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Abstract

Conventional unsupervised domain adaptation (UDA)

assumes that training data are sampled from a single do-

main. This neglects the more practical scenario where

training data are collected from multiple sources, requir-

ing multi-source domain adaptation. We make three ma-

jor contributions towards addressing this problem. First,

we collect and annotate by far the largest UDA dataset,

called DomainNet, which contains six domains and about

0.6 million images distributed among 345 categories, ad-

dressing the gap in data availability for multi-source UDA

research. Second, we propose a new deep learning ap-

proach, Moment Matching for Multi-Source Domain Adap-

tation (M3SDA), which aims to transfer knowledge learned

from multiple labeled source domains to an unlabeled target

domain by dynamically aligning moments of their feature

distributions. Third, we provide new theoretical insights

specifically for moment matching approaches in both sin-

gle and multiple source domain adaptation. Extensive ex-

periments are conducted to demonstrate the power of our

new dataset in benchmarking state-of-the-art multi-source

domain adaptation methods, as well as the advantage of

our proposed model. Dataset and Code are available at

http://ai.bu.edu/M3SDA/

1. Introduction

Generalizing models learned on one visual domain to

novel domains has been a major obstacle in the quest

for universal object recognition. The performance of the

learned models degrades significantly when testing on novel

domains due to the presence of domain shift [36].

Recently, transfer learning and domain adaptation meth-

ods have been proposed to mitigate the domain gap. For

example, several UDA methods [27, 41, 25] incorporate

Maximum Mean Discrepancy loss into a neural network to

diminish the domain discrepancy; other models introduce

different learning schema to align the source and target do-

mains, including aligning second order correlation [39, 32],
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Figure 1. We address Multi-Source Domain Adaptation where

source images come from multiple domains. We collect a large

scale dataset, DomainNet, with six domains, 345 categories, and

∼0.6 million images and propose a model (M3SDA) to transfer

knowledge from multiple source domains to an unlabeled target

domain.

moment matching [47], adversarial domain confusion [40,

8, 38] and GAN-based alignment [50, 15, 23]. However,

most of current UDA methods assume that source samples

are collected from a single domain. This assumption ne-

glects the more practical scenarios where labeled images

are typically collected from multiple domains. For exam-

ple, the training images can be taken under different weather

or lighting conditions, share different visual cues, and even

have different modalities (as shown in Figure 1).

In this paper, we consider multi-source domain adap-

tation (MSDA), a more difficult but practical problem of

knowledge transfer from multiple distinct domains to one

unlabeled target domain. The main challenges in the re-

search of MSDA are that: (1) the source data has multiple

domains, which hampers the effectiveness of mainstream

single UDA method; (2) source domains also possess do-

main shift with each other; (3) the lack of large-scale multi-

domain dataset hinders the development of MSDA models.

In the context of MSDA, some theoretical analysis [1,

28, 4, 49, 14] has been proposed for multi-source domain
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Dataset Year Images Classes Domains Description

Digit-Five - ∼100,000 10 5 digit

Office [37] 2010 4,110 31 3 office

Office-Caltech [11] 2012 2,533 10 4 office

CAD-Pascal [33] 2015 12,000 20 6 animal,vehicle

Office-Home [43] 2017 15,500 65 4 office, home

PACS [21] 2017 9,991 7 4 animal, stuff

Open MIC [17] 2018 16,156 - - museum

Syn2Real [35] 2018 280,157 12 3 animal,vehicle

DomainNet (Ours) - 569,010 345 6 see Appendix

Table 1. A collection of most notable datasets to evaluate domain

adaptation methods. Specifically, “Digit-Five” dataset indicates

five most popular digit datasets (MNIST [19], MNIST-M [8], Syn-

thetic Digits [8], SVHN, and USPS) which are widely used to eval-

uate domain adaptation models. Our dataset is challenging as it

contains more images, categories, and domains than other datasets.

(see Table 10, Table 11, and Table 12 in Appendix for detailed

categories.)

adaptation (MSDA). Ben-David et al [1] pioneer this di-

rection by introducing an H∆H-divergence between the

weighted combination of source domains and target do-

main. More applied works [6, 45] use an adversarial dis-

criminator to align the multi-source domains with the tar-

get domain. However, these works focus only on align-

ing the source domains with the target, neglecting the do-

main shift between the source domains. Moreover, H∆H-

divergence based analysis does not directly correspond to

moment matching approaches.

In terms of data, research has been hampered due to the

lack of large-scale domain adaptation datasets, as state-of-

the-art datasets contain only a few images or have a lim-

ited number of classes. Many domain adaptation models

exhibit saturation when evaluated on these datasets. For ex-

ample, many methods achieve ∼90 accuracy on the popular

Office [37] dataset; Self-Ensembling [7] reports ∼99% ac-

curacy on the “Digit-Five” dataset and ∼92% accuracy on

Syn2Real [35] dataset.

In this paper, we first collect and label a new multi-

domain dataset called DomainNet, aiming to overcome

benchmark saturation. Our dataset consists of six dis-

tinct domains, 345 categories and ∼0.6 million images. A

comparison of DomainNet and several existing datasets is

shown in Table 1, and example images are illustrated in

Figure 1. We evaluate several state-of-the-art single do-

main adaptation methods on our dataset, leading to surpris-

ing findings (see Section 5). We also extensively evaluate

our model on existing datasets and on DomainNet and show

that it outperforms the existing single- and multi-source ap-

proaches.

Secondly, we propose a novel approach called M3SDA

to tackle MSDA task by aligning the source domains with

the target domain, and aligning the source domains with

each other simultaneously. We dispose multiple complex

adversarial training procedures presented in [45], but di-

rectly align the moments of their deep feature distributions,

leading to a more robust and effective MSDA model. To our

best knowledge, we are the first to empirically demonstrate

that aligning the source domains is beneficial for MSDA

tasks.

Finally, we extend existing theoretical analysis [1, 14,

49] to the case of moment-based divergence between source

and target domains, which provides new theoretical insight

specifically for moment matching approaches in domain

adaptation, including our approach and many others.

2. Related Work

Domain Adaptation Datasets Several notable datasets that

can be utilized to evaluate domain adaptation approaches

are summarized in Table 1. The Office dataset [37] is a

popular benchmark for office environment objects. It con-

tains 31 categories captured in three domains: office envi-

ronment images taken with a high quality camera (DSLR),

office environment images taken with a low quality camera

(Webcam), and images from an online merchandising web-

site (Amazon). The office dataset and its extension, Office-

Caltech10 [11], have been used in numerous domain adap-

tation papers [25, 40, 27, 39, 45], and the adaptation per-

formance has reached ∼90% accuracy. More recent bench-

marks [43, 17, 34] are proposed to evaluate the effective-

ness of domain adaptation models. However, these datasets

are small-scale and limited by their specific environments,

such as office, home, and museum. Our dataset contains

about 600k images, distributed in 345 categories and 6 dis-

tinct domains. We capture various object divisions, ranging

from furniture, cloth, electronic to mammal, building, etc.

Single-source UDA Over the past decades, various single-

source UDA methods have been proposed. These methods

can be taxonomically divided into three categories. The first

category is the discrepancy-based DA approach, which uti-

lizes different metric learning schemas to diminish the do-

main shift between source and target domains. Inspired by

the kernel two-sample test [12], Maximum Mean Discrep-

ancy (MMD) is applied to reduce distribution shift in vari-

ous methods [27, 41, 9, 44]. Other commonly used methods

include correlation alignment [39, 32], Kullback-Leibler

(KL) divergence [51], and H divergence [1]. The second

category is the adversarial-based approach [24, 40]. A do-

main discriminator is leveraged to encourage the domain

confusion by an adversarial objective. Among these ap-

proaches, generative adversarial networks are widely used

to learn domain-invariant features as well to generate fake

source or target data. Other frameworks utilize only ad-

versarial loss to bridge two domains. The third category

is reconstruction-based, which assumes the data recon-

struction helps the DA models to learn domain-invariant

features. The reconstruction is obtained via an encoder-
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Figure 2. Statistics for our DomainNet dataset. The two plots show object classes sorted by the total number of instances. The top

figure shows the percentages each domain takes in the dataset. The bottom figure shows the number of instances grouped by 24 different

divisions. Detailed numbers are shown in Table 10, Table 11 and Table 12 in Appendix. (Zoom in to see the exact class names!)

decoder [3, 10] or a GAN discriminator, such as dual-

GAN [46], cycle-GAN [50], disco-GAN [16], and Cy-

CADA [15]. Though these methods make progress on

UDA, few of them consider the practical scenario where

training data are collected from multiple sources. Our paper

proposes a model to tackle multi-source domain adaptation,

which is a more general and challenging scenario.

Multi-Source Domain Adaptation Compared with single

source UDA, multi-source domain adaptation assumes that

training data from multiple sources are available. Origi-

nated from the early theoretical analysis [1, 28, 4], MSDA

has many practical applications [45, 6]. Ben-David et al [1]

introduce an H∆H-divergence between the weighted com-

bination of source domains and target domain. Crammer

et al [4] establish a general bound on the expected loss of

the model by minimizing the empirical loss on the nearest

k sources. Mansour et al [28] claim that the target hypothe-

sis can be represented by a weighted combination of source

hypotheses. In the more applied works, Deep Cocktail Net-

work (DCTN) [45] proposes a k-way domain discriminator

and category classifier for digit classification and real-world

object recognition. Hoffman et al [14] propose normalized

solutions with theoretical guarantees for cross-entropy loss,

aiming to provide a solution for the MSDA problem with

very practical benefits. Duan et al [6] propose Domain Se-

lection Machine for event recognition in consumer videos

by leveraging a large number of loosely labeled web im-

ages from different sources. Different from these methods,

our model directly matches all the distributions by match-

ing the moments. Moreover, we provide a concrete proof of

why matching the moments of multiple distributions works

for multi-source domain adaptation.

Moment Matching The moments of distributions have

been studied by the machine learning community for a long

time. In order to diminish the domain discrepancy be-

tween two domains, different moment matching schemes

have been proposed. For example, MMD matches the first

moments of two distributions. Sun et al [39] propose an ap-

proach that matches the second moments. Zhang et al [48]

propose to align infinte-dimensional covariance matrices in

RKHS. Zellinger et al [47] introduce a moment matching

regularizer to match high moments. As the generative ad-

versarial network (GAN) becomes popular, many GAN-

based moment matching approaches have been proposed.

McGAN [29] utilizes a GAN to match the mean and co-

variance of feature distributions. GMMN [22] and MMD

GAN [20] are proposed for aligning distribution moments

with generative neural networks. Compared to these meth-

ods, our work focuses on matching distribution moments

for multiple domains and more importantly, we demonstrate

that this is crucial for multi-source domain adaptation.

3. The DomainNet dataset

It is well-known that deep models require massive

amounts of training data. Unfortunately, existing datasets

for visual domain adaptation are either small-scale or lim-

ited in the number of categories. We collect by far the

largest domain adaptation dataset to date, DomainNet . The

DomainNet contains six domains, with each domain con-

taining 345 categories of common objects, as listed in Ta-

ble 10, Table 11, and Table 12 (see Appendix). The do-

mains include Clipart (clp, see Appendix, Figure 9): col-

lection of clipart images; Infograph (inf, see Figure 10):

infographic images with specific object; Painting (pnt, see

Figure 11): artistic depictions of objects in the form of

paintings; Quickdraw (qdr, see Figure 12): drawings of

the worldwide players of game “Quick Draw!”1; Real (rel,

see Figure 13): photos and real world images; and Sketch

1https://quickdraw.withgoogle.com/data
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Figure 3. The framework of Moment Matching for Multi-source Domain Adaptation (M3SDA). Our model consists of three compo-

nents: i) feature extractor, ii) moment matching component, and iii) classifiers. Our model takes multi-source annotated training data as

input and transfers the learned knowledge to classify the unlabeled target samples. Without loss of generality, we show the i-th domain and

j-th domain as an example. The feature extractor maps the source domains into a common feature space. The moment matching component

attempts to match the i-th and j-th domains with the target domain, as well as matching the i-th domain with the j-th domain. The final

predictions of target samples are based on the weighted outputs of the i-th and j-th classifiers. (Best viewed in color!)

(skt, see Figure 14): sketches of specific objects.

The images from clipart, infograph, painting, real, and

sketch domains are collected by searching a category name

combined with a domain name (e.g. “aeroplane painting”)

in different image search engines. One of the main chal-

lenges is that the downloaded data contain a large portion

of outliers. To clean the dataset, we hire 20 annotators to

manually filter out the outliers. This process took around

2,500 hours (more than 2 weeks) in total. To control the

annotation quality, we assign two annotators to each image,

and only take the images agreed by both annotators. Af-

ter the filtering process, we keep 423.5k images from the

1.2 million images crawled from the web. The dataset has

an average of around 150 images per category for clipart

and infograph domain, around 220 per category for paint-

ing and sketch domain, and around 510 for real domain. A

statistical overview of the dataset is shown in Figure 2.

The quickdraw domain is downloaded directly from

https://quickdraw.withgoogle.com/. The raw

data are presented as a series of discrete points with tempo-

ral information. We use the B-spline [5] algorithm to con-

nect all the points in each strike to get a complete drawing.

We choose 500 images for each category to form the quick-

draw domain, which contains 172.5k images in total.

4. Moment Matching for Multi-Source DA

Given DS = {D1,D2, ...,DN} the collection of labeled

source domains and DT the unlabeled target domain, where

all domains are defined by bounded rational measures on

input space X , the multi-source domain adaptation problem

aims to find a hypothesis in the given hypothesis space H,

which minimizes the testing target error on DT .

Definition 1. Assume X1, X2 , ...,XN , XT are collections

of i.i.d. samples from D1,D2, ...,DN ,DT respectively, then

the Moment Distance between DS and DT is defined as

MD2(DS ,DT ) =

2
∑

k=1

( 1

N

N
∑

i=1

‖E(Xk
i )− E(Xk

T )‖2

+

(

N

2

)−1 N−1
∑

i=1

N
∑

j=i+1

‖E(Xk
i )− E(Xk

j )‖2

)

. (1)

M3SDA We propose a moment-matching model for MSDA

based on deep neural networks. As shown in Figure 3,

our model comprises of a feature extractor G, a moment-

matching component, and a set of N classifiers C =
{C1, C2, ..., CN}. The feature extractor G maps DS , DT

to a common latent feature space. The moment matching

component minimizes the moment-related distance defined

in Equation 1. The N classifiers are trained on the anno-

tated source domains with cross-entropy loss. The overall

objective function is:

min
G,C

N
∑

i=1

LDi
+ λmin

G
MD2(DS ,DT ), (2)

where LDi
is the softmax cross entropy loss for the classi-

fier Ci on domain Di, and λ is the trade-off parameter.

M3SDA assumes that p(y|x) will be aligned automati-

cally when aligning p(x), which might not hold in practice.

To mitigate this limitation, we further propose M3SDA-β.

M3SDA-β In order to align p(y|x) and p(x) at the

same time, we follow the training paradigm proposed

by [38]. In particular, we leverage two classifiers

per domain to form N pairs of classifiers C′ =
{(C1, C1

′), (C2, C2
′), ..., (CN , CN

′)}. The training proce-

dure includes three steps. i). We train G and C′ to classify

the multi-source samples correctly. The objective is similar
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to Equation 2. ii). We then train the classifier pairs for a

fixed G. The goal is to make the discrepancy of each pair

of classifiers as large as possible on the target domain. For

example, the outputs of C1 and C1
′ should possess a large

discrepancy. Following [38], we define the discrepancy of

two classifiers as the L1-distance between the outputs of the

two classifiers. The objective is:

min
C
′

N
∑

i=1

LDi
−

N
∑

i

|PCi
(DT )− P

Ci
′(DT )|, (3)

where PCi
(DT ), PCi

′(DT ) denote the outputs of Ci, Ci
′

respectively on the target domain. iii). Finally, we fix C′ and

train G to minimize the discrepancy of each classifier pair

on the target domain. The objective function is as follows:

min
G

N
∑

i

|PCi
(DT )− P

Ci
′(DT )|, (4)

These three training steps are performed periodically until

the whole network converges.

Ensemble Schema In the testing phase, testing data from

the target domain are forwarded through the feature gen-

erator and the N classifiers. We propose two schemas to

combine the outputs of the classifiers:

• average the outputs of the classifiers, marked as

M3SDA∗

• Derive a weight vector W = (w1, . . . , wN−1)

(
∑N−1

i=1 wi = 1, assuming N -th domain is the target).

The final prediction is the weighted average of the out-

puts.

To this end, how to derive the weight vector becomes a

critical problem. The main philosophy of the weight vec-

tor is to make it represent the intrinsic closeness between

the target domain and source domains. In our setting,

the weighted vector is derived by the source-only accu-

racy between the i-th domain and the N -th domain, i.e.

wi = acci/
∑N−1

j=1 accj .

4.1. Theoretical Insight

Following [1], we introduce a rigorous model of multi-

source domain adaptation for binary classification. A do-

main D = (µ, f) is defined by a probability measure (dis-

tribution) µ on the input space X and a labeling function f :
X → {0, 1}. A hypothesis is a function h : X → {0, 1}.

The probability that h disagrees with the domain labeling

function f under the domain distribution µ is defined as:

ǫD(h) = ǫD(h, f) = Eµ[|h(x)− f(x)|]. (5)

For a source domain DS and a target domain DT , we

refer to the source error and the target error of a hypoth-

esis h as ǫS(h) = ǫDS
(h) and ǫT (h) = ǫDT

(h) respec-

tively. When the expectation in Equation 5 is computed

with respect to an empirical distribution, we denote the cor-

responding empirical error by ǫ̂D(h), such as ǫ̂S(h) and

ǫ̂T (h). In particular, we examine algorithms that mini-

mize convex combinations of source errors, i.e., given a

weight vector α = (α1, . . . , αN ) with
∑N

j=1 αj = 1, we

define the α-weighted source error of a hypothesis h as

ǫα(h) =
∑N

j=1 αjǫj(h), where ǫj(h) is the shorthand of

ǫDj
(h). The empirical α-weighted source error can be de-

fined analogously and denoted by ǫ̂α(h).
Previous theoretical bounds [1, 14, 49] on the target er-

ror are based on the H∆H-divergence between the source

and target domains. While providing theoretical insights

for general multi-source domain adaptation, these H∆H-

divergence based bounds do not directly motivate moment-

based approaches. In order to provide a specific insight

for moment-based approaches, we introduce the k-th or-

der cross-moment divergence between domains, denoted

by dCMk(·, ·), and extend the analysis in [1] to derive the

following moment-based bound for multi-source domain

adaptation. See Appendix for the definition of the cross-

moment divergence and the proof of the theorem.

Theorem 1. Let H be a hypothesis space of V C dimension

d. Let m be the size of labeled samples from all sources

{D1,D2, ...,DN}, Sj be the labeled sample set of size βjm
(
∑

j βj = 1) drawn from µj and labeled by the groundtruth

labeling function fj . If ĥ ∈ H is the empirical minimizer of

ǫ̂α(h) for a fixed weight vector α and h∗
T = minh∈H ǫT (h)

is the target error minimizer, then for any δ ∈ (0, 1) and

any ǫ > 0, there exist N integers {nj
ǫ}

N
j=1 and N constants

{a
n
j
ǫ
}Nj=1, such that with probability at least 1− δ,

ǫT (ĥ) ≤ ǫT (h
∗
T ) + ηα,β,m,δ + ǫ

+

N
∑

j=1

αj

(

2λj + a
n
j
ǫ

nj
ǫ

∑

k=1

dCMk(Dj ,DT )
)

,
(6)

where ηα,β,m,δ = 4

√

(
∑N

j=1

α2

j

βj
)(

2d(log( 2m
d

)+1)+2 log( 4

δ
)

m
)

and λj = minh∈H{ǫT (h) + ǫj(h)}.

Theorem 1 shows that the upper bound on the target error

of the learned hypothesis depends on the pairwise moment

divergence dCMk(DS ,DT ) between the target domain and

each source domain.2 This provides a direct motivation

for moment matching approaches beyond ours. In partic-

ular, it motivates our multi-source domain adaptation ap-

proach to align the moments between each target-source

pair. Moreover, it is obvious that the last term of the bound,
∑

k dCMk(Dj ,DT ), is lower bounded by the pairwise di-

vergences between source domains. To see this, consider

2Note that single source is just a special case when N = 1.

1410



Standards Models
mt,up,sv,sy

→ mm

mm,up,sv,sy

→ mt

mm,mt,sv,sy

→ up

mm,mt,up,sy

→ sv

mm,mt,up,sv

→ sy
Avg

Source

Combine

Source Only 63.70±0.83 92.30±0.91 90.71±0.54 71.51±0.75 83.44±0.79 80.33±0.76

DAN [25] 67.87±0.75 97.50± 0.62 93.49±0.85 67.80±0.84 86.93±0.93 82.72± 0.79

DANN [8] 70.81±0.94 97.90±0.83 93.47±0.79 68.50±0.85 87.37±0.68 83.61±0.82

Multi-

Source

Source Only 63.37±0.74 90.50±0.83 88.71±0.89 63.54±0.93 82.44±0.65 77.71±0.81

DAN [25] 63.78±0.71 96.31±0.54 94.24±0.87 62.45±0.72 85.43±0.77 80.44±0.72

CORAL [39] 62.53±0.69 97.21±0.83 93.45±0.82 64.40±0.72 82.77±0.69 80.07±0.75

DANN [8] 71.30±0.56 97.60±0.75 92.33±0.85 63.48±0.79 85.34±0.84 82.01±0.76

JAN [27] 65.88±0.68 97.21±0.73 95.42±0.77 75.27±0.71 86.55±0.64 84.07±0.71

ADDA [40] 71.57± 0.52 97.89±0.84 92.83±0.74 75.48±0.48 86.45±0.62 84.84±0.64

DCTN [45] 70.53±1.24 96.23±0.82 92.81±0.27 77.61±0.41 86.77±0.78 84.79±0.72

MEDA [44] 71.31±0.75 96.47±0.78 97.01±0.82 78.45±0.77 84.62±0.79 85.60± 0.78

MCD [38] 72.50±0.67 96.21±0.81 95.33±0.74 78.89±0.78 87.47±0.65 86.10±0.73

M3SDA (ours) 69.76±0.86 98.58±0.47 95.23±0.79 78.56±0.95 87.56±0.53 86.13±0.64

M3SDA-β (ours) 72.82±1.13 98.43±0.68 96.14±0.81 81.32±0.86 89.58±0.56 87.65± 0.75

Table 2. Digits Classification Results. mt, up, sv, sy, mm are abbreviations for MNIST, USPS, SVHN, Synthetic Digits, MNIST-M,

respectively. Our model M3SDA and M3SDA-β achieve 86.13% and 87.65% accuracy, outperforming other baselines by a large margin.

the toy example consisting of two sources D1,D2, and a

target DT , since dCMk(·, ·) is a metric, triangle inequality

implies the following lower bound:

dCMk(D1,DT ) + dCMk(D2,DT ) ≥ dCMk(D1,D2).

This motivates our algorithm to also align the moments be-

tween each pair of source domains. Intuitively, it is not pos-

sible to perfectly align the target domain with every source

domain, if the source domains are not aligned themselves.

Further discussions of Theorem 1 and its relationship with

our algorithm are provided in the Appendix.

5. Experiments

We perform an extensive evaluation on the following

tasks: digit classification (MNIST, SVHN, USPS, MNIST-M,

Sythetic Digits), and image recognition (Office-Caltech10,

DomainNet dataset). In total, we conduct 714 experiments.

The experiments are run on a GPU-cluster with 24 GPUs

and the total running time is more than 21,440 GPU-hours.

Due to space limitations, we only report major results; more

implementation details are provided in the supplementary

material. Throughout the experiments, we set the trade-off

parameter λ in Equation 2 as 0.5. In terms of the parameter

sensitivity, we have observed that the performance variation

is not significant if λ is between 0.1∼1. All of our experi-

ments are implemented in the PyTorch3 platform.

5.1. Experiments on Digit Recognition

Five digit datasets are sampled from five different

sources, namely MNIST [19], Synthetic Digits [8], MNIST-

M [8], SVHN, and USPS. Following DCTN [45], we sample

25000 images from training subset and 9000 from testing

subset in MNIST, MINST-M, SVHN, and Synthetic Digits.

USPS dataset contains only 9298 images in total, so we take

3http://pytorch.org

the entire dataset as a domain. In all of our experiments, we

take turns to set one domain as the target domain and the

rest as the source domains.

We take four state-of-the-art discrepancy-based ap-

proaches: Deep Adaptation Network [25] (DAN), Joint

Adaptation Network (JAN), Manifold Embedded Distribu-

tion Alignment (MEDA), and Correlation Alignment [39]

(CORAL), and four adversarial-based approaches: Do-

main Adversarial Neural Network [8] (DANN), Adversar-

ial Discriminative Domain Adaptation [40] (ADDA), Max-

imum Classifier Discrepancy (MCD) and Deep Cocktail

Network [45] (DCTN) as our baselines. In the source com-

bine setting, all the source domains are combined to a sin-

gle domain, and the baseline experiments are conducted in

a traditional single domain adaptation manner.

The results are shown in Table 2. Our model M3SDA

achieves an 86.13% average accuracy, and M3SDA-β
boosts the performance to 87.65%, outperforming other

baselines by a large margin. One interesting observation

is that the results on MNIST-M dataset is lower. This phe-

nomenon is probably due to the presence of negative trans-

fer [31]. For a fair comparison, all the experiments are

based on the same network architecture. For each experi-

ment, we run the same setting for five times and report the

mean and standard deviation. (See Appendix for detailed

experiment settings and analyses.)

5.2. Experiments on Office­Caltech10

The Office-Caltech10 [11] dataset is extended from the

standard Office31 [37] dataset. It consists of the same 10

object categories from 4 different domains: Amazon, Cal-

tech, DSLR, and Webcam.

The experimental results on Office-Caltech10 dataset are

shown in Table 4. Our model M3SDA gets a 96.1% aver-

age accuracy on this dataset, and M3SDA-β further boosts

the performance to 96.4%. All the experiments are based

on ResNet-101 pre-trained on ImageNet. As far as we
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AlexNet clp inf pnt qdr rel skt Avg. DAN clp inf pnt qdr rel skt Avg. JAN clp inf pnt qdr rel skt Avg. DANN clp inf pnt qdr rel skt Avg.
clp 65.5 8.2 21.4 10.5 36.1 10.8 17.4 clp N/A 9.1 23.4 16.2 37.9 29.7 23.2 clp N/A 7.8 24.5 14.3 38.1 25.7 22.1 clp N/A 9.1 23.2 13.7 37.6 28.6 22.4
inf 32.9 27.7 23.8 2.2 26.4 13.7 19.8 inf 17.2 N/A 15.6 4.4 24.8 13.5 15.1 inf 17.6 N/A 18.7 8.7 28.1 15.3 17.7 inf 17.9 N/A 16.4 2.1 27.8 13.3 15.5
pnt 28.1 7.5 57.6 2.6 41.6 20.8 20.1 pnt 29.9 8.9 N/A 7.9 42.1 26.1 23.0 pnt 27.5 8.2 N/A 7.1 43.1 23.9 22.0 pnt 29.1 8.6 N/A 5.1 41.5 24.7 21.8
qdr 13.4 1.2 2.5 68.0 5.5 7.1 5.9 qdr 14.2 1.6 4.4 N/A 8.5 10.1 7.8 qdr 17.8 2.2 7.4 N/A 8.1 10.9 9.3 qdr 16.8 1.8 4.8 N/A 9.3 10.2 8.6
rel 36.9 10.2 33.9 4.9 72.8 23.1 21.8 rel 37.4 11.5 33.3 10.1 N/A 26.4 23.7 rel 33.5 9.1 32.5 7.5 N/A 21.9 20.9 rel 36.5 11.4 33.9 5.9 N/A 24.5 22.4
skt 35.5 7.1 21.9 11.8 30.8 56.3 21.4 skt 39.1 8.8 28.2 13.9 36.2 N/A 25.2 skt 35.3 8.2 27.7 13.3 36.8 N/A 24.3 skt 37.9 8.2 26.3 12.2 35.3 N/A 24.0

Avg. 29.4 6.8 20.7 6.4 28.1 15.1 17.8 Avg. 27.6 8.0 21.0 10.5 29.9 21.2 19.7 Avg. 26.3 7.1 22.2 10.2 30.8 19.5 19.4 Avg. 27.6 7.8 20.9 7.8 30.3 20.3 19.1

RTN clp inf pnt qdr rel skt Avg. ADDA clp inf pnt qdr rel skt Avg. MCD clp inf pnt qdr rel skt Avg. SE clp inf pnt qdr rel skt Avg.
clp N/A 8.1 21.1 13.1 36.1 26.5 21.0 clp N/A 11.2 24.1 3.2 41.9 30.7 22.2 clp N/A 14.2 26.1 1.6 45.0 33.8 24.1 clp N/A 9.7 12.2 2.2 33.4 23.1 16.1
inf 15.6 N/A 15.3 3.4 25.1 12.8 14.4 inf 19.1 N/A 16.4 3.2 26.9 14.6 16.0 inf 23.6 N/A 21.2 1.5 36.7 18.0 20.2 inf 10.3 N/A 9.6 1.2 13.1 6.9 8.2
pnt 26.8 8.1 N/A 5.2 40.6 22.6 20.7 pnt 31.2 9.5 N/A 8.4 39.1 25.4 22.7 pnt 34.4 14.8 N/A 1.9 50.5 28.4 26.0 pnt 17.1 9.4 N/A 2.1 28.4 15.9 14.6
qdr 15.1 1.8 4.5 N/A 8.5 8.9 7.8 qdr 15.7 2.6 5.4 N/A 9.9 11.9 9.1 qdr 15.0 3.0 7.0 N/A 11.5 10.2 9.3 qdr 13.6 3.9 11.6 N/A 16.4 11.5 11.4
rel 35.3 10.7 31.7 7.5 N/A 22.9 21.6 rel 39.5 14.5 29.1 12.1 N/A 25.7 24.2 rel 42.6 19.6 42.6 2.2 N/A 29.3 27.2 rel 31.7 12.9 19.9 3.7 N/A 26.3 18.9
skt 34.1 7.4 23.3 12.6 32.1 N/A 21.9 skt 35.3 8.9 25.2 14.9 37.6 N/A 25.4 skt 41.2 13.7 27.6 3.8 34.8 N/A 24.2 skt 18.7 7.8 12.2 7.7 28.9 N/A 15.1

Avg. 25.4 7.2 19.2 8.4 28.4 18.7 17.9 Avg. 28.2 9.3 20.1 8.4 31.1 21.7 19.8 Avg. 31.4 13.1 24.9 2.2 35.7 23.9 21.9 Avg. 18.3 8.7 13.1 3.4 24.1 16.7 14.1

Table 3. Single-source baselines on the DomainNet dataset. Several single-source adaptation baselines are evaluated on the DomainNet

dataset, including AlexNet [18], DAN [25], JAN [27], DANN [8], RTN [26], ADDA [40], MCD [38], SE [7]. In each sub-table, the

column-wise domains are selected as the source domain and the row-wise domains are selected as the target domain. The green numbers

represent the average performance of each column or row. The red numbers denote the average accuracy for all the 30 (source, target)

combinations.

Standards Models
A,C,D

→W

A,C,W

→D

A,D,W

→C

C,D,W

→A
Avg

Source

Combine

Source only 99.0 98.3 87.8 86.1 92.8

DAN [25] 99.3 98.2 89.7 94.8 95.5

Multi-

Source

Source only 99.1 98.2 85.4 88.7 92.9

DAN [25] 99.5 99.1 89.2 91.6 94.8

DCTN [45] 99.4 99.0 90.2 92.7 95.3

JAN [27] 99.4 99.4 91.2 91.8 95.5

MEDA [44] 99.3 99.2 91.4 92.9 95.7

MCD [38] 99.5 99.1 91.5 92.1 95.6

M3SDA (ours) 99.4 99.2 91.5 94.1 96.1

M3SDA-β (ours) 99.5 99.2 92.2 94.5 96.4

Table 4. Results on Office-Caltech10 dataset. A,C,W and D rep-

resent Amazon, Caltech, Webcam and DSLR, respectively. All the

experiments are based on ResNet-101 pre-trained on ImageNet.

know, our models achieve the best performance among all

the results ever reported on this dataset. We have also tried

AlexNet, but it did not work as well as ResNet-101.

5.3. Experiments on DomainNet

Single-Source Adaptation To demonstrate the intrinsic

difficulty of DomainNet, we evaluate multiple state-of-

the-art algorithms for single-source adaptation: Deep

Alignment Network (DAN) [25], Joint Adaptation Net-

work (JAN) [27], Domain Adversarial Neural Network

(DANN) [8], Residual Transfer Network (RTN) [26], Ad-

versarial Deep Domain Adaptation (ADDA) [40], Max-

imum Classifier Discrepancy (MCD) [38], and Self-

Ensembling (SE) [7]. As the DomainNet dataset contains 6

domains, experiments for 30 different (sources, target) com-

binations are performed for each baseline. For each domain,

we follow a 70%/30% split scheme to participate our dataset

into training and testing trunk. The detailed statistics can be

viewed in Table 8 (see Appendix). All other experimen-

tal settings (neural network, learning rate, stepsize, etc.) are

kept the same as in the original papers. Specifically, DAN,

JAN, DANN, and RTN are based on AlexNet [18], ADDA

and MCD are based on ResNet-101 [13], and SE is based

on ResNet-152 [13]. Table 3 shows all the source-only and

experimental results. (Source-only results for ResNet-101

20 50 100 150 200 250 300 345
Number of Categories

0.2

0.4

0.6

0.8

A
cc

ur
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y

SE
MCD
DAN
JAN
RTN
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ADDA
AlexNet

Figure 4. Accuracy vs. Number of categories. This plot shows

the painting→real scenario. More plots with similar trend can be

accessed in Figure 5 (see Appendix).

and ResNet-152 are in Appendix, Table 7). The results

show that our dataset is challenging, especially for the info-

graph and quickdraw domain. We argue that the difficulty

is mainly introduced by the large number of categories in

our dataset.

Multi-Source Domain Adaptation DomainNet contains

six domains. Inspired by Xu et al [45], we introduce two

MSDA standards: (1) single best, reporting the single best-

performing source transfer result on the test set, and (2)

source combine, combining the source domains to a sin-

gle domain and performing traditional single-source adap-

tation. The first standard evaluates whether MSDA can im-

prove the best single source UDA results; the second testify

whether MSDA is necessary to exploit.

Baselines For both single best and source combine experi-

ment setting, we take the following state-of-the-art methods

as our baselines: Deep Alignment Network (DAN) [25],

Joint Adaptation Network (JAN) [27], Domain Adver-

sarial Neural Network (DANN) [8], Residual Transfer

Network (RTN) [26], Adversarial Deep Domain Adap-

tation (ADDA) [40], Maximum Classifier Discrepancy

(MCD) [38], and Self-Ensembling (SE) [7]. For multi-

source domain adaptation, we take Deep Cocktail Network

(DCTN) [45] as our baseline.

Results The experimental results of multi-source domain
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Standards Models
inf,pnt,qdr,

rel,skt→clp

clp,pnt,qdr,

rel,skt→inf

clp,inf,qdr,

rel,skt→pnt

clp,inf,pnt,

rel,skt→qdr

clp,inf,pnt,

qdr,skt →rel

clp,inf,pnt,

qdr,rel →skt
Avg

Single

Best

Source Only 39.6±0.58 8.2±0.75 33.9 ± 0.62 11.8 ± 0.69 41.6 ± 0.84 23.1±0.72 26.4 ± 0.70

DAN [25] 39.1±0.51 11.4±0.81 33.3±0.62 16.2±0.38 42.1±0.73 29.7±0.93 28.6±0.63

RTN [26] 35.3±0.73 10.7±0.61 31.7±0.82 13.1±0.68 40.6±0.55 26.5±0.78 26.3±0.70

JAN [27] 35.3±0.71 9.1±0.63 32.5±0.65 14.3±0.62 43.1±0.78 25.7±0.61 26.7±0.67

DANN [8] 37.9±0.69 11.4±0.91 33.9±0.60 13.7±0.56 41.5±0.67 28.6±0.63 27.8±0.68

ADDA [40] 39.5±0.81 14.5±0.69 29.1±0.78 14.9±0.54 41.9±0.82 30.7±0.68 28.4±0.72

SE [7] 31.7±0.70 12.9±0.58 19.9±0.75 7.7±0.44 33.4±0.56 26.3±0.50 22.0±0.66

MCD [38] 42.6±0.32 19.6±0.76 42.6±0.98 3.8±0.64 50.5±0.43 33.8±0.89 32.2±0.66

Source

Combine

Source Only 47.6±0.52 13.0±0.41 38.1±0.45 13.3±0.39 51.9±0.85 33.7±0.54 32.9±0.54

DAN [25] 45.4±0.49 12.8±0.86 36.2±0.58 15.3±0.37 48.6±0.72 34.0±0.54 32.1±0.59

RTN [26] 44.2±0.57 12.6±0.73 35.3±0.59 14.6±0.76 48.4±0.67 31.7±0.73 31.1±0.68

JAN [27] 40.9±0.43 11.1±0.61 35.4±0.50 12.1±0.67 45.8±0.59 32.3±0.63 29.6±0.57

DANN [8] 45.5±0.59 13.1±0.72 37.0±0.69 13.2±0.77 48.9±0.65 31.8±0.62 32.6±0.68

ADDA [40] 47.5±0.76 11.4±0.67 36.7±0.53 14.7±0.50 49.1±0.82 33.5±0.49 32.2±0.63

SE [7] 24.7±0.32 3.9±0.47 12.7±0.35 7.1±0.46 22.8±0.51 9.1±0.49 16.1±0.43

MCD [38] 54.3±0.64 22.1±0.70 45.7±0.63 7.6±0.49 58.4±0.65 43.5±0.57 38.5±0.61

Multi-

Source

DCTN [45] 48.6±0.73 23.5±0.59 48.8±0.63 7.2±0.46 53.5±0.56 47.3±0.47 38.2±0.57

M3SDA∗ (ours) 57.0±0.79 22.1±0.68 50.5±0.45 4.4± 0.21 62.0±0.45 48.5±0.56 40.8± 0.52

M3SDA (ours) 57.2±0.98 24.2±1.21 51.6±0.44 5.2±0.45 61.6±0.89 49.6±0.56 41.5±0.74

M3SDA-β (ours) 58.6±0.53 26.0± 0.89 52.3±0.55 6.3±0.58 62.7±0.51 49.5±0.76 42.6±0.64

Oracle

Results

AlexNet 65.5±0.56 27.7±0.34 57.6±0.49 68.0±0.55 72.8±0.67 56.3±0.59 58.0±0.53

ResNet101 69.3±0.37 34.5±0.42 66.3±0.67 66.8±0.51 80.1±0.59 60.7±0.48 63.0±0.51

ResNet152 71.0±0.63 36.1±0.61 68.1 ± 0.49 69.1±0.52 81.3±0.49 65.2±0.57 65.1±0.55

Table 5. Multi-source domain adaptation results on the DomainNet dataset. Our model M3SDA and M3SDA-β achieves 41.5%

and 42.6% accuracy, significantly outperforming all other baselines. M3SDA∗ indicates the normal average of all the classifiers. When

the target domain is quickdraw, the multi-source methods perform worse than single-source and source only baselines, which indicates

negative transfer [31] occurs in this case. (clp: clipart, inf: infograph, pnt: painting, qdr: quickdraw, rel: real, skt: sketch.)

adaptation are shown in Table 5. We report the results of

the two different weighting schemas and all the baseline re-

sults in Table 5. Our model M3SDA achieves an average

accuracy of 41.5%, and M3SDA-β boosts the performance

to 42.6%. The results demonstrate that our models de-

signed for MSDA outperform the single best UDA results,

the source combine results, and the multi-source baseline.

From the experimental results, we make three interesting

observations. (1)The performance of M3SDA∗ is 40.8%.

After applying the weight vector W , M3SDAimproves the

mean accuracy by 0.7 percent. (2) In clp,inf,pnt,rel,skt→qdr

setting, the performances of our models are worse than

source-only baseline, which indicates that negative trans-

fer [31] occurs. (3) In the source combine setting, the per-

formances of DAN [25], RTN [26], JAN [27], DANN [8]

are lower than the source only baseline, indicating the neg-

ative transfer happens when the training data are from mul-

tiple source domains.

Effect of Category Number To show how the number of

categories affects the performance of state-of-the-art do-

main adaptation methods, we choose the painting→real set-

ting in DomainNet and gradually increase the number of

category from 20 to 345. The results are in Figure 4. An in-

teresting observation is that when the number of categories

is small (which is exactly the case in most domain adapta-

tion benchmarks), all methods tend to perform well. How-

ever, their performances drop at different rates when the

number of categories increases. For example, SE [7] per-

forms the best when there is a limit number of categories,

but worst when the number of categories is larger than 150.

6. Conclusion

In this paper, we have collected, annotated and evalu-

ated by far the largest domain adaptation dataset named Do-

mainNet. The dataset is challenging due to the presence

of notable domain gaps and a large number of categories.

We hope it will be beneficial to evaluate future single- and

multi-source UDA methods.

We have also proposed M3SDA to align multiple source

domains with the target domain. We derive a meaningful

error bound for our method under the framework of cross-

moment divergence. Further, we incorporate the moment

matching component into deep neural network and train the

model in an end-to-end fashion. Extensive experiments on

multi-source domain adaptation benchmarks demonstrate

that our model outperforms all the multi-source baselines as

well as the best single-source domain adaptation method.
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