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Abstract

Most teacher-student frameworks based on knowledge

distillation (KD) depend on a strong congruent constraint

on instance level. However, they usually ignore the correla-

tion between multiple instances, which is also valuable for

knowledge transfer. In this work, we propose a new frame-

work named correlation congruence for knowledge distilla-

tion (CCKD), which transfers not only the instance-level in-

formation but also the correlation between instances. Fur-

thermore, a generalized kernel method based on Taylor se-

ries expansion is proposed to better capture the correla-

tion between instances. Empirical experiments and ablation

studies on image classification tasks (including CIFAR-100,

ImageNet-1K) and metric learning tasks (including ReID

and Face Recognition) show that the proposed CCKD sub-

stantially outperforms the original KD and other SOTA KD-

based methods. The CCKD can be easily deployed in the

majority of the teacher-student framework such as KD and

hint-based learning methods.

1. Introduction

Over the past few decades, various deep neural network

(DNN) models have achieved state-of-the-art performance

in many vision tasks [28, 29, 8]. Generally, networks with

many parameters and computations perform superior to

those with fewer parameters and computations when trained

on the same dataset. Nevertheless, it’s difficult to deploy

such large networks on resource-limited embedded systems.

Along with the increasing demands for low-cost networks

running on embedded systems, there is an urgency for get-

ting a minor network with less computation and memory

consumptions, while narrowing the gap of performance be-
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†This work was done while Baoyun Peng was an intern at SenseTime.
‡Corresponding author.

tween a minor network and a large network.
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Student: Instance Congruence  Student: Correlation Congruence 

Figure 1: The difference between instance congruence and corre-

lation congruence. When focusing on only instance congruence,

the correlation between instances of the student may be much dif-

ferent from the teacher’s, and the cohesiveness of intra-class would

be worse. CCKD solve the problem by adding a correlation con-

gruence when transferring knowledge.

Several techniques have been proposed to address this

issue, e.g. parameter pruning and sharing [11, 24], com-

pact convolutional filters [38, 16], low-rank factorization

[18, 6] and knowledge distillation [15]. Among these ap-

proaches, knowledge distillation has been proved to be an

effective way to promote the performance of a small net-

work by mimicking the behavior of a high-capacity net-

work. It works by adding a strong congruent constraint on

outputs of teacher and student for each input instance to en-

courage the student to mimic teacher’s behavior, e.g., min-

imizing the KullbackLeibler divergence of predictions [15]

or minimizing the euclidean distance of feature representa-

tions [21] between teacher and student.
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However, it’s hard for the student to learn a mapping

function identical to the teacher due to the gap (network

capacity) between teacher and student. By focusing on only

instance congruence, the student would learn a much more

different instances correlation from the teacher, as shown in

Figure 1. Usually, the embedding space of a teacher pos-

sesses the characteristic that intra-class instances cohere to-

gether while inter-class instances separate from each other.

But its counterpart of student model trained by instance con-

gruence would lack such desired characteristic.

We claim that beyond instance congruence, the correla-

tion between instances is also valuable knowledge for pro-

moting the performance of the student. Based on this phi-

losophy, we propose a new distillation framework called

Correlation Congruence Knowledge Distillation (CCKD)

which focus on not only instance congruence, but also cor-

relation congruence. CCKD aims to transfer the correlation

knowledge between instances to the student, as shown in

Figure 1, and can be easily implemented and trained with

mini-batch. The only requirement for CCKD is that the

dimension for both the teacher and student should be the

same. To cope with the mismatch of feature representations

of teacher and student network, we apply a fully-connected

layer with the same dimension for both teacher and student

network. We conduct various experiments on four represen-

tative tasks and different networks to validate the effective-

ness of the proposed approach.

Our contributions in this paper are summarized as fol-

lows:

1. We propose a new distillation framework named cor-

relation congruence knowledge distillation (CCKD),

which focuses on not only instance congruence but

also correlation congruence.

2. We introduce a general kernel-based method to cap-

ture the correlation between instances in a mini-batch

better. We have evaluated and analyzed the impact of

different correlation metrics on different tasks.

3. We explore different sampler strategies for mini-batch

training to further improve the correlation knowledge

transfer.

Extensive empirical experiments and ablation studies

show the effectiveness of the proposed method in different

tasks (CIFAR-100, ImageNet-1K, person re-identification,

and face recognition) to improve distillation performance.

2. Related Work

Since this paper focuses on training a small but high-

performance network based on knowledge distillation, we

discuss related works in model compression and accelera-

tion, knowledge distillation in this section. In both areas,

various approaches have been proposed over the past few

years. We summarize them as follows.

Model Compression and Acceleration. Model com-

pression and acceleration aim to create a network with few

computation and parameters cost, meanwhile maintaining

high performance. A straightway is to design light-weight

but powerful network since the original convolution net-

work has many redundant parameters. For example, depth-

wise separable convolution is used to replacing standard

convolution in [16]. Pointwise group convolution and chan-

nel shuffle are proposed to reduce the burden of computa-

tion while maintaining high accuracy in [38]. Another way

is network pruning, which boosts the speed of inference by

pruning the neurons or filters with low importance based

on certain criteria [11, 24]. In [18, 6], weights were de-

composed through low-rank decomposition to save memory

cost. Quantization seeks to use low-precision bits to store

model’s weights or activation outputs [10, 17, 34].

Knowledge Distillation. Transferring knowledge from a

cumbersome network to a small network is a classical prob-

lem, and it has drawn much attention in recent years. In

[15], Hinton et al. propose knowledge distillation (KD), in

which the student network was trained by the soft output

of an ensemble of teacher networks. Comparing to the one-

hot label, the output from a well-performed teacher network

contains more information about the fine-grained structure

among data, consequently helping the student achieve bet-

ter performance. Since then, there have been works explor-

ing variants of knowledge distillation. In [2], Ba and Caru-

ana show that the performance of a shallower and wider

network trained by KD can approximate to deeper ones.

Romero et al. [25] propose to transfer the knowledge us-

ing not only final outputs but also intermediate ones, and

add a regressor on intermediate layers to match different

size of teacher’s and student’s outputs. In [37], the authors

propose an attention-based method to match the activation-

based and gradient-based spatial attention maps. In [36],

the flow of solution procedure (FSP), which is generated by

computing the Gram matrix of features across layers, was

used for knowledge transfer. To improve the robustness of

the student, Sau and Balasubramanian [27] perturbe the log-

its of a teacher as a regularization.

Different from above offline training methods, several

works adopt collaboratively training strategy. Deep mutual

learning [39] conducts distillation collaboratively for peer

student models by learning from each other. Anil et al. [1]

further extend this idea by online distillation of multiples

networks. In their work, networks are trained in parallel,

and the knowledge is shared by using distillation loss to ac-

celerate the training process.

Besides, several works utilize the adversarial method for

modeling knowledge transfer between teacher and student

[35, 13, 14]. In [35], they adopt generative adversarial net-
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works combined with distillation to better aligning the dis-

tributions between teacher and student in embedding space.

Byeongho et al. [14] adopt the adversarial method to dis-

cover adversarial samples supporting decision boundary.

In this paper, beyond instance knowledge, we take the

correlation in embedded space between instances as valu-

able knowledge to transfer correlation among instances in

the embedded space between for knowledge distillation.

3. CCKD

3.1. Background and Notations

We refer a well-performed teacher network with param-

eters Wt as T and a new student network with parameters

Ws as S like in [15, 37, 36, 1, 25]. The input dataset of the

network is noted as χ = {x1,x2, ...,xn}, and the corre-

sponding ground truth is noted as Y = {y1,y2, ...,yn}, n

represents the number of samples in dataset. Since deep net-

work can be viewed as a mapping function stacked by mul-

tiple non-linear layers, we note φt(x;Wt) and φs(x;Ws)
as the mapping functions of teacher and student, x repre-

sents the input data. fs and ft represent the feature repre-

sentations of teacher and student. The logits of teacher and

student are noted as zt = φ(x;Ws) and zs = φ(x;Wt).
pt = softmax(zt) and ps = softmax(zs) represent the

final prediction probilities of teacher and student.

3.2. Knowledge Distillation

Overparameterized networks have shown powerful op-

timization properties to learn the desired mapping func-

tion from data [7], of which the output reflects fine-grained

structure one-hot labels might ignore. Based on this insight,

knowledge distillation was first proposed in [3] for model

compression, then Hinton et al. [15] popularized it. The

idea of knowledge distillation is to let the student mimic the

teacher’s behavior by adding a strong congruent constraint

on predictions [3, 15, 25] using KL divergence

LKD =
1

n

n
∑

i=1

τ2KL(pτ
s ,p

τ
t ), (1)

where τ is a relaxation hyperparameter (referred as tem-

perature in [15]) to soften the output of teacher network,

pτ = softmax(z
τ
). In several works [30, 21] the KL di-

vergence is replaced by euclidean distance,

Lmimic =
1

n

n
∑

i=1

‖fs − ft‖
2

2
. (2)

Regardless of congruent constraint on final predictions

[15], feature representations [30] or activations of hidden

layer [25], these methods only focus on instance congru-

ence while ignore the correlation between instances. Due

to the gap (in capacity) between teacher and student, it’s

hard for a light-weight student to learn an identical map-

ping function from a cumbersome teacher by instance con-

gruence. We argue that the correlation between instances is

also vital for classification since it directly reflects how the

teacher model the structure of different instances in embed-

ded feature space.

3.3. Correlation Congruence

In this section, we present correlation congruence knowl-

edge distillation (CCKD) in detail. Different from previous

methods, CCKD considers not only the instance level con-

gruence but also correlation congruence between instances.

Figure 2 shows the overview of CCKD. CCKD consists of

two part: instance congruence (KL divergence on predic-

tions of teacher and student) and correlation congruence.

Let Ft and Fs represent the set of feature representations
of teacher and student respectively,

Ft = matrix
(

f
t

1,f
t

2, ...,f
t

n

)

,

Fs = matrix
(

f
s

1 ,f
s

2 , ...,f
s

n

)

.
(3)

The feature f can be seen as a point in the embedded feature

space. Without loss of generality, a mapping function is

introduced as follow:

ψ : F → C ∈ R
n×n. (4)

where C is a correlation matrix. Each element in C rep-

resents the correlation between xi and xj in embedding

space, which is defined as

Cij = ϕ(fi,fj), Cij ∈ R (5)

The function ϕ can be any correlation metric, and we will

introduce three metrics for capturing the correlation be-

tween instances in the next section. Then, the correlation

congruence can be formulated as follow:

LCC =
1

n2
‖ψ(Ft)− ψ(Fs)‖

2

2

=
1

n2

∑

i,j

(ϕ(fs
i ,f

s
j )− ϕ(f t

i ,f
t
j ))

2.
(6)

Then, the optimization goal of CCKD is to minimize the

following loss function:

LCCKD = αLCE + (1− α)LKD + βLCC, (7)

where LCE is the cross-entropy loss, α and β are two hyper-

paramemters for balancing correlation congruence and in-

stance congruence.
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Figure 2: The overall framework of correlation congruence for knowledge distillation (T : teacher; S: teacher; fT

i : teacher’s output of ith
sample; fS

i : student’s output of ith sample; Ci: correlation between ith and jth sample). CCKD aims to not only instance congruence but

also correlation congruence between multiple instances.

3.4. Generalized kernel­based correlation

Capturing the complex correlations between instances is

not easy due to a very high dimension in the embedded

space [31]. In this section, we introduce kernel trick to cap-

ture the high order correlation between instances in the fea-

ture space.

Let x,y ∈ Ω represent two instances in feature space,

and we introduce different mapping functions k : Ω×Ω 7→
R as correlation metric, including:

1. naive MMD: k(x,y) =
∣

∣

1

n

∑

i xi −
1

n

∑

i yi

∣

∣;

2. Bilinear Pool: k(x,y) = x⊤ · y;

3. Gaussian RBF: k(x,y) = exp(−
‖x−y‖2

2

2δ2
);

MMD can reflect the distance between mean embed-

dings. Bilinear Pooling [22] can be seen as a naive 2th order

function, of which the correlation between two instances is

computed by element-wise dot product. Gaussian RBF is a

common kernel function whose value depends only on the

euclidean distance from the origin space.

Comparing to naive MMD and Bilinear Pool, Gaussian

RBF is more flexible and powerful in capturing the com-

plex non-linear relationship between instances. Based on

Gaussian RBF, the correlation mapping function φ can be

computed by a kernel function K : F × F ∈ R
n×n, where

each element can be computed as

[k(F,F )]ij ≈

P
∑

p=0

αp(Fi· · F
⊤

j· )
P . (8)

which can be approximated by P -order Taylor series. Once

specifying the kernel function, then the coefficientαp is also

confirmed. Each element [k(F ,F )]ij encodes the pairwise

correlations between ith and jth features in F . We take

Gaussian RBF kernel function as an example, then

[k(F,F )]ij = exp(−γ ‖Fi − Fi‖
2
)

≈

P
∑

p=0

exp(−2γ)
(2γ)p

p!
(Fi· · F

⊤

j· )
p.

(9)

where γ is a tunable parameter.

3.5. Strategy for Mini­batch Sampler

Since the correlation between instances is computed in a

mini-batch, a proper sampler is important for balancing the

intra-class and inter-class correlation congruence. A sim-

ple strategy is uniformly at random sampler (UR-sampler),

which would lead to such a situation that all examples come

from different classes when the class number is large. Al-

though it is an unbiased estimation for truth gradient of in-

stance congruence, UR-sampler would result in a high bi-

ased estimate for the gradient of intra-class correlation.

To balance the intra-class and inter-class correlation con-

gruence, we propose two strategies for mini-batch sam-

pler: class-uniform random sampler (CUR-sampler) and

superclass-uniorm random sampler (SUR-sampler). CUR-

sampler samples by class and random selects fixed k num-

ber of examples for each sampled class (e.g. each batch

consists of 6 class, and each class contains k = 8 exam-

ples, forming a 48 batch size). SUR-sampler is similar to

CUR-sampler but different in that it samples examples by

the superclass, a more soft form of the true class generated

by clustering. To get the superclass of training examples,

we first extract the feature using the teacher model, then use
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the K-means to cluster. The superclass of example is de-

fined as the cluster it belongs. Comparing to CUR-sampler,

SUR-sampler is more flexible and tolerant for imbalance

label since the superclass inflects the coarse structure of in-

stances in embedded space.

3.6. Complexity analysis and implementation de­
tails

To cope with the mini-batch training, we compute the

correlation in a mini-batch. Formula 9 involves the com-

putation of a large pairwise matrix b × b (b is the batch

size), and each element is approximated by p-order Taylor-

series with p times dot product computation between two

d dimension vectors. The total computation complexity is

O(pbd2) in a mini-batch, and the extra space consumption is

O(b2 + d2) for storing the correlation matrix. Compared to

huge parameters and computation for training a deep neural

network, the time and computation consumption for corre-

lation congruence can be ignored. Besides, since the cor-

relation congruent constraint is added on embedding space,

it only requires that the feature dimension of the student

network is the same with the teacher. To cope with the

mismatch dimension between teacher and student, a fully-

connected layer with fixed-length dimension is added for

both teacher and student network, which has minor influ-

ence on other methods in this paper.

4. Experiments

We evaluate CCKD on multiple tasks, including im-

age classification tasks (CIFAR-100 and ImageNet-1K) and

metric learning tasks (including MSMT17 dataset ReID and

MegaFace for face recognition), and compare it with closely

related works. Extensive experiments and analysis are con-

ducted to delve into the correlation congruence knowledge

distillation.

4.1. Experimental Settings

Network Architecture and Implementation Details

Given the steady performance and efficiency computation,

ResNet [12] and MobileNet [26] network are chosen in this

work.

In the main experiments, we set the order P = 2, and

compute Equation 9 in a mini-batch. For the networks in

CIFAR-100 and ImageNet-1K, we add a fully-connected

layer with 128-d output to form a sharing embedding space

for teacher and student. The hyper-parameter α is set to

zero, and correlation congruence scale beta is set to 0.003,

γ = 0.4. CUR-sampler is used for all the main experiments

with k = 4.

On CIFar-100, ImageNet-1K and MSMT17, Original

Knowledge distillation (KD) [15] and cross-entropy (CE)

are chosen as the baselines. For face recognition, ArcFace

loss [5] and L2-mimic loss [21, 23] are adopt. We com-

pare CCKD with several state-of-the-art distillation related

methods, including attention transfer (AT) [37], deel mu-

tual learning (DML) [39] and conditional adversarial net-

work (Adv) [35]. For attention transfer, we add it for last

two blocks as suggested in [37]. For adversarial training,

the discriminator consists of FC(128 × 64) + BN + ReLU

+ FC (64 × 2) + Sigmoid activation layers, and we adopt

BinaryCrossEntropy loss to train it. All the networks and

training procedures are implemented in PyTorch.

4.2. Classification Results on CIFAR­100

CIFAR-100 [20] consists of colored natural images with

32×32 size. There are 100 classes in CIFAR-100, each

class contains 500 images in the train set and 100 images

in the test set. We use the standard data augmentation

scheme (flip/padding/random crop) that is widely used for

this dataset, and normalize the input images using the chan-

nel means and standard deviations. We set the weight de-

cay of student network to 1e − 4, batch size to 64, and use

stochastic gradient descent with momentum. The starting

learning rate is set as 0.1 and divided by ten at 80, 120, 160

epochs, totally 200 epochs. Top-1 and top-5 accuracy are

adopted as a performance metric.

Table 1: Validation accuracy results on CIFAR-100. ResNet-110

is as teacher network, ResNet-20 and ResNet-14 as student net-

works. We keep the same training configuration for all the meth-

ods for fair comparasion.

method
resnet-20 resnet-14

top-1 top-5 top-1 top-5

CE 68.4 91.3 66.4 90.3

KD 70.8 92.4 68.3 90.7

DML 71.2 92.5 69.1 91.2

AT 71.0 92.4 68.6 91.1

Adv 70.5 92.1 68.1 90.6

CCKD 72.4 92.9 70.2 92.0

Table 1 summarizes the results of CIFAR-100. CCKD

gets a 72.4% and 70.2% of top-1 accuracy for ResNet-20

and ResNet-14, and substantially surpasses the CE by 4.0%

and 3.8%, 1.6% and 1.9% over KD. For the online distil-

lation DML [39], we train target network (ResNet-14 and

ResNet-20) collaboratively with ResNet-110, and evaluate

performance of target network. Comparing to other SOTA

methods, CCKD still significantly All the four distillation

related methods surpass the original CE over 2%, which

verifies the effectiveness of teacher-student methods.

4.3. Results on ImageNet­1K

ImageNet-1K [4] consists 1.28M training images and

50K testing images in total. We adopt the ResNet-50 [12]
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as the teacher network, MobileNetV2 with 0.5 width multi-

plier as the student network. The data augmentation scheme

for training images is the same as [12], and apply a center-

crop at test time. All the images are normalized using the

channel means and standard deviations. We set the weight

decay of student network to 1e − 4, batch size to 1,024

(training on 16 TiTAN X, each with 64 batch size), and use

stochastic gradient descent with momentum. The starting

learning rate is set as 0.4, then divided by ten at 50, 80, 120

epochs, totally 150 epochs.

Table 2: Validation accuracy results on ImageNet 1K. The teacher

network is ResNet-50, student network is MobileNetV2 with 0.5

width multiplier. We keep the same configuration for CE and other

four student networks.

method top-1 accuracy top-5 accuracy

teacher 75.5 92.7

CE 64.2 85.4

KD 66.7 87.3

DML 65.3 86.1

Adv 66.8 87.3

AT 65.4 86.1

CCKD 67.7 87.7

For fair comparison, we keep the same configuration for

all the methods. Table 2 summarizes the results on Ima-

geNet 1K. CCKD gets a 67.7% Top-1 accuracy, which sur-

passes the cross-entropy by promoting 3.3. Compare with

original KD[15], CCKD surpasses by 1.0 in top-1 accuracy.

AT and DML perform worse than original KD. To our best

knowledge, we have not found any works that successfully

verify the effectiveness of KD on ImageNet-1K dataset. It

has been reported in work [37] that KD struggles to work

when the architecture and depth of student network are dif-

ferent from the teacher. But we found that by removing the

dropout layer and using a proper temperature (T in [4,8]),

the KD can surpass the student over 2.0%.

4.4. Person Re­Identification on MSMT17

Comparing to closed set classification, open set classi-

fication is more dependent on a good metric learning and

more realistic scenario. We apply the proposed method to

two open-set classification: person re-identification (ReID)

and face recognition.

For ReID, we evaluate proposed method on MSMT17

[33]. It contains 180 hours of videos captured by 12 out-

door cameras, three indoor cameras under different seasons

and time. There are 126,441 bounding boxes of 4,101 iden-

tities annotated. All the bounding boxes are split to the

train set (32621 bounding boxes, 1041 identities), query

set (11659 bounding boxes, 3060 identities), and gallery set

(82161 bounding boxes). There is no intersection of iden-

tities between train set and query & gallery set. We train

0 20 40 60 80
Epochs

0.3
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0.5

0.6

0.7

0.8
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KL
 lo
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Figure 3: The curve of training loss and validation accuracy.

the networks on the train set and perform identification on

the query and gallery set. Rank-1&5 and mean accuracy

precision (mAP) are adopted as the performance metric.

ResNet-50 is used as the teacher network and ResNet-18

as student network. The dimension of the feature represen-

tation is set to 256. We set the weight decay to 5e−4, batch

size to 40, and use stochastic gradient descent with momen-

tum. The learning rate is set as 0.0003, then divided by ten

at 45, 60 epochs, totally 90 epochs.

Table 3: Validation accuracy results on MSMT17. The teacher

network is ResNet-50, student network is Resnet-18.

method pretrained? rank-1 rank-5 mAP

teacher yes 66.4 79 34.3

CE no 32.4 49.0 14.2

DML-1 no 34.5 51.5 16.5

DML-2 yes 50.2 66.4 25.3

KD no 56.8 72.3 28.3

AT no 57.6 72.5 28.7

Adv no 56.0 71.6 27.8

CCKD no 59.7 74.1 30.7

Table 3 summarizes the results of MSMT17 with CCKD,

as well as the comparison against other SOTA methods. For

a fair comparison, all the distillation based methods (except

DML) are trained without ImageNet-1K pretraining. For

DML, both the results with/without ImageNet-1K pretrain-

ing are represented. It can be seen that the performance of

the CCKD significantly surpasses KD and other SOTA KD-

based methods, and promote the original KD by 3.1% for

rank-1 accuracy and 2.4% for mAP. Without the guidance

of the teacher, the student trained by cross-entropy only

achieves 14.2% mAP, which is much lower than 28.3% of

KD.

Figure 3 shows the training loss and accuracy of ResNet-

18. It can be observed that although KL divergence loss

after convergence is almost the same, the correlation con-

gruence loss for CCKD is much lower than original KD,

consequently results in higher performance.

4.5. Face recognition results on Megaface

Similar to ReID, face recognition is a classical met-

ric learning problem. Learning a discriminative embedded

5012



space is the key to get a powerful recognition model. Usu-

ally, thousands of identities (class) are required for train-

ing a well-performed recognition model. Empirical evi-

dence shows that mimicking the feature layer with hint-

based L2 loss can bring great improvement for small net-

work [21, 23]. In this experiment, instead of using KD loss,

we adopt the L2-mimic loss. MS-Celeb-1M [9] and IMDB-

Face [32] are used as training datasets.

We choose MegaFace [19], a very popular benchmark,

as the test set to evaluate the proposed method. MegaFace

aims at the evaluation of face recognition algorithms at

million-scale of distractors (people who are not in the

testing set). We adopt the 1:N identification protocol in

Megaface to evaluate the different methods. Rank-1 iden-

tification rate at a different number of distractors is used as

an evaluation metric. We set weight decay to 5e-4, batch

size to 1024, and use stochastic gradient descent with mo-

mentum. The learning rate is set as 0.1 and divided by ten

at 50, 80, 100 epochs, 120 epochs in total. ResNet-50 is

used as teacher network and MobileNetV2 with 0.5 width

multiplier as student network.

Table 4: Results on Megaface. The teacher network is ResNet-

50 trained on MsCeleb-1M [9] and IMDb-face [32] using Arc-

Face [5]. The student network is MobileNetV2 with a width mul-

tiplier=0.5. We keep the same training configuration for mimic,

mimic with Adv and CCKD.

method
Rank-1 Identification rate at different distractors

ds=101 ds=102 ds=103 ds=104 ds=105 ds=106

teacher 99.76 99.66 99.58 99.49 99.23 98.15

student 99.20 96.37 91.49 84.45 75.60 65.91

mimic 99.63 98.73 97.25 94.39 89.60 83.01

mimic+Adv 99.64 98.80 97.43 94.81 90.52 84.13

CCKD 99.66 99.07 97.93 95.76 91.99 86.29

Table 4 shows the results on megaface. It can be ob-

served that ArcFace loss, which is trained by only using

pure one-hot labels, achieves 65.91% Rank-1 identification

rate with 1M distractors. When guided by the teacher using

L2-mimic loss, the student network can achieve 83.01%,

promoting by 18.1%. This result shows that even a much

small network can get a substantial improvement in per-

formance when designing a proper target and optimization

goal. By adding the constraints on correlations among in-

stance, CCKD achieves 86.29% Rank-1 identification rate

with 1M distractors, which surpasses the mimicking by

3.28% and 2.16% promotion over Adv [35].

4.6. Ablation Studies

Correlation Metrics. To explore the impact of differ-

ent correlation metrics on CCKD, we evaluate three popu-

lar metrics, namely max mean discrepancy (MMD), Bilin-

ear Pool, and Gaussian RBF. We approximate the Gaussian

RBF by using 2-order Taylor series. MMD reflects the dif-

ference between instance pairs in mean embeddings. Bi-

linear Pool evaluates the similarity of instances pair, and we

adopt identity matrix as the linear matrix. When the features

are normalized to unit length, it is equal to the cosine sim-

ilarity. Gaussian RBF is a common kernel function whose

value depends only on the euclidean distance from the orig-

inal space.

Table 5: Results on MSMT17 with different correlation methods,

including MMD, Bilinear Pool and Gaussian RBF. The Gaussian

RBF achieves the best result.

correlation metric rank-1 rank-5 mAP

MMD 58.9 73.6 29.4

Bilinear 59.2 73.8 30.2

Gaussian RBF 59.6 74.0 30.4

Table 5 shows the results of MSMT17 with different cor-

relation metrics. Gaussian RBF achieves the better perfor-

mance comparing to MMD and Bilinear Pool, while MMD

performs worst. So in the main experiments, we use the

Gaussian RBF approximated by 2-order Taylor series. All

three correlation matrics greatly surpass the original KD,

which proves the effectiveness of correlation in knowledge

distillation.

Order of Taylor series. To exploit the high order of cor-

relations between instances, we expand the Gaussian RBF

by Tarloy series to 1, 2, 3 -order respectively.

Table 6: Results on MSMT17 with different order (p = 1, 2, 3)

Taylor series (mean of 3 runs).

Expand order rank-1 rank-5 mAP

p=1 59.2 73.7 30.1

p=2 59.6 74.0 30.4

p=3 60.1 74.2 30.6

Table 6 summarizes the results on MSMT17 with ap-

proximated Gaussian RBF at different orders. It can be

observed that 3-order is better than 1, 2-order and 1-order

performs worst. Generally speaking, expanding Gaussian

RBF to high order can capture more complex correlations,

and consequently achieves higher performance in knowl-

edge distillation.

Impact of β. To exploit the impact of hyper-parameter

β, we have tried different β. Table 7 shows the results under

the different values of β, from which we can observe that

CCKD is consistently superior to KD.

Impact of Different Sampler Strategies. To explore

a proper sampler strategy, we evaluate the impacts of dif-

ferent sampler strategies including uniform random sam-

pler (UR-sampler), class-uniform random sampler (CUR-

sampler) and superclass-uniform random sampler (SUR-
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Table 7: Results on MSMT17 under different β. (mean of 3 runs.)

β (10−3) 0 (KD) 1 2 3 4 5 10

rank1 56.8 58.7 58.9 59.4 59.8 59.5 59.1

rank5 72.3 73.9 74.1 74.4 74.9 74.7 74.4

mAP 28.3 30.3 30.6 30.8 31.4 31.3 30.9

sampler) on MSMT17 dataset. For SUR-sampler, the k-

means is adopted, and the number of clusters is set to 1000

to generate superclass. For a fair comparison, the batch

size is set to 40 for all three strategies, and we set different

k = 1, 2, 4, 8, 20 both for CUR-sampler and SUR-sampler.

Table 8 summarizes the results. It can be observed that

the sampler strategy have a great impact on performance.

Both SUR-sampler and CUR-sampler are sensitive to the

value of k, which plays a role in balancing the intra-class

and inter-class correlation congruence. When given fixed

batch size, a larger k means a smaller number of classes

in a mini-batch. Both CUR-sampler and SUR-sampler be-

come worse when k = 8 or above. A possible explanation

is that a small number of classes in a mini-batch would re-

sult in a high bias estimation for the true gradient, while the

SUR-sampler performs better than CUR-sampler in such

bad cases. By selecting proper k (e.g., 2 or 4 in our ex-

periments), Both CUR-sampler and SUR-sampler performs

better than UR-sampler.

Table 8: Results on MSMT17 with different batch sampler strate-

gies. The teacher network is ResNet-50 and the student network is

ResNet-18.

sampler rank-1 rank-5 mAP

UR-sampler 57.2 72.3 28.6

CUR-sampler(k=1) 57.4 72.4 28.8

CUR-sampler(k=2) 58.9 73.6 29.4

CUR-sampler(k=4) 59.7 74.1 30.2

CUR-sampler(k=8) 55.7 71.8 29.1

CUR-sampler(k=20) 24.7 40.9 10.7

SUR-sampler(k=1) 56.2 72.2 29.4

SUR-sampler(k=2) 58.3 73.9 29.9

SUR-sampler(k=4) 59.6 75.0 31.1

SUR-sampler(k=8) 56.2 72.2 29.4

SUR-sampler(k=20) 30.1 47.7 13.7

4.7. Analyze

To delving into essence beyond results, we perform anal-

ysis based on visualization. We count the cosine simi-

larities of intra-class instances and inter-class instances on

MSMT17 since it is a common metric for open-set recogni-

tion. Figure 4 shows the heatmaps of cosine similarities.

The top row shows intra-class instances, and the bottom

row shows inter-class instances from two different identi-

ties. Each cell relates to the cosine similarity between the

corresponding instance pair.

CCKD

KD CCKD

KD…

…

Figure 4: The heatmaps of cosine similarities between instances

pairs. The top row shows intra-class similarities and the middle

row shows inter-class similarities between two identities. More

intra-class heatmap are showed in bottom two rows. (best viewed

in color)

It can be observed that cosine similarity between intra-

class instances of CCKD is larger than KD overall, which

means a more cohesion of intra-class instances in embed-

ding space, although there is not much difference between

CCKD and KD in inter-class cosine similarity. It seems that

CCKD can help the student to learn a more discriminative

embedding space. While CCKD by considering the corre-

lation congruence between instances, consequently getting

better performance.

5. Conclusions

In this paper, we propose a new distillation frame-

work named correlation congruence knowledge distillation

(CCKD), which considers not only instance information but

also correlation information between instances when trans-

ferring knowledge. To better capture correlation, a general-

ized method based on the Taylor series expansion of kernel

function is proposed. To further improve the CCKD, two

new mini-batch sampler strategies are proposed. Extensive

experiments on four representative tasks show that the pro-

posed approach can significantly promote the performance

of the student network.
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