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Abstract

It is well known that the accuracy of a calibration de-

pends strongly on the choice of camera poses from which

images of a calibration object are acquired. We present a

system – Calibration Wizard – that interactively guides a

user towards taking optimal calibration images. For each

new image to be taken, the system computes, from all pre-

viously acquired images, the pose that leads to the globally

maximum reduction of expected uncertainty on intrinsic pa-

rameters and then guides the user towards that pose. We

also show how to incorporate uncertainty in corner point

position in a novel principled manner, for both, calibration

and computation of the next best pose. Synthetic and real-

world experiments are performed to demonstrate the effec-

tiveness of Calibration Wizard.

1. Introduction

Camera calibration is a prerequisite to many methods

and applications in computer vision and photogrammetry,

in particular for most problems where 3D reconstruction or

motion estimation is required. In this paper we adopt the

popular usage of planar calibration objects, as introduced1

by [17, 23] and made available through OpenCV [2] and

Matlab [1], even though our approach can be directly ap-

plied to 3D calibration objects too.

It is well known that when using planar calibration

targets, the accuracy of the resulting calibration depends

strongly on the poses used to acquire images. From the the-

oretical study of degenerate sets of camera poses in [17, 23],

it follows for example intuitively that it is important to vary

the orientation (rotation) of the camera as much as possi-

ble during the acquisition process. It is also widely known

to practitioners that a satisfactory calibration requires im-

ages such that the target successively covers the entire im-

∗Most work was done while he was an intern at INRIA.
1Planar targets were used before, but essentially in combination with

motion stages, in order to effectively generate 3D targets [18, 7, 20, 9]

age area, otherwise the estimation of radial distortion and

other parameters usually remains suboptimal. We have ob-

served that inexperienced users usually do not take calibra-

tion images that lead to a sufficiently accurate calibration.

Several efforts have been done in the past to guide users

in placing the camera. In photogrammetry for instance, the

so-called network design problem was addressed, through

an off-line process: how to place a given number of cameras

such as to obtain an as accurate as possible 3D reconstruc-

tion of an object of assumed proportions [10, 11]. Optimal

camera poses for camera calibration have been computed

in [14], however only for constrained camera motions and

especially, only for the linear approach of [23], whereas we

consider the non-linear optimization for calibration. Also,

these poses are difficult to realize, even for expert users.

The ROS [12] monocular camera calibration toolbox pro-

vides text instructions so that users can move the target ac-

cordingly. More recently, some cameras, such as the ZED

stereo system from StereoLabs, come with software that in-

teractively guides the user to good poses during the calibra-

tion process; these poses are however pre-computed for the

particular stereo system and this software cannot be used to

calibrate other systems, especially monocular cameras.

In this paper we propose a system that guides the user

through a simple graphical user interface (GUI) in order

to move the camera to poses that are optimal for calibrat-

ing a camera. Optimality is considered for the bundle ad-

justment type non-linear optimization formulation for cal-

ibration. For each new image to be acquired, the system

computes the optimal pose, i.e. which adds most new in-

formation on intrinsic parameters, in addition to that pro-

vided by the already acquired images. The most closely

related works we are aware of are [13, 15]. They also sug-

gest next best poses to the user. However, unlike ours, they

are both strategy-based methods, where suggestions are se-

lected from a fixed dataset of pre-defined poses, which may

not be enough for various camera models or calibration tar-

gets. In our approach, each new suggested pose results from

a global optimization step. Furthermore, we propose a novel

method for incorporating the uncertainty of corner point po-
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(a) (b) (c)

Figure 1. Illustration of the guidance process. (a) Calibration Wizard proposes the next best pose based on the previous calibration results.

(b) The camera should be moved towards the proposed target pose. (c) When the camera is close enough to the suggested pose, the system

acquires an image and then proposes a next pose. Demo code: https://github.com/pengsongyou/CalibrationWizard.

sitions rigorously throughout the entire pipeline, for calibra-

tion but also next best pose computation. Our approach is

not specific to any camera model; in principle, any monocu-

lar camera model can be plugged into it, although tests with

very wide field of view cameras need to be done.

The paper is organized as follows. Section 2 describes

the theory and mathematical details of Calibration Wizard.

Section 3 shows how to incorporate corner point uncertainty

in the process. Experiments are reported in Section 4, fol-

lowed by conclusions in Section 5.

2. Methodology

Our goal is to provide an interactive guidance for the ac-

quisition of good images for camera calibration. An ini-

tial calibration is carried out from a few (typically 3) freely

taken images of a calibration target. The system then guides

the user to successive next best poses, through a simple

GUI, cf. Fig 1. The underlying computations are explained

in the following subsections.

2.1. Calibration formulation

Let the camera be modeled by two local projection

functions x = qx(Θ, S), y = qy(Θ, S) that map a 3D point

S given in the local camera coordinate system, to the image

coordinates x and y. These functions depend on intrinsic

parameters Θ (assumed constant across all images). For

example, the standard 3-parameter pinhole model consist-

ing of a focal length f and principal point (u, v), i.e. with

Θ = (f, u, v)⊤, has the following local projection functions

(a full model with radial distortion is handled in supplemen-

tary material, section 3):

qx(Θ, S) = u+ f
S1

S3

qy(Θ, S) = v + f
S2

S3

(1)

Let camera pose be given by a 6-vector Π of ex-

trinsic parameters. We use the representation Π =
(t1, t2, t3, α, β, γ)

⊤, where t = (t1, t2, t3)
⊤ is a transla-

tion vector and the 3 angles define a rotation matrix as

the product of rotations about the 3 coordinate axes: R =

Rz(γ)Ry(β)Rx(α). R and t map 3D points Q from the

world coordinate system to the local camera coordinate sys-

tem according to:

S = RQ+ t (2)

Other parameterization may be used too, e.g. quaternions.

A camera with pose Π is thus described by two global

projection functions px and py:

px(Θ,Π, Q) = qx(Θ, RQ+ t) = qx(Θ, S) (3)

py(Θ,Π, Q) = qy(Θ, RQ+ t) = qy(Θ, S) (4)

Since a planar calibration target is used, the 3D points Q
are pre-defined and their corresponding Z coordinates Q3

are set to 0. We now consider m images of a target consist-

ing of n calibration points. Inputs to the calibration are thus

the image points (xij , yij) for i = 1 · · ·m and j = 1 · · ·n,

which are detected by any corner detector, e.g. the OpenCV

findChessboardCorners function [2]. For ease of

explanation, we assume here that all points are visible in all

images, although this is not required in the implementation.

Optimal calibration requires a non-linear simultaneous

optimization of all intrinsic and extrinsic parameters (bun-

dle adjustment). This comes down to the minimization of

the geometric reprojection error [6]:

min
Θ,{Πi}

∑

i,j

(xij − px(Θ,Πi, Qj))
2
+(yij − py(Θ,Πi, Qj))

2

(5)

Usually, local non-linear least square optimizers are used,

such as Levenberg-Marquardt. Our system is independent

of the optimizer used; all it requires is the computation, at

the found solution, of the partial derivatives of (5), see next.

2.2. Computation of next best pose

We suppose that we have already acquired m images

and estimated intrinsic parameters and poses from these, by

solving (5). The goal now is to compute the next best pose;

the objective is to reduce, as much as possible, the expected

uncertainty on the estimated intrinsic parameters.
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Let us consider the Jacobian matrix J of the cost func-

tion (5), evaluated at the estimated parameters. J con-

tains the partial derivatives of the cost function’s residu-

als, i.e. of terms x̂ij = xij − px(Θ,Πi, Qj) and ŷij =
yij − py(Θ,Πi, Qj). J contains one row per residual. Its

columns are usually arranged in groups, such that the first

group contains the partial derivatives with respect to the in-

trinsic parameters Θ, and subsequent groups of columns,

the derivatives relative to extrinsic parameters of the succes-

sive images. The highly sparse form of J is thus as follows

(we assume here that there are k intrinsic parameters):

J =











A1 B1 0 · · · 0
A2 0 B2 · · · 0
...

...
...

. . .
...

Am 0 0 · · · Bm











(6)

Ai =

















∂x̂i1

Θ1

· · ·
∂x̂i1

Θk
∂ŷi1

Θ1

· · ·
∂ŷi1

Θk

...
. . .

...
∂x̂in

Θ1

· · ·
∂x̂in

Θk
∂ŷin

Θ1

· · ·
∂ŷin

Θk

















Bi =

















∂x̂i1

Πi,1
· · ·

∂x̂i1

Πi,6

∂ŷi1

Πi,1
· · ·

∂ŷi1

Πi,6

...
. . .

...
∂x̂in

Πi,1
· · ·

∂x̂in

Πi,6

∂ŷin

Πi,1
· · ·

∂ŷin

Πi,6

















where Ai are matrices of size 2n× k, containing the partial

derivatives of residuals with respect to k intrinsic param-

eters, whereas Bi are matrices of size 2n × 6, containing

the partial derivatives with respect to extrinsic parameters.

Now, the so-called information matrix is computed as J⊤J :

J⊤J =

















∑

i

A⊤
i Ai A⊤

1 B1 A⊤
2 B2 · · · A⊤

mBm

B⊤
1 A1 B⊤

1 B1 0 · · · 0
B⊤

2 A2 0 B⊤
2 B2 · · · 0

...
...

...
. . .

...

B⊤
mAm 0 0 · · · B⊤

mBm

















(7)

Like J , J⊤J is highly sparse. Importantly, its inverse

(J⊤J)−1 provides an estimation of the covariance matrix

of the estimated intrinsic and extrinsic parameters.

For camera calibration, we are only interested in the co-

variance matrix of the intrinsic parameters, i.e. the upper-

left k× k sub-matrix of (J⊤J)−1. Due to the special struc-

ture of (J⊤J)−1, it can be computed efficiently. Let

U =
∑

i

A⊤
i Ai

V = diag
(

B⊤
1 B1, · · · , B

⊤
mBm

)

W =
(

A⊤
1 B1 · · · A⊤

mBm

)

Then,

J⊤J =

(

U W
W⊤ V

)

(8)

and as described in [6], the upper-left sub-matrix of

(J⊤J)−1 is given by Σ = (U − WV −1W⊤)−1, i.e. the

inverse of a k × k symmetric matrix.

Let us now return to our goal, determining the next best

pose Πm+1. The outline of how to achieve this is as fol-

lows. We extend the Jacobian matrix in Eq. (6) with a part

corresponding to an additional image, whose pose is param-

eterized by Πm+1. The coefficients in Am+1 and Bm+1, are

thus functions of Πm+1. Naturally, Πm+1 is also implicitly

embedded in the intrinsic parameter’s covariance matrix as-

sociated with this extended system. To reduce the uncer-

tainty of the calibration, we wish to determine Πm+1 that

makes Σ as “small” as possible. Inspired by [4], we choose

to minimize the trace of this k × k matrix. Since we wish

to compute the next best pose within the entire 3D working

space, we use a global optimization method. Our experi-

ments suggest that simulated annealing [19] or ISRES [16]

work well for this small optimization problem 2. Especially

the latter works in interactive time.

Note that the computation of the partial derivatives used

to build the Ai and Bi matrices can be done very efficiently

using the chain rule. Further, computation of Σ for different

trials of Πm+1 can also be done highly efficiently by ap-

propriate pre-computations of the parts of matrices U and

WV −1W⊤ that do not depend on Πm+1. See more details

in the supplementary material, section 2.

3. Taking into Account the Uncertainty of Cor-

ner Points

So far, we have not used information on the uncertainty

of corner point positions: in Eq. (5), all residuals have the

same weight (equal to 1). Ideally, in any geometric com-

puter vision formulation, one should incorporate estimates

of uncertainty when available. In the following, we explain

this for our problem, from two aspects: first for the actual

calibration, i.e. the parameter estimation in Eq. (5). Second,

more originally, for computing the next best pose.

3.1. Corner Uncertainty in Calibration

Consider a corner point extracted in an image; the uncer-

tainty of its position can be estimated by computing the au-

tocorrelation matrix C for a window of a given size around

the point (see for instance [5]). Concretely, C is an estimate

of the inverse of the covariance matrix of the corner posi-

tion. Now, let Cij be the autocorrelation matrix for the jth

corner in the ith image. The Cij can be incorporated in the

calibration process by inserting the block-diagonal matrix

composed by them, in the computation of the information

2We did not consider the stopping criterion in the current version, but

one could simply stop our method when the relative residual of the trace

of the covariance matrix mentioned above is smaller than a threshold.
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30◦ 50◦ 70◦ 90◦ 110◦
Figure 2. Uncertainty of corner position as a function of opening angle and blur. Left: plot of the first eigenvalue of the autocorrelation

matrix, over opening angle and for different blur levels (Gaussian blur for σ = 0, 1, 2, 3). Right: corners for different opening angles and

blur levels (σ = 0, 1, 2) and computed 95% confidence level uncertainty ellipses (enlarged 10× for display).

matrix of Eq. (7):

H = J⊤diag(C11, C12, · · · , C1n, C21, · · · , Cmn)J (9)

This uncertainty-corrected information matrix can then

be used by Gauss-Newton or Levenberg-Marquardt type op-

timizers for estimating the calibration (for other optimizers,

the autocorrelation matrix may have to be used differently)

as well as for the quantification of the uncertainty of the

computed intrinsic parameters.

3.2. Next Best Pose Computation

The second usage of corner uncertainty concerns the

computation of the next best pose. In particular, for each

hypothetical next pose that we examine, we can project the

points of the calibration target to the image plane, using

this hypothetical pose and the current estimates of intrin-

sic parameters. This gives the expected positions of corner

points, if an actual image were to be taken from that pose.

Importantly, what we would like to compute in addition, is

the expected uncertainty of corner extraction, i.e. the un-

certainty of the corner positions extracted in the expected

image. Or, equivalently, the autocorrelation matrices com-

puted from the expected pixel neighborhoods around these

corner points. If we are able to do so, we can plug these

into the estimation of the next best pose, by inserting the

expected autocorrelation matrices in Eq. (7) the same way

as done in Eq. (9).

Before explaining how to estimate expected autocorre-

lation matrices, we describe the benefits of this approach.

Indeed, we have found that without doing so, the next best

pose is sometimes rather extreme, with a strong grazing

viewing angle relative to the calibration target. This makes

sense in terms of pure geometric information contributed

by such a pose, but is not appropriate in practice, since with

extreme viewing angles image corners are highly elongated:

they may be difficult to extract in the actual image and also,

their uncertainty is very large in one direction. While this

may be compensated by using images acquired from poses

with approximately perpendicular viewing directions one

from another, it is desirable and indeed more principled to

fully integrate corner uncertainty right from the start in the

computation of the next best pose.

Let us now explain how to compute expected autocor-

relation matrices of corner points, for a hypothetical next

pose. This is based on a simple reasoning. The over-

all shape of an image corner (in our case, a crossing in a

checkerboard pattern), is entirely represented by the “open-

ing angle” of the corner. What we do is to precompute

autocorrelation matrices for synthetic corners for the en-

tire range of opening angles, cf. Fig. 2: the top row on the

right shows ideal corners generated by discretizing contin-

uous black-and-white corners, for a few different opening

angles. For each of them, the autocorrelation matrix (cf.

[5]) was computed; as mentioned, its inverse is an estimate

of the corner position’s covariance matrix. The figure shows

the plots of 95% uncertainty ellipses derived from these co-

variance matrices (enlarged 10 times, for better visibility).

Such ideal corners are of course not realistic, so we repeat

the same process for images blurred by Gaussian kernels of

different σ (2nd and 3rd rows of the figure). Naturally, blur-

rier corner images lead to smaller autocorrelation matrices

and larger uncertainty ellipses.

One may note several things. First, between 30◦ and 90◦

opening angles, the largest uncertainty differs by a factor

of about 2, see the uncertainty ellipses in Fig. 2. Second,

intuitively, the uncertainty ellipse of a corner with opening

angle α is the same as with opening angle 180◦ − α, but

turned by 90◦ (cf. the 3rd and 5th columns in Fig. 2, for 70◦

and 110◦). Hence, the eigenvalues of the autocorrelation

matrix of a corner with opening angle α, are the same as

that for 180◦ − α, but they are “swapped” (associated with

the respective opposite eigenvector).

The left part of Fig. 2 shows plots of the first eigenvalue

(associated with eigenvector (0, 1)) of the autocorrelation

matrix C as a function of opening angle. Due to the above

observation, the second eigenvalue (associated with eigen-

vector (1, 0)) associated with opening angle α is simply

given by the first eigenvalue associated with 180◦ − α. The
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graphs on the left of the figure confirm that increasing blur

decreases the autocorrelation matrices eigenvalues. Let us

note that we also simulated Gaussian pixel noise on the cor-

ner images; even for larger than realistic noise levels, the

impact on the results shown in Fig. 2, was negligible.

Let us finally explain how to use these results. First, we

determine the average blur level in the already acquired im-

ages, from the strength of image gradients across edges, and

then select the graph in Fig. 2 associated with the closest

simulated blur (for more precision, one could also compute

the graph for the actual detected blur level). Let the function

represented by the graph be f(α) – one can represent it as a

lookup table or fit a polynomial to the data of the graph (we

did the latter). This allows to compute the diagonal coeffi-

cients of the autocorrelation matrix from the opening angle,

as f(α) and f(180◦−α). Second, so far we have only con-

sidered axis-aligned corners. If we now consider a corner

with opening angle α, but that is rotated by an angle β, then

its autocorrelation matrix is nothing else than:

C =

(

cosβ − sinβ

sinβ cosβ

)(

f(α) 0
0 f(180◦ − α)

)(

cosβ sinβ

− sinβ cosβ

)

(10)

We now have all that is needed to incorporate corner un-

certainty in next best pose computation. For each hypothet-

ical pose we project, as shown above, all calibration points.

For each point (corner), using its neighbors, we can com-

pute the opening angle α and rotation angle β and thus, the

expected autocorrelation matrix C. It can then be inserted

in the computation of the information matrix, like in Eq. (9).

The effect of this approach on proposing the next best

pose is to strike a balance between maximizing pure geo-

metric “strength” of a pose (often achieved by strong tilt-

ing of the calibration pattern) and maximizing corner ex-

traction accuracy (in fronto-parallel poses, corners are over-

all closest to exhibiting right angles, i.e. where their auto-

correlation matrices have maximal trace).

3.3. Possible Extensions

So far we have described the basic idea for incorporat-

ing corner uncertainty. The following extensions may be

applied; we plan this for future work. The values plot-

ted in Fig. 2 are obtained for corners exhibiting the full

range of 256 greylevels (black to white). In real images,

the range is of course smaller. If the difference between

largest and smallest greylevels is x, then the plotted values

(left of Fig. 2) are divided by 2552/x2 (easy to prove but

not shown due to lack of space). In turn, the uncertainty

ellipses are scaled up by a factor of 255/x. This should be

taken into account when predicting auto-correlation matri-

ces for the next pose. The range of greylevels depends on

various factors, such as distance to the camera and lighting

conditions. One can learn the relationship between pose and

greylevel range for a given calibration setup as part of the

calibration process and use it to predict the next best pose.

Similarly, one might predict expected blur per corner,

based on a learned relationship between blur and distance

to camera, e.g. by inferring the camera’s depth of field dur-

ing calibration. We observed that within the depth of field,

image blur is linearly related to the distance to the camera.

Using these observations should allow to further improve

the next best pose proposal, by achieving an even better

compromise between geometric information of the pose and

accuracy of image processing (here, corner extraction), both

of which influence calibration accuracy.

4. Results and Evaluation

Synthetic and real-world experiments are performed here

to evaluate the effectiveness of our Calibration Wizard.

Note that in the optimization process, we ensure that all cor-

ner points should be within the image plane, otherwise the

optimization loss is set to an extremely large value.

4.1. Synthetic evaluations

To assess the proposed system, we simulate the process

of camera calibration with pre-defined intrinsic parameters,

with Matlab. Here we first briefly introduce the procedure

of producing random checkerboard poses.

Data preparation. First, 9× 6 target points are defined,

with Z components set to 0. Next, the 3D position of the

virtual camera is created, with X and Y coordinates pro-

portional to Z within a plausible range. Then the camera is

first oriented such that its optical axis goes through the cen-

ter of the target and finally, rotations about the three local

coordinate axes by random angles between −15◦ and 15◦

are applied. Now, from the position, rotation matrix and

the given intrinsic parameters, we can project the 3D tar-

get points to the image, and finally add zero-mean Gaussian

noise with the same noise level to them. Moreover, we en-

sure that all 54 points are located within the field of view of

a 640× 480 image plane.

Evaluation of accuracy and precision. We primarily

compare the calibration accuracy obtained from random im-

ages, with that from images acquired as proposed by our

system, with and without taking into account the autocorre-

lation matrix explained in the previous section. To this end,

the experimental process is as follows: create 3 initial ran-

dom images, based on which we have 3 paths to acquire the

calibration results:

• Produce many other random images

• Obtain 17 images proposed by the wizard, so 3+17 =
20 images in total

• Obtain 17 wizard images taking the autocorrelation

matrix into account

100 trials are performed for each experiment, hence we ac-

quire 100 samples of intrinsic parameters for each. In the
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Figure 3. Comparisons of the focal length estimated from three

schemes on synthetic data: randomly taken images, calibra-

tion wizard and wizard using autocorrelation matrix. f =
800, (u, v) = (320, 240), k1 = 0.01, k2 = 0.1. Initial calibra-

tion was done with 3 random images. Left: Mean values of the

estimated focal length, where the red dashed line represents the

ground truth f = 800. Right: Standard deviations of the es-

timated focal length. Wizard images provide significantly more

accurate and precise calibration results than random ones.

first test, we set f = 800, (u, v) = (320, 240) and radial

distortion coefficients k1 = 0.01, k2 = 0.1. Fig. 3 il-

lustrates the statistical results of the estimated focal length

from 100 trials. It can be easily noticed that the focal length

acquired using our wizard is not only much closer to the

ground truth, but also more concentrated (precise) than the

estimation from pure random images. For example, the esti-

mated focal length acquired from only 3 random + 4 wizard

images has outperformed the one from 20 random images.

Moreover, not shown in the graph: 3 random + 17 wizard

images still give higher accuracy than 60 random images,

which directly demonstrates the usefulness of our approach.

However, in this experiment, we notice that our system

does not show much advantage over the randomly-taken

images of the estimated distortion coefficients k1 and k2.

Thus, a second experiment is performed with larger radial

distortion coefficients k1 = 0.5 and k2 = 1, while the fo-

cal length and principal point stay the same. Fig. 4 shows

the effectiveness of the proposed system, especially with

the consideration of autocorrelation matrix for target points.

When the radial distortion is large, we notice that not only

both distortion coefficients, but also the focal length and

principle points (not shown here) estimated from purely ran-

dom images deviate much from the ground truth, as was

also reported in [21]. In contrast, our system still manifests

the ability of centering around the ground truth with incom-

parably low standard deviation. Furthermore, compared to

the simple case of the proposed system, both first-order

statistics features appear to be most desirable when consid-

ering the autocorrelation matrices for the feature points.

Robustness to noise. We are also interested in the per-

formance of our approach with respect to the level of noise

added to 2D corner points. In this experiment, we compare

4 different configurations: 20 random images, 40 random

images, 3 random + 17 wizard images and 3 random + 17
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Figure 4. Comparisons of the intrinsic parameters estimated from

three schemes on synthetic data: randomly taken images, cali-

bration wizard without and with autocorrelation matrix. f =
800, (u, v) = (320, 240), k1 = 0.5, k2 = 1. Wizard images

achieve superior performance over random images on all intrinsic

parameters. Considering the autocorrelation matrices can further

provide the most accurate and precise estimation outcomes.

wizard-Auto images. Zero-mean Gaussian noise with stan-

dard deviation of 0.1, 0.2, 0.5, 1 with respect to 2 pixels has

been added to the image points respectively, and the com-

parisons are shown in Fig. 5. Specifically, it can be dis-

tinctly seen from the figure that, even when unrealistically

strong noise is added (σ = 2), both versions of our approach

(3 random + 17 wizard images) still provide better accuracy

than even 40 random images. More synthetic experiments

can be found in the supplementary material.
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Figure 5. Comparisons among various calibration schemes of the

robustness to noise. Zero-mean Gaussian noise with standard devi-

ation of 0.1, 0.2, 0.5, 1 respectively 2 pixels is added to 2D target

points. The focal length estimated from both of our methods with

only 20 images, is more accurate (left) and precise (right) than that

from 40 random images, especially when the noise level is high.
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4.2. Realworld evaluations

Although the performance of the Calibration Wizard has

been demonstrated for the synthetic data, we ultimately

want to evaluate the effectiveness of its proposed next best

pose on real-world examples. We designed two experiments

for this purpose where we also compare with calibrations

obtained with freely taken images. Evaluating calibration

results is difficult since ground truth is not readily available;

we thus devised two experiments where calibration quality

is assessed through evaluating results of applications – pose

estimation and SfM. We used the commonly-used Logitech

C270H HD Webcam in our experiments. It has an image

size of 640× 480 and around 60◦ field of view. Fig. 7 pro-

vides some sample calibration images. One may notice that

wizard-suggested images indeed correspond to poses often

chosen by experts for stable calibration: large inclination of

the target along the viewing direction, targets covering well

the field of view and/or reaching the image border.

In the following, we denote “x-free” the calibration re-

sults from x images acquired freely by an experienced user

using OpenCV, compared to “x-wizard” where guidance

was used.

Pose estimation. Similar to the experiment performed

in [3], in order to quantitatively evaluate the quality of cam-

era calibration, we design the first real-world experiment

where, apart from the images used for calibration, we then

also acquire a number of extra checkerboard images which

are only used for evaluation, cf. Fig. 6.

First, 4 corner points are utilized to calculate the pose

with EPnP [8], given the intrinsic parameters provided by

the calibration. Then, since we have assumed the Z compo-

nents of the target points to be 0 in the world coordinate sys-

tem, it is straightforward to back-project the remaining 50
points to 3D, onto the target plane, using the calibrated in-

trinsic parameters and the computed pose (cf. Fig. 6 right).

The smaller Euclidean distance between the back-projected

and theoretical 3D points, the better the calibration.

There are 80 images in total for testing so we have

50 × 80 = 4, 000 points for assessment. The mean and

standard deviation of the 4,000 distance errors are applied

as metric. Table 1 demonstrates that our system, when us-

ing only 15 images for calibration, still exceeds the perfor-

mance of using 50 freely acquired images and exceeds that

of using 20 such images by about 5%. This seemingly small

improvement may be considered as significant since it may

be expected that differences are not large in this experiment.

Even with a moderately incorrect calibration, pose estima-

tion from 4 outermost target points will somewhat balance

the reconstruction errors for the inner corner points.

We also tested our approach on the FaceTime HD cam-

era of a MacBook Pro. This camera has higher resolution

and different field of view compared to other commonly use

webcams, so it is a suitable alternative to show the robust-

Figure 6. Pose estimation test. Left: checkerboard image where 4
green corner points are used for pose estimation, and the remaining

50 red points for reconstruction. Right: 50 ground-truth points

in black and residuals between them and the reconstructed corner

points in red (enlarged 50 times for visualization).

Table 1. Pose estimation test with Logitech C270H HD Webcam.
mean std mean std

3-free 0.856 1.130 3-free + 4-wizard 0.862 1.155

10-free 0.815 1.115 3-free + 6-wizard 0.783 1.092

20-free 0.802 1.115 3-free + 9-wizard 0.788 1.104

50-free 0.789 1.108 3-free + 12-wizard 0.763 1.082

ness of our method. As shown in Table 2, adding only one

or two wizard images can largely reduce the Euclidean dis-

tance and outperforms the results from freely taking many

more images.

Table 2. Pose estimation test with FaceTime HD camera.
mean std mean std

3-free 2.503 2.557 3-free + 1-wizard 1.455 1.630

10-free 1.664 1.839 3-free + 2-wizard 1.165 1.491

20-free 1.255 1.606

Structure from Motion test. In this last experiment, we

assess our Calibration Wizard by investigating the quality

of 3D reconstruction in a structure-from-motion (SfM) set-

ting. The object to be reconstructed is the backrest of a

carved wooden bed, as shown in Fig. 8. We devised a sim-

ple but meaningful experiment to evaluate the quality of the

calibration, as follows. We captured images from the far left

of the object and gradually move to the right side, and then

proceed backwards and return to the left, approximately to

the starting point. The acquired images are then provided

as input to VisualSfM [22]; we added an identical copy of

the first image of the sequence, to the end of the sequence,

but without “telling” this to the SfM tool and without using

a loop detection method during SfM. The purpose of doing

so is: if calibration is accurate, the incremental SfM should

return poses for the first image and the added identical last

image, which are close to one another. Measuring the dif-

ference in pose is not sufficient since the global scale of the

reconstruction can be arbitrarily chosen by the SfM tool for

each trial. So instead, we project all 3D points that were

reconstructed on the basis of interest points extracted in the

first image, using the pose computed by SfM for the iden-

tical last image, and measure the distance between the two

sets of 2D points such constructed. This distance is inde-
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Figure 7. Sample images used for the calibration in real-world tests. Top row: freely-taken images. Bottom row: wizard guided images.

Table 3. 2D errors of SfM tests under various calibration schemes.
Calibration scheme mean std median

3-free 43.6 11.5 44.3

7-free 30.5 11.7 31.7

20-free 15.7 10.5 16.1

3-free + 2-wizard 17.4 10.8 13.2

3-free + 4-wizard 14.4 9.1 10.6

pendent of the scene scale and is thus a good indicator of

the quality of the SfM result which in turn is a good indica-

tor of the quality of the calibration used for SfM.

Note that we only match two consecutive frames instead

of full-pairwise matching within the given sequence. In this

case, 2D errors are accumulated so the reconstruction re-

sults highlight the calibration accuracy more strongly.

The experiment is described as follows. We first ob-

tain the 5-parameter calibration result (including two radial

distortion coefficients), from 3 freely acquired images (“3-

free”). Then, on the one hand, another 17 images are taken,

from which the intrinsic parameters of “7-free” and “20-

free” are obtained. On the other hand, we take another 4 se-

quential images proposed by the Calibration Wizard, where

we get the intrinsic parameters of “3-free + 2-wizard” and

“3-free + 4-wizard”. And now, we load VisualSfM with in-

trinsic parameters of these five configurations respectively,

along with the backrest sequence taken by the same cam-

era. It is worth mentioning that we conduct five trials of

VisualSfM for each configuration in order to lessen the in-

fluence of the stochastic nature of the SfM algorithm.

Results are listed in Table 3, where we evaluate the 2D

errors across all 5 trials. Some observations can be made:

with only 5 images in total, “3-free + 2-wizard” has al-

ready provided an accuracy competitive to 20 freely-taken

images. Both “7-free” and “3-free + 4-wizard” use 7 im-

ages for calibration, but it can be clearly noticed that the

latter one has far lower errors in all aspects. It is reasonable

to conclude that our method notably improves the quality of

calibration and 3D reconstruction with a considerably small

number of calibration images.

Figure 8. Structure from motion test. Top: Panorama stitched by

Hugin (http://hugin.sourceforge.net), showing the

test scene. Bottom: Result of applying VisualSfM [22] to build

a 3D model. We started capturing images from the left and moved

clockwise, finally came back approximately to the starting point.

Finally, it is worth mentioning that all real-world exper-

iments were performed with a 2.7 GHz Intel i5 CPU (no

GPU used). To compute the next best pose with a 9× 6 tar-

get, our un-optimized C++ code took about 0.4s for 3 target

images and 1.5s for 15 images (increasing roughly linearly

per image), but we found that 10 images are usually suffi-

cient for a good calibration.

5. Conclusions

Calibration Wizard is a novel approach which can guide

any user through the calibration process. We have shown

that accurate intrinsic parameters can be obtained from only

a small number of images suggested by this out-of-the-box

system. Some ideas for future work were already mentioned

in section 3.3. We also plan to apply the approach to very

wide field of view cameras such as fisheyes.
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