of this section, we al-

ways use MAML unless specified otherwise.

Impact of feature representation. Fig. 4a also evaluates

the impact of the features used to learn the gaze estimation

model. Our proposed latent gaze features (Sec. 3.2) signif-
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Figure 4: Ablation Study: Impact of (a) learning the few-shot gaze estimator using MAML (Sec. 3.3) and using the trans-

forming encoder-decoder for feature learning (Sec. 3.2); (b) different loss terms in Eq. (2) for training the transforming

encoder-decoder; and (c) comparison of the different variants of embedding consistency loss term (Eq. (4)). We provide

additional results for the test partition of the GazeCapture dataset in the supplementary material.

icantly decrease the error, e.g., 4.87◦ vs. 5.62◦ with k = 9
for DT-ED (MAML) and AE (MAML), respectively. Note

that the gain remains consistent across all values of k. The

only difference between DT-ED and AE is that the latent

codes are rotated in DT-ED before decoding. Despite this

more difficult task, the learned code clearly better informs

the final task of person-specific gaze estimation, showing

that disentangling gaze, head pose, and appearance is im-

portance for gaze estimation.

Contribution of loss terms. We evaluate the impact of each

loss term described in Eq. (2) (Sec. 3.2) by incorporating

them one at a time into the total loss used to train DT-ED.

Fig. 4b summarizes the results. Using only the image re-

construction loss Lrecon in Eq. (3), the learned latent gaze

features result in an error of 4.87◦ at k = 9. Incorporating

gaze supervision Lgaze in Eq. (5) to obtain features that are

more informed of the ultimate task of gaze-estimation gives

an improvement of 26% from 4.87◦ to 3.60◦. Adding the

person-specific embedding consistency term LEC in Eq. (4)

to Lrecon also reduces the error significantly from 4.87◦ to

3.32◦ at k = 9 (an improvement of over 30%). Finally,

combining all loss terms improves the performance even

further to 3.14◦ (in total, an improvement of 36%).

Analysis of embedding consistency. In order to validate

our choice of the embedding consistency loss, in Fig. 4c, we

compare its performance with two other possible variants.

As described in Sec. 3.2.3, the embedding consistency loss

term minimizes the intra-person differences of the frontal-

ized latent gaze features. The main rationale behind this is

that the gaze features for a unique person should be con-

sistent while they can be different across subjects due to

inter-subject anatomical differences. We further conjecture

that preserving these inter-personal differences as opposed

to trying to remove them by learning person-invariant em-

beddings is indeed important to obtaining high accuracy for

gaze estimation. In order to validate this observation, we in-

troduce a person-independent embedding consistency term

which also minimizes the inter-person latent gaze feature

differences. As is evident from Fig. 4c, enforcing person-
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Figure 5: Comparison of FAZE against competitive CNN +

MAML baselines, evaluated on MPIIGaze.

independent embedding consistency of the latent gaze fea-

tures results in increased mean errors. In fact it performs

worse than only using the reconstruction loss (Lrecon).

One may argue the complete opposite i.e., the latent gaze

features should be hugely different for every subject for the

best possible subject-specific accuracy, but we did not find

this to be the case. To demonstrate this, we apply a triplet

loss (Ltriplet) [35], which explicitly maximizes the inter-

personal differences in gaze features in addition to mini-

mizing the intra-person ones. As is evident from Fig 4c this

results in a significant increase in the error. This suggests

that perhaps factors that quantify the overall appearance of

a person’s face and define their unique identity may not nec-

essarily be correlated to the anatomical properties that de-

fine “person-uniqueness” for the task of gaze estimation.

5.2. Comparison with CNN + Meta­Learning

An alternative baseline to FAZE can be created by re-

placing the DT-ED with a standard CNN architecture. We

take an identically configured DenseNet (to FAZE) and a

VGG-16 architecture for the convolutional layers, then add

2 fully-connected layers each with 256 neurons and train the

networks with the gaze objective (Eq. 5). The output of the

convolutional layers are used as input to a gaze estimation

network trained via MAML to yield the results in Fig. 5.

Having been directly trained on the (cross-person) gaze es-

timation objective, it is expected that the encoder network

would make better use of its model capacity as it does not

have to satisfy a reconstruction objective. Thus, we can
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Figure 6: Comparison of FAZE against state-of-the-art person-specific gaze estimation methods [20, 50]

call these highly competitive baselines. FAZE outperforms

these baselines with statistical significance, demonstrating

that the DT-ED training and our loss terms yield features

which are more amenable to meta-learning, and thus to the

final objective of personalized gaze estimation.

5.3. Comparison with State­of­the­Art

Few-shot personalization of CNN models in the con-

text of gaze estimation for very low k is very challenging.

Two recent approaches [50, 20] are the most relevant in

this direction, and we provide evaluations on highly com-

petitive re-implementations. Our results are presented in

Fig. 6 for both the test partition of the GazeCapture dataset

and the MPIIGaze dataset. Overall, we show statistically

significantly better mean errors over the entire range of

1 ≤ k ≤ 256 than all the existing state-of-the-art methods.

In addition, our performance between trials is more consis-

tent as shown by the narrower error bands. This indicates

robustness to the choice of the k calibration samples.

Ours vs Polynomial fit to PoR. In [50], Zhang et al. fit

a 3rd order polynomial function to correct initial point-

of-regard (PoR) estimates from a person-independent gaze

CNN. To re-implement their method, we train a DenseNet

CNN (identical to FAZE) and intersect the predicted gaze

ray (defined by gaze origin and direction in 3D with re-

spect to the original camera) with the z = 0 plane to esti-

mate the initial PoR and later refine it with a person-specific

3rd order polynomial function. Though this approach per-

forms respectably with k = 9, yielding 4.19◦ on MPIIGaze

(Fig. 6b), it suffers with lower k especially on GazeCapture.

Nonetheless, its performance converges to our performance

at k ≥ 128 showing its effectiveness at higher k despite its

apparent simplicity.

Ours vs Differential Gaze Estimation. Liu et al. [20]

introduce a CNN architecture for learning to estimate the

differences in the gaze yaw and pitch values between pairs

of images of the same subject. That is, in order to esti-

mate the gaze their network always requires one reference

image of a subject with known gaze values. Then given a

reference image Ia with a known gaze label ga and another

image Ib with unknown gaze label, their approach outputs a

∆gba, from which the absolute gaze for Ib can be computed

as ŷb = ya + ∆gba. Their original paper states a within-

MPIIGaze error with k = 9 at 4.67◦ using a simple LeNet-

5 style Siamese network and a pair of eye images as input.

We use 256 × 64 eye-region images from GazeCapture as

input and use a DenseNet-based architecture to make their

approach more comparable to ours. Our re-implementation

yields 3.53◦ for their method at k = 9 on MPIIGaze, a 1.2◦

improvement despite dataset differences. We show statisti-

cally significant improvements to [20] across all ranges of k

in our MPIIGaze evaluations, with our method only requir-

ing 4 calibration samples to compete with their best perfor-

mance at k = 256 (see the red and green curves in Fig. 6).

The improvement from our final approach is further empha-

sized in Fig. 6a with evaluations on the test subset of Gaze-

Capture. At k = 4, we yield a performance improvement

of 20.5% or 0.8◦ over [20].

6. Conclusion

In this paper we presented the first practical approach to

deep-learning based high-accuracy personalized gaze esti-

mation requiring only few calibration samples. Our FAZE

framework consists of a disentangling encode-decoder net-

work that learns a compact person-specific latent represen-

tation of gaze, head pose and appearance. Furthermore, we

show that these latent embeddings can be used in a meta-

learning context to learn a person-specific gaze estimation

network from very few (as low as k = 3) calibration points.

We experimentally showed that our approach outperforms

other state-of-the-art approaches by significant margins and

produces the currently lowest reported personalized gaze er-

rors on both the GazeCapture and MPIIGaze datasets.
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