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Abstract

The classification performance of deep neural networks

has begun to asymptote at near-perfect levels. However,

their ability to generalize outside the training set and their

robustness to adversarial attacks have not. In this pa-

per, we make progress on this problem by training with

full label distributions that reflect human perceptual un-

certainty. We first present a new benchmark dataset which

we call CIFAR10H, containing a full distribution of hu-

man labels for each image of the CIFAR10 test set. We

then show that, while contemporary classifiers fail to ex-

hibit human-like uncertainty on their own, explicit train-

ing on our dataset closes this gap, supports improved gen-

eralization to increasingly out-of-training-distribution test

datasets, and confers robustness to adversarial attacks.

1. Introduction

On natural-image classification benchmarks, state-of-

the-art convolutional neural network (CNN) models have

been said to equal or even surpass human performance,

as measured in terms of “top-1 accuracy”—the correspon-

dence between the most probable label indicated by the

model and the “ground truth” label for a test set of held-

out images. As accuracy gains have begun to asymptote at

near-perfect levels [11], there has been increasing focus on

out-of-training-set performance—in particular, the ability

to generalize to related stimuli [39], and robustness to ad-

versarial examples [29]. On these tasks, by contrast, CNNs

tend to perform rather poorly, whereas humans continue to

perform well.

To redress this problem, and provide a better standard for

training classifiers, we suggest an alternative objective: not

just trying to capture the most likely label, but trying to cap-

ture the full distribution over labels. Errors in classification

can be just as informative as the correct answers—a network

that confuses a dog with a cat, for example, might be judged

to generalize better than one that confuses it with a truck
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Figure 1: CIFAR10 images for which humans and our best

traditionally-trained CNN (Shake-Shake [11]) agree in their

top guess, but systematically differ over other choices.

(see [1]). Indeed, consider the examples shown in Figure 1,

in which the CNN can be underconfident, overconfident, or

systematically incorrect, and yet receive a perfect accuracy

score. Capturing this similarity structure is a key part of ef-

fective generalization [19], and an important consideration

when building classification models for real-world applica-

tions, for example, object avoidance in driverless cars.
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Predicting more complete distributions of labels requires

first measuring those distributions. Given that we cannot

directly extract ground truth perceptual similarity from the

world, human categorization behavior is a natural candidate

for such a comparison. Indeed, there is often a lack of hu-

man consensus on the category of an object, and human

errors often convey important information about the struc-

ture of the visual world [31]. Beyond complementing train-

ing paradigms, collecting these full label distributions from

humans to better model human biases and predict their er-

rors is interesting in itself—this time, for example, to help a

driverless car infer the actions of nearby human drivers. Fi-

nally, although there has been much work scaling the num-

ber of images in datasets [18], and investigating label noise

[40, 12, 48], little effort has been put into identifying the

benefits from increasing the richness of (informative) label

distributions for image classification tasks.

To these ends, we make the following contributions:

• We present a novel soft-label dataset which we call

CIFAR10H, comprising full label distributions for the

entire 10,000-image CIFAR10 test set, utilizing over

500k crowdsourced human categorization judgments.

• We show that when state-of-the-art CNN classifiers are

trained using these soft labels, they generalize better to

out-of-sample datasets than hard-label controls.

• We present a performance benchmark assessing model

fit to human labels, and show that models trained us-

ing alternative label distributions do not approximate

human uncertainty as well.

• We show that when CNNs are trained to perform well

on this benchmark they are significantly more resistant

to adversarial attacks.

Taken together, our results support more fine-grained eval-

uations of model generalization behavior and demonstrate

the potential utility of one method for integrating human

perceptual similarity into paradigms for training classifiers.

2. Related Work

Hierarchical Classification. Work on using class confu-

sion or hierarchy to improve classification accuracy or ro-

bustness dates back to early works of e.g., Griffin and Per-

ona [14], Marszalek and Schmid [34], or Zweig and Wein-

shall [53]. Class label hierarchies have been used to enable

e.g., sharing of representations [47, 9, 22], effective com-

bination of models [23], or improved accuracy of classifi-

cation through hierarchical prediction [32, 8]. Benchmarks

have occasionally proposed using hierarchical metrics for

evaluation (e.g., the hierarchical error rate of ILSVRC 2010

and 2011 [41]). Overall though the dominant paradigm has

focused on evaluating the top-K accuracy rather analyzing

the errors of the system, and the hierarchical structure has

been used mostly for training. We argue it is time to rethink

this. First, modern large-scale open-world complex datasets

no longer guarantee non-overlapping object classes [26],

making hierarchical class confusion particularly meaning-

ful. Second, existing methods are becoming remarkably

good at top-K accuracy, so an increasing focus on their ro-

bustness with regard to adversarial examples [44, 13, 2] or

distributional shift [45, 39] is warranted. In this work we

present to our knowledge the first large-scale evaluation of

generalization to human uncertainty in image classification.

Knowledge Distillation. The label hierarchies used to aid

recognition can be manually constructed [6, 3], derived

from linguistic knowledge bases [10, 9], or learned auto-

matically [14, 19]. Our work is closest to the former (man-

ual construction), although instead of explicitly construct-

ing a class hierarchy we rely on human confusion between

the classes to infer the relationship between the classes for

a given image. While being derived from human confusion,

our work bears some resemblance to the knowledge distil-

lation approach of [19]. In knowledge distillation, these

labels are provided by the smoothed softmax probabilities

from a pre-trained classification model. When soft labels

are combined with ground truths, a form of model trans-

fer and compression is achieved, because the softmax prob-

abilities carry crucial information. The rationale for this

process is similar to our own: networks (and humans) gain

great robustness from distilling important information about

similarity structure into the distributions we infer over im-

ages and their categories. However, the use of a network

to provide them (i.e., the standard application of knowledge

distillation) is itself problematic without a gold standard to

compare to: there is no guarantee that the similarity struc-

ture a model has learned is correct.

Soft Labels. One of the core contributions of our work is

around using the soft labels provided through human con-

fusion as a replacement for one-hot label encodings. Sev-

eral methods have been proposed as alternatives to one-hot

encodings, e.g., using heuristics to smooth the top-1 label

during large-scale 1000+ way classification [43] or incor-

porating test-time human uncertainty into a collaborative

computer vision system [4]. mixup [51] is another recently

developed method for automatically generating soft labels

based on convex combinations of pairs of examples and

their hard labels, and has been shown to improve gener-

alization and adversarial robustness while reducing memo-

rization. However, since the linearity constraint is constant

across all pairs of classes, and the labels are one-hot, it is

difficult to see how the softness in such labels is a full mea-

sure of perceptual likeness.
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Human studies. Lastly, there are a number of studies that

also use human experts to provide distributional informa-

tion over training labels in related classification fields, such

as medical diagnosis systems [35, 36]. While the theoreti-

cal cases these studies present support our own, they do not

provide a large-scale testbed for evaluation of other clas-

sification models. Notably, the human uncertainty labels

frequently don’t need to be explicitly collected but will be-

come automatically available in the process of data collec-

tion. Much of crowdsourcing work focuses on reconciling

human labels and mitigating their disagreement (c.f., Ko-

vashka et al. [25] for a survey). Our approach proposes uti-

lizing these human disagreements to improve the accuracy

and robustness of a model, complementing existing work

aimed at leveraging “errors” in human labeling [27].

3. From Labels to Label Distributions

The standard practice for image classification tasks is

to train using “ground truth” labels provided in common

benchmark datasets, for example, ILSVRC12 [41], and

CIFAR10 [28], where the “true” category for each image is

decided through human consensus (the modal choice) or by

the database creators. Although a useful simplification in

many cases, we suggest that this approximation introduces

a bias into the learning framework that has important distri-

butional implications. To see this, first consider the standard

loss minimization objective during training given below:

min
θ

n∑

i=1

L(fθ, xi, yi), (1)

in which the loss L for a model with parameters θ is min-

imized with respect to observed data samples {xi, yi}
n
i=1

.

Our goal in training a model in this way is to generalize

well to unseen data: to minimize the expected loss over

unobserved labels given observed images {xj}
m
j=1

drawn

from the same underlying data distribution in the future:

1

m

m∑

j=1

∑

c

L(fθ, xj , yj = c) p(yj = c|xj). (2)

When we consider the second term in this product, we

can see that using modal labels during dataset construction

would only be an optimal estimator if for any stimulus x,

the underlying conditional data distribution p(y|x) is zero

for every category c apart from the one assigned by human

consensus. By contrast, when we consider the network and

human confusions seen in Figure 1, we can see there do ex-

ist cases in which this assumption violates human allocation

of probabilities.

How, then, can we reach a more natural approximation of

p(y|x)? For some problems, it is easy to just sample from

some real set of data p(x, y), but for image classification,

we must rely on humans as a gold standard for providing

a good estimate of p(y|x). If we expect the human image

label distribution phum(y|x) to better reflect the natural dis-

tribution over categories given an image, we can use it as an

improved estimator for p(y|x).
In the case where fθ(x) is a distribution pθ(y|x) and

L(f, x, y) is the negative log-likelihood, the expected loss

reduces to the cross-entropy between the human distribution

and that predicted by the classifier:

−
1

m

m∑

j=1

∑

c

phum(yj = c|xj) log pθ(yj = c|xj). (3)

This implies that the optimal strategy for gathering training

pairs {xi, yi}
n
i=1

is to sample them from phum(y|x). Our

dataset provides this distribution directly, so that models

may be trained on human labels or evaluated against them,

or better approximations of p(y|x) for natural images be

found. In turn, better approximation of this underlying data

distribution should be expected to give better generalization

and robustness.

4. Dataset Construction

While larger-scale popular datasets such as Ima-

geNet [41], Places [52], or COCO [33] might seem like

the best starting point, CIFAR10 in particular has several

unique and attractive properties. First, the dataset is still of

enough interest to the community that state-of-the-art im-

age classifiers are being developed on it [11, 21]. Second,

the dataset is small enough to allow us to collect substantial

human data for the entire test set of images. Third, the low

resolution of the images is useful for producing variation in

human responses. Human error rates for high resolution im-

ages with non-overlapping object categories are sufficiently

low that it is hard to get a meaningful signal from a rela-

tively small number of responses. Finally, CIFAR10 con-

tains a number of examples that are close to the category

boundaries, in contrast with other datasets that are more

carefully curated such that each image is selected to be a

good example of the category. Our final CIFAR10H behav-

ioral dataset consists of 511,400 human categorization de-

cisions over the 10,000-image testing subset of CIFAR10

(approx. 50 judgments per image).

4.1. Image Stimuli

We collected human judgments for all 10,000 32× 32
color images in the testing subset of CIFAR10. This con-

tains 1,000 images for each of the following 10 categories:

airplane, automobile, bird, cat, deer, dog, frog, horse, ship,

and truck. This allows us to evalulate models pretrained on

the CIFAR10 training set using the same testing images,

but in terms of a different distribution over labels, detailed

in the next section.
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4.2. Human Judgments

We collected 511,400 human classifications over our

stimulus set via Amazon Mechanical Turk [5]—to our

knowledge, the largest of its kind reported in a single study

to date. In the task, participants were asked to categorize

each image by clicking one of the 10 labels surrounding it as

quickly and accurately as possible (but with no time limit).

Label positions were shuffled between candidates. After an

initial training phase, each participant (2,571 total) catego-

rized 200 images, 20 from each category. Every 20 trials,

an obvious image was presented as an attention check, and

participants who scored below 75% on these were removed

from the final analysis (14 total). We collected 51 judg-

ments per image on average (range: 47 − 63). Average

completion time was 15 minutes, and workers were paid

$1.50 total. Examples of distributions over categorization

judgments for a selection of images is shown in Figure 1.

5. Generalization Under Distributional Shift

Our general strategy is to train a range of classifiers us-

ing our soft labels and assess their performance on held-

out validation sets and a number of generalization datasets

with increasing distributional shift. We expect the human

information about image label uncertainty to be most useful

when test datasets are increasingly out-of-distribution.

5.1. Setup

Models. We trained eight CNN architectures (VGG [42],

ResNet [16], Wide ResNet [50], ResNet preact [17],

ResNext [49], DenseNet [20], PyramidNet [15], and Shake-

Shake [11]) to minimize the crossentropy loss between

softmax outputs and the full human-label distributions for

images in CIFAR10H. The models were trained using

PyTorch [38], adapting the repository found in the foot-

note.1 For each architecture, we train 10 models using 10-

fold cross validation (using 9,000 images for training each

time) and at test time average the results across the 10 runs.

We use k-fold instead of a single validation set in order

to obtain more stable results. We used the default hyper-

parameters in the repository for all models, following [39]

for the sake of reproducibility, except for the learning rate.

We trained each model for a maximum of 150 epochs using

the Adam [24] optimizer, and performed a grid-search over

base learning rates 0.2, 0.1, 0.01, and 0.001 (we found 0.1
to be optimal in all cases).

1github.com/hysts/pytorch_image_classification;

model identifiers vgg 15 BN 64, resnet basic 110, wrn 28 10,

resnet preact bottleneck 164, resnext 29 8x64d,

densenet BC 100 12, pyramidnet basic 110 270,

shake shake 26 2x64d SSI cutout16 (output folder names).

Test Datasets. A key prediction from section 3 is that the

uncertainty in our labels will be increasingly informative

when generalizing to increasingly out-of-training-sample

distributions. We test this prediction empirically by exam-

ining generalization ability to the following datasets:

CIFAR10: This is the standard within-dataset evalua-

tion. Since our CIFAR10H soft labels are for the CIFAR10

test set, here we use the 50,000-images of the standard

CIFAR10 training set to instead evaluate the models.

CIFAR10.1v6,v4: These are two 2,000-image near-

sample datasets created by [39] to assess overfitting to

CIFAR10 “test” data often used for validation. The images

are taken from TinyImages [46] and match the sub-class dis-

tributions in CIFAR10. v6 has 200 images per class while

v4 is the original class-unbalanced version (90% overlap).

CINIC10: This is an out-of-sample generalization

test. The CINIC10 dataset collected by [7] contains both

CIFAR10 images and rescaled ImageNet images from

equivalent classes [7]. For example, images from the air-

plane, aeroplane, plane (airliner) and airplane, aeroplane,

plane (bomber) ImageNet classes were allocated to the air-

plane CIFAR10 top-level class. Here we use only the

210,000 images taken from ImageNet.

ImageNet-Far: Finally, as stronger exemplar of dis-

tributional shift, we built ImageNet-Far. As above, we

used rescaled ImageNet images, but chose classes that

might not be under direct inheritance from the CIFAR10-

synonymous classes. For example, for the CIFAR10 la-

bel deer, we included the ImageNet categories ibex, gazelle,

and for the CIFAR10 label horse we included the ImageNet

category zebra, which was not included in CINIC10.

Generalization Measures. We evaluate each model on

each test set in terms of both accuracy and crossentropy.

Accuracy remains a centrally important measure of classi-

fication performance for the task of out-of-sample general-

ization. As accuracy ignores the probability assigned to a

guess, we also employ the crossentropy metric to evaluate

model behavior: how confident it is in its top prediction, and

whether its distribution over alternative categories is sensi-

ble. Note that this interpretation arises naturally when com-

puting crossentropy with a one-hot vector, as only the prob-

ability mass allocated to the ground-truth choice contributes

to the score. Crossentropy becomes even more informative

when computed with respect to human soft labels that dis-

tribute the mass unlike one-hot vectors. In this case, the

second guess of the network, which provides a sense of the

most confusable classes for an image, will likely be a large

secondary contributor to the loss. To provide a more read-

ily interpretable heuristic measure of this, we introduce a

new accuracy measure called second-best accuracy (SBA).

While top-1 accuracy may largely asymptote, we expect

that gains in SBA may still have a way to go.
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Figure 2: Generalization results. Left: accuracy against ground-truth labels, for increasingly out-of-training-sample distri-

butions, averaged across CNNs. Accuracy was higher using human labels for every individual CNN and dataset. Center:

crossentropy against ground-truth labels, averaged across CNNs. Loss was lower using human labels for every individual

CNN and dataset. Right: Second best accuracy (SBA) for all models using CIFAR10H held out set, averaged across folds.

A

B

0: airplane       1: automobile       2: bird       3: cat       4: deer       5: dog       6: frog       7: horse       8: ship       9: truck 

Figure 3: (A) Mean confidence for correctly/incorrectly

classified examples after hard/soft label training. Soft-label

models are far less confident when incorrect than hard-label

controls, and only slightly less confident when correct. (B)

Soft label training yields predictions that distribute proba-

bility mass more like people, with the same top choice.

5.2. Human Labels Improve Generalization

We train each CNN described above on both one-hot la-

bels (default, control) and on CIFAR10H soft human labels

(ours), and evaluate on each of the proposed test sets with

increasingly out-of-sample distributions.

Our first finding is that when we train CNNs on

CIFAR10H soft labels, their accuracy improves on all

generalization datasets compared to our control (Figure 2,

left). This pattern was replicated across individual cross-

validation folds for every individual model (not shown).

A key feature of this boost in generalization is that it in-

creases as test datasets become increasingly out-of-training-

distribution (horizontal axis, left to right). For example,

while using human soft labels gives us only a 1% improve-

ment (from 83.5% to 84.5%) when evaluated on CIFAR10,

the same models when evaluated on ImageNet-Far achieved

an accuracy gain of 2% on average (from 49.4% to 51.4%).

This pattern is even more evident when we consider

the crossentropy metric (Figure 2, center). For exam-

ple, while using human soft labels gives us a 29% reduc-

tion in crossentropy (from 0.7 to 0.5) when evaluated on

CIFAR10, the same models when evaluated on ImageNet-

Far achieve a reduction of 38% on average (from 2.9 to 1.8).

These results imply that models trained on our soft labels

show better confidence in their correct choices, and allocate

more probability to the ground-truth during errors.

Finally, CNNs trained on our soft labels consistently

show significant boosts in SBA compared to controls, per-

forming on average 5% better (Figure 2, right). This shows

improvement in generalization in a broader sense: the distri-

bution of the most likely two categories has important con-

sequences for the graceful degradation in generalization we

hope a good model provides, as well as for the nature of

guesses made by a classification model when it is wrong.

Figure 3 provides an additional picture of model behav-

ior on our validation folds beyond overall generalization

performance. Encouragingly, we find that soft-label-trained

models are significantly less confident when incorrect than

hard-label-trained controls, but only marginally less confi-

dent when correct (Figure 3a), and more generally provide

a better fit to patterns of human uncertainty (Figure 3b).

6. Alternative Soft Label Methods

Above, we show out-of-sample classification benefits

arise from training on our human labels. One natural ques-

tion that arises is whether this improvement is the result of

simply training with soft labels (i.e., allowing the model to

distribute the probability mass over more than one class), or

due to the fact that this distribution explicitly mimics human

uncertainty. Here we show the answer is the latter.
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ResNet [16] c10H c10 v4 v6

Trained CIFAR10 0.82 0.25 0.84 0.82

FT CIFAR10 0.57 0.19 0.60 0.58

FT CIFAR10 with mixup [51] 0.36 0.18 0.48 0.46

FT CIFAR10H category soft targets 0.42 0.21 0.53 0.51

FT CIFAR10H soft targets (ours) 0.35 0.19 0.50 0.49

FT CIFAR10H sampled hard targets (ours) 0.35 0.19 0.48 0.46

ResNet preact [17] c10H c10 v4 v6

Trained CIFAR10 0.75 0.20 0.69 0.66

FT CIFAR10 0.65 0.19 0.61 0.59

FT CIFAR10 with mixup [51] 0.40 0.18 0.45 0.43

FT CIFAR10H category soft targets 0.44 0.23 0.47 0.46

FT CIFAR10H soft targets (ours) 0.35 0.21 0.49 0.48

FT CIFAR10H sampled hard targets (ours) 0.34 0.19 0.42 0.41

VGG [42] c10H c10 v4 v6

Trained CIFAR10 0.71 0.26 0.79 0.76

FT CIFAR10 0.54 0.20 0.62 0.59

FT CIFAR10 with mixup [51] 0.47 0.20 0.56 0.53

FT CIFAR10H category soft targets 0.42 0.22 0.51 0.49

FT CIFAR10H soft targets (ours) 0.34 0.21 0.49 0.48

FT CIFAR10H sampled hard targets (ours) 0.35 0.21 0.49 0.47

DenseNet [20] c10H c10 v4 v6

Trained CIFAR10 0.61 0.15 0.54 0.54

FT CIFAR10 0.59 0.14 0.51 0.50

FT CIFAR10 with mixup [51] 0.36 0.13 0.43 0.42

FT CIFAR10H category soft targets 0.39 0.18 0.42 0.42

FT CIFAR10H soft targets (ours) 0.32 0.17 0.40 0.40

FT CIFAR10H sampled hard targets (ours) 0.31 0.16 0.40 0.39

PyramidNet [15] c10H c10 v4 v6

Trained CIFAR10 0.54 0.12 0.42 0.42

FT CIFAR10 0.51 0.11 0.38 0.38

FT CIFAR10 with mixup [51] 0.49 0.11 0.40 0.40

FT CIFAR10H category soft targets 0.36 0.14 0.32 0.32

FT CIFAR10H soft targets (ours) 0.28 0.13 0.35 0.34

FT CIFAR10H sampled hard targets (ours) 0.28 0.12 0.32 0.32

ResNext [49] c10H c10 v4 v6

Trained CIFAR10 0.47 0.10 0.37 0.36

FT CIFAR10 0.46 0.10 0.35 0.34

FT CIFAR10 with mixup [51] 0.47 0.10 0.37 0.36

FT CIFAR10H category soft targets 0.37 0.17 0.37 0.36

FT CIFAR10H soft targets (ours) 0.29 0.13 0.34 0.33

FT CIFAR10H sampled hard targets (ours) 0.28 0.13 0.34 0.33

Wide ResNet [50] c10H c10 v4 v6

Trained CIFAR10 0.46 0.14 0.40 0.39

FT CIFAR10 0.42 0.12 0.37 0.36

FT CIFAR10 with mixup [51] 0.40 0.12 0.37 0.36

FT CIFAR10H category soft targets 0.36 0.15 0.33 0.33

FT CIFAR10H soft targets (ours) 0.27 0.13 0.32 0.31

FT CIFAR10H sampled hard targets (ours) 0.28 0.13 0.31 0.30

Shake-Shake [11] c10H c10 v4 v6

Trained CIFAR10 0.60 0.09 0.34 0.33

FT CIFAR10 0.51 0.07 0.28 0.27

FT CIFAR10 with mixup [51] 0.63 0.08 0.34 0.33

FT CIFAR10H category soft targets 0.33 0.12 0.28 0.28

FT CIFAR10H soft targets (ours) 0.26 0.10 0.27 0.26

FT CIFAR10H sampled hard targets (ours) 0.27 0.10 0.27 0.27

Table 1: Crossentropy for each holdout set (columns from

left to right: holdout human soft labels (c10H), hold-

out ground truth labels (c10), the entire CIFAR10.1v4

dataset, and the entire CIFAR10.1v6 dataset. Crossen-

tropy for our human labels decreases substantially after

fine-tuning (FT), especially when using human targets.

Fine-tuning on human targets also produces the best gen-

eralization in terms crossentropy on CIFAR10.1.

6.1. Setup

Training. We set out to demonstrate that training with hu-

man labels provides benefits even over competitive base-

lines. We use the same CNN architectures and setup as in

Section 5.1 with one notable exception: we pre-train the

networks before incorporating the soft labels (this allows

us to achieve the best possible fit to humans). To do so,

we train using the standard CIFAR10 training protocol us-

ing 50,000 images and the optimal hyperparameters in the

repository, either largely replicating or surpassing the origi-

nal accuracies proposed in the papers for each architecture.

We then fine-tune each pretrained model using either hard-

label controls or our human soft labels on the CIFAR10 test

set. This fine-tuning phase mirrors the training phrase from

Section 5.1: we used 10-folds, trained for 150 epochs, and

searched over learning rates 0.1, 0.01, and 0.001.

Evaluation. We evaluate the results on the holdout folds

of CIFAR10Hwith both human soft labels and ground truth

hard labels, as well as on the ground truth hard labels of both

the CIFAR10.1v4 and CIFAR10.1v6 datasets. We also

shift our attention to evaluating crossentropy rather than

accuracy. With CIFAR10 pretraining, the accuracy of all

models is high, but this gives no indication of the level of

confidence or the “reasonableness” of errors. Crossentropy,

on the other hand, does exactly that: measures the level of

confidence when evaluated on hard labels and the “reason-

ableness” of errors when evaluated on human soft labels.

6.2. Methods

To test for simpler and potentially equally effective al-

ternatives to approximating the uncertainty in human judg-

ments, we include a number of competitive baselines below.

Ground Truth Control. The first baseline we consider is

a “control” fine-tuning condition where we use identical im-

age data splits, but fine-tune using the ground-truth hard la-

bels. This is expected to improve upon the pretrained model

as it utilizes the additional 9,000 images previously unseen.

Class-level Penalty. One much simpler alternative to

image-level human soft labels is class-level soft labels. That

is, instead of specifying how much each image resembles

each category, we could simply specify which classes are

more confusable on average using a class-level penalty.

However, while we know, for example, that dogs and cats

are likely more confusable on average than dogs and cars,

it’s not clear what the optimal class-level penalties should

be. Since exhaustively searching for competitive inter-

class penalties is inefficient, we propose to generate gold-

standard penalties by summing and re-normalizing our hu-

man probabilities within each class (i.e., resulting in exactly

10 unique soft-label vectors). This also allows us to deter-

mine if image-level information in our human soft labels
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is actually being utilized as opposed to class-level statistics

across image exemplars. In this baseline, fine-tuning simply

uses these greatly compressed soft vectors as targets.

Knowledge Distillation. As discussed in Section 2, soft-

max probabilities of a trained neural network can be used as

soft labels because they contain information inferred by the

network about the similarity between categories and among

images. The pretrained networks from this section provide

such probabilities and so provide a corresponding baseline.

However, we can infer from the results in Section 5.2 that

hard-label-trained CNNs infer class probabilities that do not

approximate those of humans, because incorporating ex-

plicit supervision to humans provides different results in

terms of generalization. So, to provide a stronger baseline

in this respect, we include an ensemble of the predictions

from all eight models (i.e., providing soft predictions due to

uncertainty from variation across models).

mixup. mixup is a technique for soft label generation that

improves the generalization of natural image classification

models trained on CIFAR10 among others [51]—see Sec-

tion 2. As such, it provides an interesting and competi-

tive baseline with which to compare training with human

soft labels. Concretely, mixup generates soft labels by tak-

ing convex combinations of pairs of examples, encouraging

linear behavior between them. These combinations consti-

tute virtual training examples (x̄, ȳ) that are sampled from

a vicinial distribution, and take on the form

x̄ = λxi + (1− λ)xj

ȳ = λyi + (1− λ)yj ,

where (xi, xj) are examples from the dataset, and (yi, yj)

are their labels. The strength of the interpolation λ ∈ [0, 1]
is sampled according to Beta(α, α), where α is a hyperpa-

rameter. For our mixup baseline, we apply this procedure to

the ground truth labels corresponding to each of the same

10 splits used above. For each architecture, we searched for

the best value of α from 0.1 to 1.0 in increments of 0.1.

Soft Labels Versus Sampling. Finally, we run one addi-

tional experiment beyond the soft label baselines above. Re-

sults from Section 5 suggest that human soft labels are use-

ful, but how should we best incorporate them into training?

In Section 3, we justified using human probabilities as tar-

gets to minimize the expected loss. However, another valid

option is to sample from phum(y|x), i.e., sample one-hot la-

bels from categorical distribution parameterized by the hu-

man probabilities conditioned on each image. If we sample

a new label each time the image is presented to the network

for a new gradient update, the label uncertainty will still be

incorporated, but there will be additional variation in the

gradients that could act as further regularization. To test

for any such advantages of label sampling, we fine-tuned

a second corresponding set of models using this method,

sampling a new label for each image on each epoch.

6.3. Human Soft Labels Beat Alternatives

Results are summarized for each architecture and

method in Table 1. The first column is our primary measure

of fit to humans; the last two assess further generalization.

Note that for pretrained models (first row of each sub-

table) crossentropy to ground truth labels is always lower

than human soft labels, verifying what we expected: hu-

man soft labels provide additional information that is not

inferred via training with ground truth. This is a first test

that the information (informative probabilities) usually in-

ferred by these networks using hard labels (i.e., knowledge

distillation) does not agree with humans. We further tested

an ensemble of all eight networks in the top rows (i.e., with

no fine-tuning on human soft labels), and while this model

is more like humans than any individual hard-label-trained

model (crossentropy is 0.41), it is still not a substitute for

human supervision. The benefit from our labels also ap-

pears to manifest during generalization, as in the last two

columns (i.e., v4 and v6 holdout sets) they show higher

crossentropy than alternative approaches. Next, looking at

the same top rows, note that there is little correspondence

between recency of the architecture and fit to humans. In

fact, Shake-Shake is the state-of-the-art of the eight yet is

not one of the top three models in terms of fit to humans.

In the remaining rows of each sub-table, we can see

an increase in fit to humans using our various fine-tuning

schemes. This is expected in all cases given that all of these

models are ultimately given more data than pretrained mod-

els. However, not all fine-tuning methods are equally ef-

fective. Importantly, fit to humans (second column) is best

when either using our image-level soft labels or sampling

hard labels using them (bottom two rows). Interestingly,

category soft labels (4th rows) were also effective, but to a

lesser degree. mixup was more effective than using ground

truth labels alone, but less effective than any methods using

human information. Lastly, we note that, while omitted for

brevity, we found no loss in accuracy when using human

labels in any of the conditions that utilized them.

7. Robustness to Adversarial Attacks

Because our soft labels contain information about the

similarity structure of images that is relevant to the structure

of perceptual boundaries, we might expect that representa-

tions learned in service of predicting them would be more

robust to adversarial attacks, particularly in cases where

similar categories make for good attack targets. Moreover,

subsequent explorations of knowledge distillation [19, 37]

have demonstrated that such practices can support adversar-

ial robustness. If human judgments of perceptual similar-
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Accuracy Crossentropy

Architecture C10 C10H C10 C10H

VGG 7% 8% 7.9 4.1

DenseNet 17% 19% 6.9 3.0

PyramidNet 22% 19% 5.7 2.8

ResNet 15% 23% 6.1 3.1

ResNext 25% 24% 4.2 2.7

Wide ResNet 24% 35% 4.1 2.2

ResNet preact 17% 29% 6.3 2.6

Shake-Shake 39% 39% 4.0 2.1

Table 2: Accuracy and crossentropy after FGSM attacks on

the CIFAR10-tuned (baseline) and CIFAR10H-tuned net-

works. Using human labels always results in lower (better)

crossentropy, and in the majority of cases, higher accuracy.

ity are superior to those inferred by CNNs—in the form of

p(y|x)—we would expect distillation of human knowledge

into a CNN would at the very least also increase robustness.

Setup. We use the same pretrained and fine-tuned (hard

versus soft) models from Section 6. To measure robust-

ness after each training scheme, we evaluate both accu-

racy and crossentropy (the latter again being a more sen-

sitive measure of both confidence and entropy) against the

hard class labels. As attack methods, we evaluate two addi-

tive noise attacks: the Fast Gradient Sign Method (FGSM)

[29], and Projected Gradient Descent (PGD) [30], using the

mister ed toolkit2 for PyTorch. For both methods, we

explored ℓ∞ bounds of 4 to 8 in increments of 1. Since we

found no significant differences in the results, we report all

attack results using a constant ℓ∞ bound of 4 for brevity.

Human Soft Labels Confer Robustness. FGSM results

are reported in Table 2, averaged over all 10,000 images

in the CIFAR10 test set. In all cases, crossentropy (which

attack methods seek to maximize) is much lower (roughly

half) after attacking the human-tuned network compared to

fine-tuning with original one-hot labels. For five out of eight

architectures, accuracy also improves when using human

soft targets. The two largest differences (Wide Resnet and

ResNet preact) favor the human labels as well. Note that

no explicit (defensive) training was required to obtain these

improvements beyond previous training with human labels.

Without active defensive training, PGD is expected to

drive accuracy to 0% given enough iterations. To explore

the intrinsic defenses of our two label-training conditions to

PGD attacks, we plot the increase in loss for each architec-

ture and label-training scheme in Figure 4. While accuracy

was driven to 0% for each network when trained on stan-

dard labels, and 1% for each network with human labels,

2github.com/revbucket/mister_ed/
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Figure 4: Crossentropy as a function of PGD iteration.

Successive iterations increase crossentropy as expected, but

more slowly after soft-label fine-tuning.

loss for the former is driven up much more rapidly, whereas

the latter asymptotes quickly. Put simply, a much higher

degree of effort is required to successfully attack networks

that behave more like humans.

8. Discussion

In this work, we have demonstrated that incorporating

information about human category uncertainty at the image-

level can help protect against the perils of distributional

shift and adversarial attacks. Notably, common classifica-

tion benchmarks often do not naturally provide such protec-

tions on their own [45]. Further, besides explicitly incorpo-

rating this information, it gives a way of measuring whether

our learning algorithms are inferring good similarity struc-

ture (beyond just top-1 performance). If we can begin to

find good learning procedures that derive such information,

we can obtain human-like robustness in our models without

the need of explicit human supervision. However, devel-

oping such a robust models will take significant time and

research—our dataset provides a first step (an initial gold

standard with respect to a popular benchmark) in measur-

ing this progress, even when not used for training.

Although our data collection method does not immedi-

ately seem to scale to larger training sets, it’s certainly pos-

sible to collect informative label distributions at a cost com-

parable to what we often spend on compute to find better

top-1-fitting architectures. Interestingly, we found that the

bulk of human uncertainty is concentrated in approximately

30% of the images in our dataset, meaning straightforward

and much more efficient methods for mining only these

more informative labels can be employed. In any case, we

see the main contribution of such datasets as testing envi-

ronments for algorithms intended for much larger datasets.
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