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Abstract

We seek to detect visual relations in images of the form

of triplets t = (subject, predicate, object), such as “per-

son riding dog”, where training examples of the individual

entities are available but their combinations are unseen at

training. This is an important set-up due to the combinato-

rial nature of visual relations : collecting sufficient training

data for all possible triplets would be very hard. The con-

tributions of this work are three-fold. First, we learn a rep-

resentation of visual relations that combines (i) individual

embeddings for subject, object and predicate together with

(ii) a visual phrase embedding that represents the relation

triplet. Second, we learn how to transfer visual phrase em-

beddings from existing training triplets to unseen test triplets

using analogies between relations that involve similar ob-

jects. Third, we demonstrate the benefits of our approach

on three challenging datasets : on HICO-DET, our model

achieves significant improvement over a strong baseline for

both frequent and unseen triplets, and we observe similar

improvement for the retrieval of unseen triplets with out-of-

vocabulary predicates on the COCO-a dataset as well as the

challenging unusual triplets in the UnRel dataset.

1. Introduction

Understanding interactions between objects is one of the

fundamental problems in visual recognition. To retrieve

images given a complex language query such as “a woman

sitting on top of a pile of books” we need to recognize

individual entities “woman” and “a pile of books” in the

scene, as well as understand what it means to “sit on top of

something”. In this work we aim to recognize and localize

unseen interactions in images, as shown in Figure 1, where

the individual entities (“person”, “dog”, “ride”) are available

at training, but not in this specific combination. Such ability

is important in practice given the combinatorial nature of

visual relations where we are unlikely to obtain sufficient
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Figure 1: Illustration of transfer by analogy with our model de-

scribed in 3.2. We transfer visual representations of relations seen

in the training set such as “person ride horse” to represent new

unseen relations in the test set such as “person ride dog”.

training data for all possible relation triplets.

Existing methods [8, 25, 28] to detect visual relations in

the form of triplets t = (subject, predicate, object) typi-

cally learn generic detectors for each of the entities, i.e. a

separate detector is learnt for subject (e.g. “person”), object

(e.g. “horse”) and predicate (e.g. “ride”). The outputs of the

individual detectors are then aggregated at test time. This

compositional approach can detect unseen triplets, where

subject, predicate and object are observed separately but not

in the specific combination. However, it often fails in prac-

tice [31, 46], due to the large variability in appearance of the

visual interaction that often heavily depends on the objects

involved; it is indeed difficult for a single “ride” detector

to capture visually different relations such as “person ride

horse” and “person ride bus”.

An alternative approach [41] is to treat the whole triplet

as a single entity, called a visual phrase, and learn a separate

detector for each of the visual phrases. For instance, separate

detectors would be learnt for relations “person ride horse”

and “person ride surfboard”. While this approach better
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handles the large variability of visual relations, it requires

training data for each triplet, which is hard to obtain as visual

relations are combinatorial in their nature and many relations

are unseen in the real world.

In this work we address these two key limitations. First,

what is the right representation of visual relations to han-

dle the large variability in their appearance, which depends

on the entities involved? Second, how can we handle the

scarcity of training data for unseen visual relation triplets?

To address the first challenge, we develop a hybrid model that

combines compositional and visual phrase representations.

More precisely, we learn a compositional representation for

subject, object and predicate by learning separate visual-

language embedding spaces where each of these entities

is mapped close to the language embedding of its associ-

ated annotation. In addition, we also learn a relation triplet

embedding space where visual phrase representations are

mapped close to the language embedding of their correspond-

ing triplet annotations. At test time, we aggregate outputs of

both compositional and visual phrase models. To address the

second challenge, we learn how to transfer visual phrase em-

beddings from existing training triplets to unseen test triplets

using analogies between relations that involve similar ob-

jects. For instance, as shown in Figure 1, we recognize the

unseen triplet “person ride dog” by using the visual phrase

embedding for triplet “person ride horse” after a transfor-

mation that depends on the object embedding for “dog” and

“horse”. Because we transfer training data only from triplets

that are visually similar, we expect transferred visual phrase

detectors to better represent the target relations compared to

a generic detector for a relation “ride” that may involve also

examples of “person ride train” and “person ride surfboard”.

Contributions. Our contributions are three fold. First, we

take advantage of both the compositional and visual phrase

representations by learning complementary visual-language

embeddings for subject, object, predicate and the visual

phrase. Second, we develop a model for transfer by analogy

to obtain visual-phrase embeddings of never seen before

relations. Third, we perform experimental evaluation on

three challenging datasets where we demonstrate the benefits

of our approach on both frequent and unseen relations.

2. Related work

Visual relation detection. Learning visual relations be-

longs to a general class of problems on relational reason-

ing [4, 5, 16, 23, 42] that aim to understand how entities

interact. In the more specific set-up of visual relation detec-

tion, the approaches can be divided into two main groups:

(i) compositional models, which learn detectors for subject,

object and predicates separately and aggregate their outputs;

(ii) and visual phrase models, which learn a separate detector

for each visual relation. Visual phrase models such as [41]

have demonstrated better robustness to the visual diversity of

relations than compositional models. However, with the in-

troduction of datasets with a larger vocabulary of objects and

predicates [7, 24], visual phrase approaches have been facing

severe difficulties as most relations have very few training ex-

amples. Compositional methods [10, 12, 18, 28, 31, 34, 43],

which allow sharing knowledge across triplets, have scaled

better but do not cope well with unseen relations. To increase

the expressiveness of the generic compositional detectors,

recent works have developed models of statistical depen-

dencies between the subject, object and predicate, using, for

example, graphical models [8, 25], language distillation [45],

or semantic context [48]. Others [2, 9, 32, 39] have proposed

to combine unigram detectors with higher-order composites

such as bigrams (subject-predicate, predicate-object). In con-

trast to the above methods that model a discrete vocabulary

of labels, we learn visual-semantic (language) embeddings

able to scale to out-of-vocabulary relations and to benefit

from powerful pre-learnt language models.

Visual-semantic embeddings. Visual-semantic embed-

dings have been successfully used for image captioning and

retrieval [19, 20]. With the introduction of datasets annotated

at the region level [24, 33], similar models have been applied

to align image regions to fragments of sentences [15, 44].

In contrast, learning embeddings for visual relations still

remains largely an open research problem with recent work

exploring, for example, relation representations using defor-

mations between subject and object embeddings [46]. Our

work is, in particular, related to models [47] learning sepa-

rate visual-semantic spaces for subject, object and predicate.

However, in contrast to [47], we additionally learn a visual

phrase embedding space to better deal with appearance vari-

ation of visual relations, and develop a model for analogy

reasoning to infer embeddings of unseen triplets.

Unseen relations and transfer learning. Learning visual

phrase embeddings suffers from the problem of lack of train-

ing data for unseen relations. This has been addressed by

learning factorized object and predicate representations [14]

or by composing classifiers for relations from simpler con-

cepts [21, 30]. In contrast, our approach transfers visual

relation representations from seen examples to unseen ones

in a similar spirit to how previous work dealt with inferring

classifiers for rare objects [3]. The idea of sharing knowledge

from seen to unseen triplets to compensate for the scarcity

of training data has been also addressed in [35] by impos-

ing constraints on embeddings of actions. Different from

this work, we formulate the transfer as an analogy between

relation triplets. To achieve that, we build on the computa-

tional model of analogies developed in [36] but extend it to

representations of visual relations. This is related to [40]

who also learn visual analogies as vector operations in an

embedding space, but only consider visual inputs while we

learn analogy models for joint image-language embeddings.
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Figure 2: Model overview. Our model consists of two parts : (a) learning embedding spaces for subject, object, predicate and visual

phrase by optimizing the joint loss Ljoint = Ls + Lo + Lp + Lvp combining the input visual x and language q representations; (b) at test

time, we are given a new unseen triplet (“person ride cow”). We find similar but seen triplets (“person ride horse” and “person pet cow”),

transform their embeddings w
vp

k with analogy transformation Γ to compute an estimate of the embedding w̄
vp
u of the triplet “person ride

cow” and use this estimated embedding to retrieve relevant images by nearest neighbour search on the (embedded) visual descriptors v
vp
i .

3. Model

In this section we describe our model for recognizing

and localizing visual relations in images. As illustrated in

Figure 2, our model consists of two parts. First, we learn

different visual-language embedding spaces for the subject

(s), the object (o), the predicate (p) and the visual phrase

(vp), as shown in Figure 2(a). We explain how to train these

embeddings in Section 3.1. Second, we transfer visual phrase

embeddings of seen triplets to unseen ones with analogy

transformations, as shown in Figure 2(b). In Section 3.2 we

explain how to train the analogy transformations and form

visual phrase embeddings of new unseen triplets at test time.

Notation for relation triplets. The training dataset con-

sists of N candidate pairs of bounding boxes, each formed

by a subject candidate bounding box proposal and object can-

didate bounding box proposal. Let Vs, Vo and Vp be the vo-

cabulary of subjects, objects and predicates, respectively. We

call Vvp = Vs ×Vp ×Vo the vocabulary of triplets. A triplet

t is of the form t = (s, p, o), e.g. t = (person, ride, horse).
Each pair of candidate subject and object bounding boxes,

i ∈ {1, ..., N}, is labeled by a vector (yit)t∈Vvp
where yit = 1

if the ith pair of boxes could be described by relation triplet

t, otherwise yit = 0. The labels for subject, object and

predicate naturally derive from the triplet label.

3.1. Learning representations of visual relations

We represent visual relations in joint visual-semantic em-

bedding spaces at different levels of granularity : (i) at the

unigram level, where we use separate subject, object and

predicate embeddings, and (ii) at the trigram level using an a

visual phrase embedding of the whole triplet. Combining the

different types of embeddings results in a more powerful rep-

resentation of visual relations as will be shown in section 4.

In detail, as shown in Figure 2(a), the input to visual embed-

ding functions (left) is a candidate pair of objects i encoded

by its visual representation xi ∈ R
dv . This representation

is built from (i) pre-computed appearance features obtained

from a CNN trained for object detection and (ii) a repre-

sentation of the relative spatial configuration of the object

candidates. The language embeddings (right in Figure 2(a))

take as input a triplet t encoded by its language representa-

tion qt ∈ R
dq obtained from pre-trained word embeddings.

We provide more details about these representations in 4.2.

Next we give details of the embedding functions.

Embedding functions. Our network projects the visual

features xi and language features qt into separate spaces for

the subject (s), the object (o), the predicate (p) and the visual

phrase (vp). For each input type b ∈ {s, o, p, vp}, we embed

the visual features and language features into a common

space of dimensionality d using projection functions

v
b
i = f b

v(xi), (1)

w
b
t = f b

w(qt), (2)

where v
b
i and w

b
t are the output visual and language repre-

sentations, and the projection functions f b
v : R

dv → R
d and

f b
w : R

dq → R
d are 2-layer perceptrons, with ReLU non

linearities and Dropout, inspired by [44]. Additionally, we

L2 normalize the output language features while the output

visual features are not normalized, which we found to work

well in practice.

Training loss. We train parameters of the embedding func-

tions (f b
v , f

b
w) for each type of input b (i.e subject, object,
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predicate and visual phrase) by maximizing log-likelihood

Lb =
N
∑

i=1

∑

t∈Vb

1yi
t=1 log

(

1

1 + e−w
b
t
T
v
b
i

)

+

N
∑

i=1

∑

t∈Vb

1yi
t=0 log

(

1

1 + ew
b
t
T
v
b
i

)

, (3)

where the first attraction term pushes closer visual represen-

tation v
b
i to its correct language representation w

b
t and the

second repulsive term pushes apart visual-language pairs that

do not match. As illustrated in Figure 2, we have one such

loss for each input type and optimize the joint loss that sums

the individual loss functions Ljoint = Ls +Lo +Lp +Lvp.

A similar loss function has been used in [29] to learn

word representations, while visual-semantic embedding mod-

els [20, 44] typically use triplet ranking losses. Both loss

functions work well, but we found embeddings trained with

log-loss (3) easier to combine across different input types as

their outputs are better calibrated.

Inference. At test time, we have a language query in the

form of triplet t that we embed as (wb
t )b using Eq. (2). Sim-

ilarly, pairs i of candidate object boxes in the test images are

embedded as (vb
i )b with Eq. (1). Then we compute a simi-

larity score St,i between the triplet query t and the candidate

object pair i by aggregating predictions over the different

embedding types b ∈ {s, p, o, vp} as

St,i =
∏

b∈{s,p,o,vp}

1

1 + e−w
b
t
T
v
b
i

. (4)

Interpretation of embedding spaces. The choice of

learning different embedding spaces for subject, object, pred-

icate and visual phrase is motivated by the observation that

each type of embedding captures different information about

the observed visual entity. In Figure 3 we illustrate the ad-

vantage of learning separate predicate (p) and visual-phrase

(vp) embedding spaces. In the p space, visual entities corre-

sponding to “person ride horse” and “person ride car” are

mapped to the same point, as they share the same predicate

“ride”. In contrast, in the vp space, the same visual entities

are mapped to two distinct points. This property of the vp

space is desirable to handle both language polysemy (i.e.,

“ride” has different visual appearance depending on the ob-

jects involved and thus should not be mapped into a single

point) and synonyms (i.e., “person jump horse” and “person

ride horse” projections should be close even if they do not

share the same predicate).

3.2. Transferring embeddings to unseen triplets by
analogy transformations

We propose to explicitly transfer knowledge from seen

triplets at training to new unseen triplets at test time by anal-

ogy reasoning. The underlying intuition is that if we have

Figure 3: Illustration of the differences between predicate (p) (left)

and visual phrase (vp) (right) embeddings. In the p space, visually

different relations such as “person ride horse” and “person ride

car” map to the same location defined by the predicate “ride”. In

contrast, they are mapped to distinct locations in the visual phrase

space that considers the entire relation triplet.

seen examples of “person ride horse”, it might be possible

to use this knowledge to recognize the relation “person ride

cow”, as “horse” and “cow” have similar visual appearance.

As illustrated in Figure 2(b), this is implemented as an anal-

ogy transformation in the visual phrase embedding space,

where a representation of the source triplet (e.g. “person

ride horse”) is transformed to form a representation of target

triplet (e.g. “person ride cow”). There are two main steps

in this process. First, we need to learn how to perform the

analogy transformation of one visual phrase embedding (e.g.

“person ride horse”) to another (e.g. “person ride cow”). Sec-

ond, we need to identify which visual phrases are suitable

for such transfer by analogy. For example, to form a repre-

sentation of a new relation “person ride cow” we want to

transform the representation of “person ride horse” but not

“person ride bus”. We describe the two steps next.

Transfer by analogy. To transform the visual phrase em-

bedding w
vp
t of a source triplet t = (s, p, o) to the visual

phrase embedding w
vp
t′ of a target triplet t′ = (s′, p′, o′) we

learn a transformation Γ such that

w
vp
t′ = w

vp
t + Γ(t, t′). (5)

Here, Γ could be interpreted as a correction term that in-

dicates how to transform w
vp
t to w

vp
t′ in the joint visual-

semantic space vp to compute a target relation triplet t′ that

is analogous to source triplet t. This relates to neural word

representations such as [29] where word embeddings of sim-

ilar concepts can be linked by arithmetic operations such as

“king”−“man”+“woman” = “queen”. Here, we would

like to perform operations such as “person ride horse”−
“horse” + “cow” = “person ride cow”.

Form of Γ. To relate the visual phrase embeddings of t

and t′ through Γ we take advantage of the decomposition

of the triplet into subject, predicate and object. In detail,
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we use the visual phrase embeddings of individual subject,

predicate and object to learn how to relate the visual phrase

embeddings of triplets. Using this structure, we redefine the

analogy transformation given by Eq. (5) as

w
vp
t′ = w

vp
t + Γ





w
vp
s′ −w

vp
s

w
vp
p′ −w

vp
p

w
vp
o′ −w

vp
o



 , (6)

where t = (s, p, o) and t′ = (s′, p′, o′) denote the source

and target triplet, and w
vp
s , wvp

p , wvp
o are visual phrase

embeddings of subject, predicate and object, respectively,

constructed using Eq. (2) as w
vp
s = fvp

w (q[s,0,0]), w
vp
p =

fvp
w (q[0,p,0]), w

vp
o = fvp

w (q[0,0,o]). Here [s, 0, 0] denotes

the concatenation of word2vec embeddings of subject s

with two vectors of zeros of size d. For example, the

analogy transformation of t = (person, ride, horse) to

t′ = (person, ride, camel) using Eq. (6) would result in

w
vp
t′ = w

vp
t + Γ





0

0

w
vp
camel −w

vp
horse



 . (7)

Intuitively, we would like Γ to encode how the change of

objects, observable through the embeddings of source and

target objects, wvp
o , w

vp
o′ , influences the source and target

triplet embeddings w
vp
t , w

vp
t′ . Please note that here we

have shown an example of a transformation resulting from

a change of object, but our formulation, given by Eq. (6),

allows for changes of subject or predicate in a similar manner.

While different choices for Γ are certainly possible, we opt

for

Γ(t, t′) = MLP





w
vp
s′ −w

vp
s

w
vp
p′ −w

vp
p

w
vp
o′ −w

vp
o



 , (8)

where MLP is a 2-layer perceptron without bias. We also

compare different forms of Γ in Section 4.

Which triplets to transfer from? We wish to apply the

transformation by analogy Γ only between triplets that are

similar. The intuition is that to obtain representation of an

unseen target triplet t′ = (person, ride, camel), we wish to

use only similar triplets such as t = (person, ride, horse)
but not triplets such as t = (person, ride, skateboard). For

this, we propose to decompose the similarity between triplets

t and t′ by looking at the similarities between their subjects,

predicates and objects measured by the dot-product of their

representations in the corresponding individual embedding

spaces. The motivation is that the subject, object and predi-

cate spaces do not suffer as much from the limited training

data compared to the visual phrase space. In detail, we define

a weighting function G as :

G(t, t′) =
∑

b∈{s,p,o}

αbw
b
t

T
w

b
t′ , (9)

where w
b
t

T
w

b
t′ measures similarity between embedded rep-

resentations w
b
. and scalars αb are hyperparameters that

reweight the relative contribution of subject, object and pred-

icate similarities. As we constrain
∑

b αb = 1 the output of

G(t, t′) ∈ [0, 1]. For a target triplet t′, we define as Nt′ the

set of k most similar source triplets according to G.

Learning Γ. We fit parameters of Γ by learning analogy

transformations between triplets in the training data. In

particular, we generate training data pairs of source t and

target t′ triplets. Given the generated data, we optimize

log-likelihood similar to Eq. (3) but using visual features

of the real target triplet and language features of the source

triplet transformed with the analogy transformation Γ. The

optimization is performed w.r.t. to both the parameters of

Γ and parameters of the embedding functions. Details are

given in the appendix [1].

Aggregating embeddings. At test time, we compute the

visual phrase embedding of an unseen triplet u by aggregat-

ing embeddings of similar seen triplets t ∈ Nu transformed

using the analogy transformation:

w̄
vp
u =

∑

t∈Nu

G(t, u) (wvp
t + Γ(t, u)), (10)

where w
vp
t is the visual phrase embedding of source triplet t

obtained with Eq. (2), Γ(t, u) is the analogy transformation

between source triplet t and unseen triplet u computed by

Eq. (8) and G(t, u) is a scalar weight given by Eq. (9) that

re-weights the contribution of the different source triplets.

This process is illustrated in Figure 2(b).

4. Experiments

In this section we evaluate the performance of our model

for visual relation retrieval on three challenging datasets :

HICO-DET [6], UnRel [31] and COCO-a [38]. Specifically,

we numerically assess the two components of our model :

(i) learning the visual phrase embedding together with the

unigram embeddings and (ii) transferring embeddings to

unseen triplets by analogy transformations.

4.1. Datasets and evaluation setups

HICO-DET. The HICO-DET [7, 6] dataset contains im-

ages of human-object interactions with box-level annota-

tions. The interactions are varied : the vocabulary of objects

matches the 80 COCO [27] categories and there are 117

different predicates. The number of all possible triplets is

1× 117× 80 but the dataset contains positive examples for

only 600 triplets. All triplets are seen at least once in train-

ing. The authors separate a set of 138 rare triplets, which are

the triplets that appear fewer than 10 times at training. To

conduct further analysis of our model, we also select a set of

25 triplets that we treat as unseen, exclude them completely
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Query (Q) / Source (S) Top true positives Top false positive

(Q) person pet cat

(S) person pet dog

(S) person pet giraffe

(S) person pet cow

(S) person pet elephant

(S) person scratch cat

Figure 4: Top retrieved positive (green) and negative (red) detections with our model (s+o+vp+transfer) on unseen triplets excluded from

HICO-DET. For a target triplet (Q) (e.g. “person pet cat”), our model automatically learns to select meaningful source triplets (S) involving

visually similar objects or predicates (“person pet dog”, “person scratch cat”) and transforms their visual phrase embeddings by analogy

transformation Γ. The top false positive corresponds to a visually related action (“feed”). Additional examples are in the appendix [1].

from the training data in certain experiments, and try to re-

trieve them at test time using our model. These triplets are

randomly selected among the set of non-rare triplets in order

to have enough test instances on which to reliably evaluate.

UnRel. UnRel [31] is an evaluation dataset containing vi-

sual relations for 76 unusual triplet queries. In contrast to

HICO-DET and COCO-a, the interactions do not necessar-

ily involve a human, and the predicate is not necessarily an

action (it can be a spatial relation, or comparative). The

vocabulary of objects and predicates matches those of Visual

Relation Detection Dataset [28]. UnRel is only an evaluation

dataset, so similar to [31] we use the training set of Visual

Relationship Dataset as training data.

COCO-a. The COCO-a dataset [38] is based on a subset

of COCO dataset [27] augmented with annotations of human-

object interactions. Similar to HICO-DET, the vocabulary

of objects matches the 80 COCO categories. In addition,

COCO-a defines 140 predicates resulting in a total of 1681

different triplets. The released version of COCO-a contains

4413 images with no pre-defined train/test splits. Given this

relatively small number of images, we use COCO-a as an

evaluation dataset for models trained on HICO-DET. This

results in an extremely challenging set-up with 1474 unseen

triplets among which 1048 involve an out-of-vocabulary

predicate that has not been seen at training in HICO-DET.

Evaluation measure. On all datasets, we evaluate our

model in a retrieval setup. For each triplet query in the

vocabulary, we rank the candidate test pairs of object bound-

ing boxes using our model and compute the performance

in terms of Average Precision. Overall, we report mean

Average Precision (mAP) over the set of triplet queries com-

puted with the evaluation code released by [6] on HICO-DET

and [31] on UnRel. On COCO-a, we use our own implemen-

tation as no evaluation code is released.

4.2. Implementation details

Candidate pairs. We use pre-extracted candidate pairs of

objects from an object detector trained for the vocabulary

of objects specific to the dataset. On HICO-DET, we train

the object detector on the COCO training data using Detec-

tron [11]. To be comparable to [12], we use a Faster-R-CNN

[37] with ResNet-50 Feature Pyramid Network [26]. We

post-process the candidate detections by removing candi-

dates whose confidence scores are below 0.05 and apply an

additional per-class score thresholding to maintain a fixed

precision of 0.3 for each object category. At test time, we

use non-maximum suppression of 0.3. For COCO-a, we

re-train the object detector excluding images from COCO

that intersect with COCO-a. On UnRel, we use the same

candidate pairs as [31] to have directly comparable results.

Visual representation. Following [31], we first encode

a candidate pair of boxes (os,oo) by the appearance of

the subject a(os), the appearance of the object a(oo), and

their mutual spatial configuration r(os,oo). The appearance

features of the subject and object boxes are extracted from

the last fully-connected layer of the object detector. The

spatial configuration r(os,oo) is a 8-dimensional feature

that concatenates the subject and object box coordinates

renormalized with respect to the union box. The visual

representation of a candidate pair is a 1000-dimensional

vector, aggregating the spatial and appearance features of the

objects (more details in appendix [1]). For the subject (resp.

object) embeddings, we only consider the appearance of the

subject (resp. object) without the spatial configuration.

Language representation. For a triplet t = (s, p, o), we

compute the word embeddings es (resp. ep, eo) for sub-

ject (resp. predicate, object) with a Word2vec [29] model

trained on GoogleNews. The representation of a triplet

is taken as the concatenation of the word embeddings

qt = [es; ep; eo] ∈ R
900.

Embedding functions. The embedding projection func-

tions are composed of two fully connected layers, with a

ReLU non-linearity. For the visual projection functions, we

use Dropout. The dimensionality of the joint visual-language

spaces is set to d = 1024 for HICO-DET and COCO-a. We

use d = 256 for UnRel as the training set is much smaller.

Training details. We train our model with Adam opti-

mizer [22] using a learning rate 0.001. We first learn the

parameters of the projection functions by optimizing Ljoint,

then activate the analogy loss LΓ to learn the parameters of

transfer and finetune the visual phrase embeddings. The hy-

perparameters αs, αo, αp and k are optimized by grid-search
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