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Abstract

Monocular face reconstruction is a challenging task in

computer vision, which aims to recover 3D face geometry

from a single RGB face image. Recently, deep learning

methods have achieved great improvements on monocular

face reconstruction. However, for these methods to reach

optimal performance, it is paramount to have large-scale

training images with ground-truth 3D face geometry, which

is generally difficult for human to annotate. To tackle this

problem, we propose a semi-supervised monocular recon-

struction method, which jointly optimizes a shape-preserved

domain-transfer CycleGAN and a shape estimation net-

work. The framework is semi-supervisely trained with 3D

rendered images with ground-truth shapes and in-the-wild

face images without any extra annotation. The CycleGAN

network transforms all realistic images into rendered style

and is end-to-end trained in the overall framework. This is

the key difference compared with existing CycleGAN-based

learning methods, which just used CycleGAN as a separate

training sample generator. Novel landmark consistency loss

and edge-aware shape estimation loss are proposed for our

two networks to jointly solve the challenging face recon-

struction problem. Experiments on public face reconstruc-

tion datasets demonstrate the effectiveness of our overall

method as well as the individual components.

1. Introduction

3D face reconstruction from monocular images aims at

recovering 3D facial geometry from 2D face images. This

is an important research topic as human faces play a key

role in visual perception and image generation. However,

it remains a challenging problem and is far from being

solved. Unlike 2D facial landmarks, which can be accu-

rately labeled by humans and robustly estimated by com-

puters thanks to the recent advances of Convolution Neu-

ral Networks (CNN), the ground-truth 3D geometry of hu-

man faces can only be generated by traditional optimization
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Figure 1. The overall framework of the proposed semi-supervised

monocular face reconstruction method.

based methods, such as Gaussian Process [4] and Parame-

terized Spline [11]. The fitting process of the 3D face ge-

ometry contains lots of uncertainties. As a consequence,

we cannot easily collect as abundant amount of supervised

training data as other computer vision tasks, and the re-

construction accuracy is therefore restricted by the limited

amount of training data.

For face images taken in controlled environments, it is

not difficult to use optimization-based methods to obtain

their ground-truth 3D face geometry as training data. How-

ever, those methods, even with human intervention, cannot

guarantee to obtain accurate ground-truth geometry for face

images in the wild, where there might exist non-uniform

lighting, sided viewing angles, and cluttered backgrounds.

Training with such poorly fitted ground truth geometry re-

sults in deteriorated reconstruction accuracy.

Several methods have been proposed to tackle the prob-

lem of lacking abundant ground-truth face geometry for

in-the-wild images. [18] proposed to train a face recon-

struction model on only synthetic face images with accurate

ground truth, which, however, has difficulty handling real-

istic images because of the large synthetic-realistic domain

gap. Tewari et al. [23] proposed a semi-supervised learning

approach with photometric loss to supervise the reconstruc-

tion for in-the-wild images. But it is likely to overfit to a

specific dataset and does not show great generalization ca-
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pability.

Inspired by the recent research on style transfer and

domain adaption with generative adversary network (Cy-

cleGAN) [26], we propose a novel semi-supervised deep

neural network for 3D face reconstruction from monocu-

lar images (see Fig. 1). Our network is trained with both

synthetic face images with ground-truth geometry and in-

the-wild face images with no extra information. A shape-

preserved domain-transfer Cycle-consistent Generative Ad-

versarial Network network is integrated in our framework to

bridge the training data from the two image domains. Un-

like existing methods [21, 8, 24] that only uses CycleGAN

to generate training samples in a separate pre-processing

stage, our proposed generative network has three novel dis-

tinctions. (1) Instead of mapping synthetic images to re-

alistic ones to create fake training samples, we adopt the

generative network to map all realistic images to the ren-

dered domain for face reconstruction. On the one hand, we

argue that the images in the rendered domain have accu-

rate ground truth which is not hampered by the translation.

On the other, generating realistic images with realistic back-

ground, hair, or beard is very difficult. However, removing

them from realistic images is relatively easier. (2) Instead

of being used as a separate sample generator, our generative

network is integrated and end-to-end trained within the face

reconstruction network. The realistic-to-synthetic generator

is not only required to generate vivid images of rendered

style, but also is required to generate images that are easy

for the follow-up face shape estimation to recover the face

geometry. The co-adpation of our generative network and

face shape estimation network is crucial for achieving high

reconstruction accuracy.

To effectively train the overall framework for accurate

face reconstruction, we also propose novel loss functions.

For generative network, we observe that using only the do-

main discriminators might actually distort the face images,

which hinders the final accuracy. We therefore propose a

landmark consistency loss to regularize the image transla-

tion process maintaining face shapes, which is important

for satisfactory domain translation. For training face shape

estimation network with in-the-wild images, we propose a

novel edge-aware loss to supervise the learning of recon-

structing in-the-wild face shapes.

The major contributions of the article can be summarized

as three-fold. (1) We propose a novel semi-supervised face

reconstruction network with an shape-preserved domain-

transfer generative network for better bridging the gap be-

tween synthetic and realistic image domains. The genera-

tive network is no longer just a training sample generator,

but is jointly trained with face reconstruction network to as-

sist accurate face reconstruction. (2) To effectively translate

images across the two domains, the shape information of the

faces should be maintained as much as possible. We pro-

pose a landmark consistency loss as an additional supervi-

sion for training the generative model, which provides more

constraints to retain the shape information during face trans-

lation and thus leads to better reconstruction accuracy. (3)

For face reconstruction on images in the wild, other than tra-

ditional loss functions on face vertices and face normals, we

propose a new loss related to facial-edges on input images.

The proposed loss provides better supervisions to train face

with larger viewing angles and extreme expressions.

2. Releated Works

2.1. Monocular 3D Face Reconstruction

By modeling face priors as Gaussian process, Blanz and

Vetter [4] proposed 3D Morphable Model (3DMM) to pa-

rameterize the shapes of human faces. More accurate mod-

els have also been proposed to model more complex facial

deformations using blender shapes [7] or skeletons [17].

Those models can model how human faces deforms as

smooth surfaces.

Given a set of such parameters, one can obtain a vivid

rendered image. However, the inverse process of recover-

ing the 3DMM parameters from monocular images is quite

challenging. Other than landmark based optimization meth-

ods [3] and differential method based on rendering and ras-

terization [15], deep learning based methods [27] have been

studied recently to recover the face 3DMM parameters. Cao

et al. [6] proposed a cascaded framework that iteratively re-

fines the recovered face model parameters to handle face

images in the wild. However, they have less control on in-

termedia results. Jackson et al. [13] proposed to use vol-

umetric convolution to reconstruct face with greater defor-

mation. However, it introduced heavier computation with

volumetric convolution. Feng et al. [10] proposed to re-

cover face geometry via predicting a 2D UV position map

which records the 3D shape of a complete face in the UV

space. It is fast and results in accurate reconstructed shapes

with small network structures. However, it has difficulty on

handling faces that are taken from extreme viewing angles.

Sela et al. [20] utilized optimization-based reconstruction

methods to make the recovered 3D geometry more stable. It

recovers the correspondences between 2D locations in im-

ages and UV-coordinates on 3D meshes, and performs ICP

registration to obtain the final shape. Although the method

shows robust performance on face images of different view-

ing angles, its network is not end-to-end trainable and re-

quires heavy calculation on optimization.

Other methods explored extra information to assist the

learning, including photometric loss [23] , pre-training

on synthetic images [18], multi-frame supervisions from

videos [22]. These methods are trained to predict a facial

texture or color map in additional the 3D face shape to assist

face reconstruction. However, they still have difficulty on
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tackling the sophisticated background and lighting in face

images in the wild.

2.2. Generative Networks for Cross­domain Train­
ing

For image translation, GAN based approaches have

shown their great potential. CycleGAN [26] proposed a

cross-domain image-to-image translation network, which

does not need one-to-one pairs for training. It was used

by many approaches [21] for tacking the domain adaption

problem by generating domain-transferred images as new

training samples with ground-truth labels. However, those

methods just used the CycleGAN as a separate training sam-

ple generator and there is no supervision or constraint to

ensure that the transferred images by the CycleGAN can be

correctly recognized by the follow-up classifiers or regres-

sor. In contrast, our proposed generative network is end-

to-end trained with the overall framework to guarantee that

it serves for the final reconstruction objective. Patch-based

discriminators [12] help to concentrate more on distinguish-

ing local textures rather than global image style for better

supervising the image-to-image generative networks.

3. Proposed Method

The framework of our proposed semi-supervised face

reconstruction method consists of a domain-transfer gen-

erative network and a 3D shape estimation network. The

method utilizes both 3D rendered synthetic images with

ground-truth geometry and in-the-wild face images without

any annotation for training a robust and accurate face recon-

struction network for faces in the wild. The domain-transfer

generative network is modeled as a CycleGAN to translate

all realistic face images to the rendered style, which is the

key difference with existing methods that mostly utilize Cy-

cleGANs to generate training samples across different do-

mains. Most importantly, our generative network can be

trained with the follow-up 3D shape estimation network in

an end-to-end manner to ensure that its main objective is to

translate images to optimize face reconstruction. The 3D

shape estimation network learns to recover 3D face shapes

with ground-truth geometry of the 3D rendered images and

realistic face images with a novel face edge-aware loss func-

tion.

3.1. Face Rendering for Training Data Generation

Since our method is semi-supervised, we first generate

3D rendered images from ground-truth 3D face geometry,

which serve as synthetic training data with annotations.

In order to generate proper training data, the generation

of the rendered images needs to satisfy two requirements.

On the one hand, it is important that the synthetic images

have ground-truth geometry with enough shape variations to

avoid the network being overfitted to some specific face ge-

ometry. On the other hand, we should ensure that the styles

of the synthetic images are consistent so that the face shape

estimation network needs minimal efforts on handling the

image styles and can focus on estimating face geometry.

We use a multi-dimensional face generation model,

Bessel Face Model [4], which can express precisely most

of the faces, to create 3D face shapes with face vertices

and face textures in the world coordinate system. The face

shapes are controlled by a series of shape, expression, and

texture parameters, where the shape parameters control how

the pre-defined face bases are linearly combined to gener-

ate the face shape. Once we obtain the 3D geometry and

texture information of one synthetic face shape, we ran-

domly rotate the faces to simulate different head poses. The

3 rotation parameters, yaw, pitch and roll angles, are ran-

domly chosen from the intervals [−90◦, 90◦], [−60◦, 60◦],
[−10◦, 10◦], respectively.

Since real faces may not be expressed as a fully linear

combination of the pre-defined face shape bases, in order to

synthesize more realistic face deformations, we add slight

free-form deformations to some of the generated meshes.

A Free-form Deformation is applied to the nose and chin

to apply slight changes to face shapes. The bounding grids

are manually specified. Then the grid vertices near nose tip

and chin tip are moved in the symmetric plane by a distance

that follows a Gaussian distribution with standard deviation

equaling 0.001 of the grid length.

For face rendering to generate 2D images, we adopt the

Phong-Model [5] and project the 3D shape onto a 2D imag-

ing plane. We use parallel lighting from a direction uni-

formly sampled from the frontal half sphere of the face. The

ambient, diffuse, specular components are randomly sam-

pled from Gaussian distributions with white-light mean and

standard deviation of 0.01. The background of the rendered

image is set as black, since we expect the domain-transfer

generative network (to be introduced) is able to correctly

remove the clutter background in the realistic face images.

Following [10], we generate the ground-truth geometry

as 2D UV position maps, which record the 3D face shapes

in the UV space. To be specific, we use the parameter-

ized UV coordinates as an estimated conformal mapping [9]

and then map the mesh boundary to a square. The benefits

of adopting the UV map include saving storage compared

with volumetric bins, maintaining nearby relationship be-

tween neighboring vertices compared with random ordered

vertices list, and supporting more flexible deformation com-

pared with expressing in pre-defined facial parameters. An

example rendered image, its ground-truth UV map and nor-

mal map can seen in Fig. 2.
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(a) Rendered Image (b) GT shape (c) GT UV Map

(d) GT normal map (e) Realistic Image (f) Weight map

Figure 2. (a) A 3D rendered image as described in Section 3.1. (b)

The ground-truth geometry of the rendered image. (c) Ground-

truth UV map, which encodes 3D face shape in (b) in the UV

space and each entry in the map records one vertex’s 3D location

(shown by a RGB color). (d) Ground-truth normal map of (b).

(e) Realistic image corresponding to (a). (f) Weight map for UV

estimation with L2 loss.

3.2. Shape­preserved Domain­transfer Face Image
Generation

The domain-transfer generative network in our frame-

work aims to translate all realistic face images in the wild to

have the same image style as the 3D rendered face images.

The follow-up face shape estimation network will then be

process the synthetic images to estimate face 3D geometry.

The key difference of the proposed domain-transfer gener-

ative network with existing generative methods is that, it is

not just a separate cross-domain training sample generator.

Instead, our domain-transfer generative network is end-to-

end trained in our overall framework to optimize the face

reconstruction objective via back-propagation.

Since there are generally no paired ground-truth images

for supervising the domain transfer. CycleGAN [26] is

adopted as our backbone to convert images back and forth

between the realistic image domain and the rendered image

domain. Let R and S denote the domains of realistic images

and synthetic images, respectively. Two image generators,

F : R → S, which translates realistic images to the syn-

thetic domain, and G : S → R, which transfers synthetic

images to the realistic domain, are jointly trained for learn-

ing domain transferring. In addition, we adopt two patch-

based adversarial discriminators DS and DR [12], where

the former one aims to distinguish whether each patch in

the output image is from the synthetic domain or not, and

the later one distinguishes realistic-domain samples. For

images in the synthetic domain s ∼ pdata(s), and images

in the realistic domain r ∼ pdata(r), we have the following

adversarial objectives,

LGAN(F,DS , R, S) = Es∼pdata(s)[logDS(s)] (1)

+ Er∼pdata(r)[log(1−DS(F (r))],

LGAN(G,DR, S,R) = Er∼pdata(r)[logDR(r)]

+ Es∼pdata(s)[log(1−DR(G(s))],

where F and G are optimized to generate images F (s) and

G(r) that can fool the two domain discriminators DS and

DR to perform image-to-image translation across the syn-

thetic and realistic domains. The cycle consistency loss is

applied to regularize the two image generators F and G be-

ing able to reconstruct the same image after performing the

domain transfer twice,

Lcyc(F,G) = Es∼pdata(s)[‖F (G(s))− s‖1] (2)

+ Er∼pdata(r)[‖G(F (r))− r‖1].

The above loss functions are similar to those in the classi-

cal CycleGAN model, except for the patch-based discrim-

inators rather than the whole image discriminator. How-

ever, we observe that with only above mentioned losses,

the CycleGAN model cannot guarantee satisfactory domain

transferring results. The results usually show undesirable

artifacts, and more impotantly, large deformations, which

would hinder the following face shape estimation process.

To better regularize the image generation and maintain

the faces’ 3D shapes, we introduce an additional shape

constraint, i.e., after domain transfer, the face geometry

should remain the same. However, since we cannot ob-

tain the 3D shapes yet, we relax the constraints to the

domain-transferred face images to have the same 2D fa-

cial landmarks as their origins. In practice, we utilize a

pre-trained and fixed-weight facial landmark estimator net-

work M to estimate the 2D landmarks, which directly re-

gresses the landmark coordinates and can allow errors to

back-propagate. We therefore introduce a new landmark

consistency loss for cross-domain face image generation,

Lldmk(F,G) = Er∼pdata(r)[‖M(r)−M(F (r))‖2] (3)

+ Es∼pdata(s)[‖M(s)−M(G(s))‖2],

where M(·) outputs 2D facial landmark coordinates. Note

that, although the weights of the landmark estimation net-

work M are fixed, it allows errors to be backpropaga-

tion through. Therefore, the errors can be further back-

propagated to update the parameters of image generators F

and G.

The overall objective for our proposed domain-transfer

face image generation is

L(F,G,DS , DR) = LGAN(F,DS , R, S) (4)

+ LGAN(G,DR, S,R)

+ λcycLcyc(F,G) + λldmkLldmk(F,G),
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where λcyc and λldmk balance the contributions of cycle con-

sistency loss and our newly proposed landmark consistency

loss. With the new landmark consistency loss, we observe

significant quality improvements of the domain transferred

images. For the generated images in the rendered style, clut-

tered image background and face accessories can also be au-

tomatically removed because such images never appeared

in actual synthetic images. See shape-preserved domain-

transfer examples in Figs. 4 and 6.

3.3. Face Reconstruction with the Edge­aware Loss

Given a face image r in the wild, our domain-transfer

generative network F (r) in the above subsection is able

to convert it to have the style as 3D rendered images.

Then both rendered images s and domain-transferred im-

ages F (r) can be processed by our face shape estimation

network E without considering their image styles.

Estimation of shape UV maps. For a 3D rendered image

s that has ground-truth 3D shape associated with it, the net-

work takes the image as input and can be easily trained to

minimize the predicted UV map with a weighted L2 loss,

Luv(E) = Es∼pdata(s)





∑

i,j

wi,j‖E(s)i,j − Egt(s)i,j‖
2
2



 ,

(5)

where E(s) stands for the network predicted UV map from

in the input s, Egt(s) denotes the ground-truth face geome-

try UV map of s generated in Section 3.1, w is a face-region

weighting map, and i,j denotes iterating over all entries in

the UV and weight maps.

The motivation of adopting the face-region weighting

map is based on the observation that not all the vertices

on the face model take the same role in controlling the de-

formation of the surface. Vertices on sharp edges such as

face contours, eye lids, nose bridges and mouth lips have

more influence. Therefore, a manually designed face-region

weighting map indicating the importance of each vertices

on the UV-mapping square is generated. Given the impor-

tant facial landmarks in the UV coordinates, edges are first

created to connected the important landmarks. All UV co-

ordinates’ deviations from the edges can be modeled as per-

forming the distance transform operation on the edge maps

followed by a Gaussian kernel to highlight the face regions

near the evident face regions. See one example face weight

map in Fig. 3.

Normal-smoothness Regularization. We also would like

to enhance the smoothness of the estimated face shapes and

prevent abrupt curvature changes along the estimated face

surface. The estimated shape changes along the x- and y-

dimensions of the UV maps should be perpendicular to the

normal maps obtained from the ground-truth face surface,

Lnorm(E) = Es∼pdata(s)

[

(6)

∑

i,j

| < E(s)i+1,j − E(s)i−1,j , N
gt(s)i,j > |+

∑

i,j

| < E(s)i,j+1 − E(s)i,j−1, N
gt(s)i,j > |

]

where E(s) is the estimated shape of the rendered image s,

N(s)gt is the ground-truth normal map constructed in Sec-

tion 3.1, and <,> stands for the dot product between the

shape-change vectors and the normal vectors at each loca-

tion (which should be close to zero).

Unsupervised face shape reconstruction with edge-

aware loss. For a domain-transferred in-the-wild image

F (r), however, there is no ground-truth geometry or normal

associated with the input image. Existing unsupervised face

reconstruction methods mostly utilize the photometric loss

to supervise the shape estimation procedure. Those meth-

ods first estimate the face shape and re-project it back to the

image plane to minimize the differences between original

facial pixel values and the re-projected pixel values.

However, calculating such a loss requires simultaneously

estimating both shapes and textures and therefore might re-

sult in ambiguous shapes. For instance, a planar shape with

texture may produce similar results as a slightly bended

shapes with warped texture. Therefore, we propose a novel

edge-aware loss function that focuses on penalizing the er-

rors of re-projected face edges from the reconstructed face

shapes. The key assumption is that, projecting the esti-

mated face shapes to the image plane should result in the

same facial landmark locations as those from the original

input image. For extracting 2D facial landmarks from the

input images, the same fixed-weight facial landmark esti-

mation network M is adopted. The landmarks that delin-

eate cheek, eyes, nose and mouth are connected by edges

(see Fig. 3(a)). For each of the 5 facial parts, the distance

transform is performed on the edge maps to obtain the dis-

tance maps {T 1, T 2, · · · , T 5} (see Fig. 3(b-g)). It has zeros

on the landmark edges and the distance values increase as

deviating further away from the edges.

On the reconstructed 3D shape, we first locate the same

cheek, eye, nose and mouth edge points from the esti-

mated shape UV map. However, sometimes when the

face image is captured from a side view, its cheek, nose

and mouth edge point locations might change due to self-

occlusion. To locate such remaining face edge points

corresponding to those from 2D images, we identify 3D

edge points as those that are near the original edge point

locations and have normal vectors roughly perpendicu-

lar to the viewing direction. Such 3D points are de-

noted as {(x1, y1, z1), · · · , (xK , yK , zK)}. By using a sim-
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(a) Edge maps of (b) Cheek distance (c) Left-eye distance

5 parts map map

(e) Right-eye distance (f) Nose distance (g) Mouth distance

map map map

Figure 3. 2D face edges and their distance maps for calculating

edge-aware loss. (a) 5 important face parts’ edges. (b) Cheek

edges’ distance map. (c) Left-eye edge distance map. (d) Right-

eye edge distance map. (f) Nose edge distance map. (g) Mouth

edge distance map. Hotter colors represent large distance values.

ple orthogoal projection camera model to remove their z-

coordinates, they are projected into the image plane as

Ω = {(x1, y1), · · · , (xK , yK)}. We define the following

edge-aware loss function,

Ledge(E) =
1

∑5
m=1 |Ω

m|

5
∑

m=1

∑

(xk,yk)∈Ωm

Tm
xk,yk

, (7)

where Ωm is the 2D re-projected edge point set for the mth

face part, Txk,yk
denotes the distance value at (xk, yk) in

the distance map T . Intuitively, if the 3D re-projected face

edge points well aligns with those landmark edges extracted

from the input image, the distance values at the re-projected

edge points Tm
xk,yk

should be zeros.

The shape estimation objective can therefore be formu-

lated as

Lshape = Luv + λnormLnorm + λedgeLedge, (8)

where λnorm and λedge weight the contributions of Lnorm and

Ledge.

3.4. Network Architectures and Training Scheme

Network structures. For our image generators F and G,

we use a U-Net-like network [19], which consists of 8 conv-

BN-ReLU blocks as encoder and 8 concat-ReLU-Deconv

blocks as decoder. For patch-based discriminators DS and

DR, they have 5 conv-BU-ReLU blocks to downsample the

input image to a 8 × 8 feature map. A 1 × 1 convolution

layer is then utilized for patch-based binary classification.

For the shape reconstruction network E, we design its struc-

ture following [10], which is composed of a series of five 2-

Residual Block as the encoder and 5 deconv-BN-ReLU as

the decoder. A shape UV map is estimated by the estimation

network, given the input face image.

Image pre-processing and augmentation. For each input

image, we first identify its facial landmarks. The face re-

gions are cropped and rotated to have a unified rotation an-

gle and 256× 256 size. During training, after the face nor-

malization, we augment the face image with a random 2D

rotation in [−10◦, 10◦], random x- and y-translations from

a normal distribution N (0, 82). This is to synthesize sce-

narios where there might be inaccurate landmark locations

for face normalization.

Training scheme. We train the proposed network in two

stages. In the first stage, the domain-transfer generative

network with generators F and G, and the shape esti-

mation network E are pre-trained independently to obtain

good weight initialization. The generative network are pre-

trained with unpaired rendered and realistic face images

with loss Lgen and λcyc = 0.1, λldmk = 1. The shape es-

timation network is pre-trained with only 3D rendered im-

ages and their ground-truth face geometry with loss Lshape

and λnorm = 0.1, λedge = 0.1.

In the second stage, the two networks in our framework

are end-to-end trained using the ADAM optimizer with both

rendered images and in-the-wild realistic images for jointly

optimizing the two networks for face reconstruction,

L = Lgen + λshapeLshape, (9)

where λshape = 0.5 and other weights are kept the same

as stage-1. The network is trained with mini-batches of 16

images (8 from each domain) and the learning rate is set to

0.0002.

4. Experiments

We test our algorithms on public face reconstruction

datasets, including AFLW [14], AFLW-LFPA [27], Flo-

rence [1], to evaluate the performance of the proposed semi-

supervised face reconstruction method. Not that no ground-

truth face geometry from the the evaluation datasets are

used whening training our neural network. We only utilize

100,000 rendered images based on the Bessel Face Model

[4] (as introduced in Section 3.1) with ground-truth geome-

try and training images without ground-truth from the eval-

uation datasets for training our model. Therefore, our semi-

supervised experimental setup is much more challenging

than that of existing methods, which mostly are trained and

tested on the same datasets.

4.1. Dataset and Evaluation Metrics

AFLW2000-3D [14] contains the first 2,000 images from

the AFLW dataset, each of which has 68 3D landmarks

for face reconstruction evaluation. Since its ground-truth

3DMM parameters are obtained from optimization-based
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Method Train set 0-30 30-60 60-90 Mean

3DDFA [27] 300W (w/ AFLW) 3.78 4.54 7.93 5.42

3DDFA+SDM [27] 300W (w/ AFLW) 3.43 4.24 7.17 4.94

Yu et al. [25] 300W+Synthetic 3.62 6.06 9.56 -

3DSTN [2] 300WLP 3.15 4.33 5.98 4.49

PRN [10] 300WLP 2.75 3.51 4.61 3.62

Ours Synthetic+Images 3.56 4.06 4.11 3.88

Table 1. 2D NME (%) of 68 landmarks with different yaw angles

by compared methods on AFLW2000-3D dataset.

methods, the fitted ground-truth shapes might not be ac-

curate. We therefore measure the Normalized Mean Er-

ror (NME) between the 2D re-projected facial landmarks

of the estimated 3D face shapes and the ground-truth 3D

landmarks for evaluation, i.e.,

NME2d =
1

N

N
∑

n=1

l̂2dn − l2dn
box width

, (10)

where l̂2dn and l2dn are the re-projected estimated and ground-

truth 3D facial landmarks respectively, N is the number of

facial landmarks, and “box width” is the width of the face

detection box associated with each test image.

AFLW-LFPA is another dataset constructed from the

AFLW dataset [16], which contains more than 4,000 train-

ing images with ground-truth face geometry and 1,299 test

images. The Normalized Mean Error (NME) of 3D face

vertices can be calculated as

NME3d =
1

N

N
∑

n=1

v̂3dn − v3dn
d

, (11)

where v̂3dn and v3dn are vertices of the predicted and ground-

truth meshes, and d is the 3D interocular distance.

Florence [1] is a 3D face dataset that contains 53 subjects

with its ground truth 3D mesh acquired from a structured-

light scanning system. In our experiments, each subject’s

face images are generated by renderings with different

poses following the same setup as [10]: a pitch of −15◦,

20◦ and 25◦ degrees and spaced rotations between −80◦

and 80◦.

4.2. Evaluation on AFLW

In Table. 1, we list results of several face reconstruction

algorithms’ performance on the AFLW-LFPA dataset. We

evaluate their average NME2d on the test set for compari-

son. Yu et al. and 3DSTN [2] are methods that only predict

3D landmarks, which are trained on labeled ground-truth.

3DDFA and 3DDFA+SDM [27] is a method regressing the

3DMM face parameters using a single CNN. PRN [10] also

adopts 2D CNN to estimate face UV maps but is trained in

a fully-supervised manner.

Our proposed method is able to achieved the 2nd small-

est NME2d. This demonstrates our proposed framework’s

Image DT Ours 3DDFA PRN

Figure 4. Example face reconstruction results by our proposed

method with domain-transfer (DT) generation, 3DDFA [27], and

PRN [10] on AFLW-LFPA dataset. Please zoom in to see details.

strong capability of using cross-domain data for achieving

accurate face reconstruction performance without using any

ground-truth geometry in the target domain. For the most

extreme poses (yaw angle = [60◦, 90◦]), our algorithm per-

forms best, which is because of the large number of ren-

dered face images with large yaw angles.

4.3. Evaluation on AFLW­LFPA

On AFLW-LFPA, in contrast to all the other methods

trained in a fully-supervised manner, our proposed method

are only trained with ground-truth geometry from rendered

3D images and images without any annotation. Average

NME3d curves vs. percentage of test images are shown

in Fig. 5(a). Our method achieves the smallest average

NME3d = 3.703. In Fig. 4, we show example domain-

transfer images and reconstructed face meshes by our pro-

posed method. Our image generator is able to eliminate ac-

cessories (such as sunglasses) and generate images of con-

sistent image styles for accurate face reconstruction.

4.4. Evaluation on Florence

On Florence dataset, some example reconstructed face

meshes are shown in Fig. 6, by different face reconstruc-

tion algorithms. Our proposed shape-perserved domain-

transfer generator can sucessfully remove the beard from

the person’s face while maintaining his face shape. Their

NME3d curves w.r.t. percentage of test images are shown

in Fig. 5(b). Similar to the AFLW-LFPA datasets, all

the compared methods, PRN [10], 3DDFA [27], VRN-
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Figure 5. Average NME3d vs. the percentage of test images on (a) AFLW-LFPA dataset by different compared methods, (b) on Florence

dastaset by different compared methods, (c) on AFLW-LFPA dataset by different baseline methods.

Image DT Ours 3DDFA PRNet

Figure 6. Example reconstruction results by proposed method with

domain-transfer (DT) generation, and compared methods 3DDFA

[27], PRN [10] on Florence dataset. Please zoom in to see details.

Guided [13] are trained with ground-truth geometry from

the Florence dataset. Although we did not use any ground-

truth geometry from the Florence dataset. Our method can

still achieve comparable average NME3d with the fully-

supervised methods.

4.5. Ablation Studies

To evaluate the effectiveness of different components in

our framework, we perform ablation studies by changing

or removing one certain component from our framework.

Their results are reported in Fig. 5(c).

To test the effectiveness of our network. We pro-

pose three alternative solutions. 1) Use rendered im-

ages with random background instead of black ground

(as our method) and directly train the shape estimation

network with such synthetic images (denoted as ”syn-

thetic+background” in Table 5(c)). Its worse perfor-

mance denotes that simply training on large-scale syn-

thetic data cannot achieve good performance. The domain

gap(especially the artifacts on face edges and hairs) will in-

fluence the regression precision. 2) Transfer the image style

of the rendered images and utilized the ground-truth meshes

of domain-transferred images for training (denoted as ”syn-

thetic transfer”). It performs slightly worse than proposed

method, denotint that accuracy of the groundtruth and the

increase of the training data still cannot handle some impor-

tant hard cases in reconstruction tasks. 3) Train our genera-

tive network and shape estimation network separately and

without end-to-end joint optimization. The results show

that transfer from sophisticated real images to simplified

synthetic images are not easily learned compared with our

method with end-to-end training.

We also test removing either Lldmk or the edge loss Ledge

. Both methods showed deteriorated accuracies compared

with our final model, which demonstrate the effectiveness

of the two losses.

5. Conclusion

In this paper, we proposed a method that jointly op-

timizes a shape-preserved domain-transfer generative net-

work and a shape reconstruction network to achieve semi-

supervised face reconstruction. Different from existing

methods, the proposed domain-transfer generator unifies all

input images to have the same style as rendered images. A

novel landmark consistency loss is proposed to preserve the

original face shapes during translation. The image genera-

tive network can be end-to-end trained with the follow-up

estimation network to achieve optimal reconstruction accu-

racy. Such a framework can be trained with only ground-

truth geometry from synthetic data and can therefore greatly

mitigate the need of large-scale training data for face recon-

struction. Extensive experiments demonstrate effectiveness

of our proposed face reconstruction method.
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