
Evolving Space-Time Neural Architectures for Videos

AJ Piergiovanni, Anelia Angelova, Alexander Toshev, Michael S. Ryoo

Google Brain

{ajpiergi,anelia,toshev,mryoo}@google.com

Abstract

We present a new method for finding video CNN ar-

chitectures that capture rich spatio-temporal information

in videos. Previous work, taking advantage of 3D convo-

lutions, obtained promising results by manually designing

video CNN architectures. We here develop a novel evolu-

tionary search algorithm that automatically explores mod-

els with different types and combinations of layers to jointly

learn interactions between spatial and temporal aspects of

video representations. We demonstrate the generality of this

algorithm by applying it to two meta-architectures, obtain-

ing new architectures superior to manually designed archi-

tectures: EvaNet. Further, we propose a new component,

the iTGM layer, which more efficiently utilizes its parame-

ters to allow learning of space-time interactions over longer

time horizons. The iTGM layer is often preferred by the evo-

lutionary algorithm and allows building cost-efficient net-

works. The proposed approach discovers new and diverse

video architectures that were previously unknown. More im-

portantly they are both more accurate and faster than prior

models, and outperform the state-of-the-art results on mul-

tiple datasets we test, including HMDB, Kinetics, and Mo-

ments in Time. We will open source the code and models, to

encourage future model development 1.

1. Introduction

Video understanding tasks, such as video object detec-

tion and activity recognition, are important for many so-

cietal applications of computer vision including robot per-

ception, smart cities, medical analysis, and more. Convolu-

tional neural networks (CNNs) have been popular for video

understanding, with many successful prior approaches, in-

cluding C3D [30], I3D [1], R(2+1)D [33], S3D [38], and

others [3, 9]. These approaches focus on manually de-

signing CNN architectures specialized for videos, for ex-

ample by extending known 2D architectures such as Incep-

tion [28] and ResNet [5] to 3D [1, 33]. However, designing

new, larger or more advanced architectures is a challenging

1Code and models: https://sites.google.com/corp/view/evanet-video

problem, especially as the complexity of video tasks neces-

sitates deeper and wider architectures and more complex

sub-modules. Furthermore, the existing networks, which

are mostly inspired by single-image based tasks, might not

sufficiently capture the rich spatio-temporal interactions in

video data.

In this work, we present a video architecture evolution

approach to harness the rich spatio-temporal information

present in videos. Neural architecture search and evolution

have been previously applied for text and image classifica-

tion [29, 41]. A naive extension of the above approaches to

video is infeasible due to the large search space of possible

architectures operating on 3D inputs.

To address these challenges we propose a novel evo-

lution algorithm for video architecture search. We intro-

duce a hybrid meta-architecture (‘fill-in-the-blanks’) model

for which the high level connectivity between modules is

fixed, but the individual modules can evolve. We apply

this successfully to both Inception and ResNet based meta-

architectures. We design the search space specifically for

video CNN architectures that jointly capture various spatial

and temporal interactions in videos. We encourage explo-

ration of more diverse architectures by applying multiple

nontrivial mutations at the earlier stages of evolution while

constraining the mutations at the later stages. This enables

discovering multiple, very different but similarly good ar-

chitectures, allowing us to form a better ensemble by com-

bining them.

Furthermore, to enrich the search space for video in-

puts, we propose a new key element which is specifically

designed to capture space-time features’ interactions. We

introduce an Inflated Temporal Gaussian Mixture (iTGM)

layer as part of the evolution search space. The iTGM is

motivated by the original 1D TGM [21]. For our iTGM,

we learn 2D spatial filters in addition to the temporal Gaus-

sian mixture values, and inflate the 2D filter temporally to

allow learning of joint features in 3D. The 2D filter is in-

flated non-uniformly, by following the weights according to

the learned 1-D temporal Gaussian mixture pattern. This

allows to explore space-time interactions more effectively

and with much fewer parameters, while at the same time

capture longer temporal information in videos.

1793



11 5 1 5 3

1

1 9

1 3

11 1

C
o
n
c
a
t

1

19

19

15

111

31

31

C
o
n
c
a
t

3

1

13

15

15

71

111

31

C
o
n
c
a
t

1

15

13

71

C
o
n
c
a
t

1

111

19

51

C
o
n
c
a
t

1

15

15

17

19

91

31

C
o
n
c
a
t

1

1 9

1 3

1 3

1 9

9 1

C
o
n
c
a
t

9

1

1 5

1 5

1 3

5 1

C
o
n
c
a
t

1

1 5

1 7

1 5

7 1

C
o
n
c
a
t

2 1

iTGM

1x1x1

Max-
Pool

Concat

(2+1)D

3D 
Conv

Avg Pool

Figure 1. Example of a video architecture obtained with evolution. Inception-like architecture. The color encodes the type of the layer, as

indicated on the right. The numbers indicate the temporal size of the filters in each module. See text for discussion.

3 1 1 3

11 1 C
o
n

c
a
t

R = 2

3
1
1
1 3 7
1 3 1
1 1 1

C
o
n

c
a
t

R = 3

3 1 7 3

C
o
n

c
a
t

R = 5

3
1
1
1
111
1115
1 9 1

C
o
n

c
a
t

R = 5

1

3 1
1
1 1 9
1 1
3 1
1 1

C
o
n

c
a
t

R = 2

3
1
1 5 1
1 111
1111
1 1
7 1

C
o
n

c
a
t

R = 3

3
1

5 1

9 1 C
o
n

c
a
t

R = 5

3 1 1

5 1 C
o
n

c
a
t

R = 4

1

3 1 1

1 9 C
o
n

c
a
t

R = 3

1
1 11

1 7

1 7 C
o
n

c
a
t

R = 4

1
1
111
1 3 7
1 3 1
3 1

C
o
n

c
a
t

R = 6

1
1
1
1 1 3
1 9 11

C
o
n

c
a
t

R = 3

1

Figure 2. Three different ResNet-like architectures obtained for the Kinetics dataset. Modules are repeated R times.

The proposed algorithm results in novel architectures

which comprise interesting sub-modules (see Fig. 1 and 2).

It discovers complex substructures, including modules with

multiple parallel space-time conv/pooling layers focusing

on different temporal resolutions of video representations.

Other findings include: multiple different types of layers

combined in the same module e.g., an iTGM layer jointly

with (2+1)D convolutions and pooling layers; heteroge-

neous modules at different levels of the architecture, which

is in contrast to previous handcrafted models. Furthermore,

the evolution itself generates a diverse set of accurate mod-

els. By ensembling them, recognition accuracy increases

beyond other homogeneous-architecture ensembles.

Our approach discovers models which outperform the

state-of-the-art on all four public datasets we tested (i.e.,

HMDB, Charades, Moments in time and Kinetics). This is

done with a generic evolutionary algorithm and no per-data

hyperparamter tuning. Furthermore, the best found models

are very fast, running at about 100 ms for a single model,

and 250ms for an ensemble, both being considerably faster

than prior models.

The main technical contributions of this paper are: 1)

We propose a novel evolutionary approach for develop-

ing space-time CNN architectures, specifically designed for

videos. We design the search space to specifically explore

different space-time convolutional layers and their combi-

nations and encourage diversity. 2) We introduce a new

space-time convolutional layer, the Inflated TGM layer, de-

signed to capture longer-term temporal information. 3) The

discovered models achieve state-of-the-art performance on

several video datasets and are among the fastest models for

videos. We provide new diverse architectures, ensembles

and components which can be reused for future work. To

our knowledge this is the first automated neural architecture

search algorithm for video understanding.

2. Related work

CNNs for video understanding. Approaches consider-

ing a video as a space-time volume have been particularly

successful [1, 4, 30, 31], with a direct application of 3D

CNNs to videos. C3D [30] learned 3x3x3 XYT filters,

which was not only applied to action recognition but also

to video object recognition. I3D [1] extended the Inception

architecture to 3D, obtaining successful results on multiple

activity recognition video datasets including Kinetics. S3D

[38] investigated the usage of 1D and 2D convolutional lay-

ers in addition to the 3D layers. R(2+1)D [33] used the

2D conv. layers followed by 1D conv. layers while follow-

ing the ResNet structure. Two-stream CNN design is also

widely adopted in action recognition, which takes optical

flow inputs in addition to raw RGBs [3, 27]. There are also

works focusing on capturing longer temporal information

in continuous videos using pooling [19], attention [20], and

convolution [9]. Recurrent neural networks (e.g., LSTMs)

1794



are also used to sequentially represent videos [19, 39].

Neural architecture search. Neural network architec-

tures have advanced significantly since the early convo-

lutional neural network concepts of LeCun et al. [13]

and Krizhevsky et al. [11]: from developing wider mod-

ules, e.g., Inception [28], or introducing duplicated mod-

ules [14], residual connections [5, 37], densely connected

networks [6, 7], or multi-task architectures: e.g., Faster-

RCNN and RetinaNet for detection, and many others [15,

16, 24]. Recently several ground-breaking approaches have

been proposed for automated learning/searching of neu-

ral network architectures, rather than manually designing

them [23, 29, 41, 42]. Successful architecture search has

been demonstrated for images and text [41, 42], including

object classification. Tran et al. [32] analyze action recog-

nition experiments with different settings, e.g., input res-

olution, frame rate, number of frames, network depth, all

within the 3D ResNet architecture.

3. Convolutional layers for action recognition

We first review standard convolutional layers for videos

and then introduce the new iTGM layer to learn longer tem-

poral structures with fewer parameters and lower computa-

tional cost. Video CNNs are analogous to standard CNNs,

with the difference of an additional temporal dimension in

the input and all intermediate feature maps. In more de-

tail, both input and feature maps are represented as 4D ten-

sors XYTC with two spatial dimensions, one temporal and

one for the pixel values or features (i.e., channels). Several

forms of convolution on such tensors have been explored.

3D convolutional layer learns a standard 3D convolutional

kernel over space and time [8]. It applies Cout kernels of

dimension L×H ×W ×Cin on a tensor of size T × Y ×
X × Cin to produce a tensor of size T × Y × X × Cout.

This layer has LHWCinCout parameters, which is an order

of magnitude larger than CNNs and becomes prohibitive in

many cases. Further, expanding 2D kernels to 3D has been

explored [17]. I3D expanded kernels by stacking the 2D

kernels L times, results in state-of-the-art performance [1].

(2+1)D convolutional layer decomposes a 3D kernel into a

composition of a 2D spatial kernel followed by a 1D tem-

poral kernel [33, 38]. It has HWCinCout + LCoutCout

parameters, and as such is more efficient than 3D convo-

lution. However, it still depends on the time dimension L
which limits the temporal size of the filter.

3.1. 3D Inflated TGM layer

The recently introduced Temporal Gaussian Mixture

layer (TGM) [21] is a specialized 1D convolutional layer

designed to overcome the limitations of standard 1D convo-

lutional layers. In contrast to the standard 1D temporal con-

volutional layer, which was often used in video CNNs such

as R(2+1)D, a TGM layer represents its filter as a mixture

2D
 Kernel

Inflated
TGM

Time

*

*

*

*

=

=

=

=

TGMs

Figure 3. The iTGM layer. Example of inflated TGM kernels.

of 1D Gaussians. This makes the number of its learnable

parameters independent of the temporal filter size; with a

TGM layer, one does not have to handle all kernel weights

but only the Gaussian mixture parameters.

In this work, we employ the above idea to define a 3D

space-time kernel directly, named Inflated Temporal Gaus-

sian Mixture layer (iTGM). We ‘inflate’ the 2D spatial ker-

nels to 3D by representing 3D kernel as a product of two

kernels:

S ⋆ K

where S is the ‘inflated’ 2D convolution and K is a temporal

1D kernel defined using a mixture of Gaussians (see Fig. 3).

The Gaussian mixture kernel K is defined as follows.

Denote by µm and width σm the center and width of M
Gaussians, m ∈ {0, . . . ,M}. Further, denote by aim, i ∈
{0, . . . , Cout} soft-attention mixing-weights. The temporal

Gaussian kernels read:

K̂ml =
1

Z
exp

(

−
(l − µm)2

2σ2
m

)

(1)

where Z is a normalization:
∑L

l=0
K̂ml = 1. Then, the a

mixture of the above Gaussian kernels is:

Kil =
exp (aim)

∑

j exp (aij)
K̂ml. (2)

This results in K being a Cout×L kernel; i. e., a temporal

kernel with Cout output channels. We apply this kernel on

the output of the spatial kernel. Thus, we obtain a L×H ×
W ×Cin ×Cout kernel, using only HWCinCout + 2M +
MCout parameters.

In practice, µ is constrained to be in [0, L), µ =
(1/2)(L−1) tanh (µ̂)+1. and σ is positive, σ2 = exp (σ̂).
Further, M is a hyperparameter, typically smaller than L.

The parameters of the iTGM layer – spatial kernel pa-

rameters, µm, σm, and aim – are all differentiable, and are

learned from data for the specified task. The above layer be-

haves exactly like the standard 3D XYT convolution. Note

that this layer learns fewer parameters than both 3D and

(2+1)D convolution, and can learn temporally longer ker-

nels as the number of parameters is independent of the

length, L. Examples of inflated TGMs are shown in Fig. 3.

1795



Video
BxTxHxWxC

Stem

Lx7x7
Stride 2

Lx3x3
Max-Pool

Stride 
1,2,2

Residual
Inception 
Module 1

Lx3x3
Max-Pool

Stride 
2,2,2

Residual
Inception 
Module 2

Lx2x2
Max-Pool

Stride 
2,2,2

Residual
Inception 
Module 3

Residual
Inception 
Module 4

2x7x7
Avg-Pool 1x1x1

Lx2x2
Max-Pool

Stride 
2,2,2

Figure 4. Our ResNet-like ‘fill-in-the-blanks’ meta-architecture: each heterogeneous module is repeated R times, based on the evolution.

4. Neural architecture evolution for videos

We design our neural architecture search specifically for

videos, and propose the following:

• Use of ‘fill-in-the-blanks’ meta-architectures to limit

the search space and generate both trainable and high-

performing architectures.

• Search among combinations of six different types

of space-time convolution/pooling layer concatenations

where their temporal duration can vary in large ranges.

• We specially design mutation operations to more effec-

tively explore the large space of possible architectures.

• We propose an evolutionary sampling strategy which en-

courages more diverse architectures early in the search.

Neural architecture evolution finds better-performing ar-

chitectures by iteratively modifying a pool of architectures.

Starting from a set of random architectures, it mutates them

over multiple rounds, while only retaining the better per-

forming ones. Recent studies [22] show that evolutionary

algorithms can find good image architectures from a smaller

number of samples, as opposed to model search algorithms

using reinforcement learning [41]. This makes evolution

more suitable for video architecture search, as video CNNs

are expensive to train. Further, it allows for mutating archi-

tectures by selecting and combining various space-time lay-

ers which more effectively process inputs with much larger

dimensionality. The evolution also enables obtaining mul-

tiple different architectures instead of a single architecture

which we use to build a powerful ensemble.

4.1. Search space and base architecture

We evolve our architectures to have heterogeneous

modules, motivated by the recent observations that video

CNN architectures may need differently sized temporal fil-

ters at different layers, e.g., bottom-heavy vs. top-heavy

[38]. In order to keep the entire search space manage-

able while evolving modules heterogeneously, we use a

meta-architecture where internal sub-modules are allowed

to evolve without constraints but the high level architec-

ture has a fixed number of total modules. We used both an

Inception-like and ResNet-like meta-architecture. The In-

ception meta-architecture follows the popular Inception ar-

chitecture, with five layers forming the ‘stem’ followed by

Inception modules whose structure is evolved. The ResNet-

like meta-architecture is illustrated in Figure 4. This meta-

architecture is composed of two fixed convolutional layers

(i.e., the ‘stem’) followed by four residual Inception mod-

ules interspersed with max-pooling layers. Each residual

Inception module can be repeated R times and has a resid-

ual connection. Figure 5 shows an example module.

Each module can have multiple parallel convolutional or

pooling layers and its specific form is chosen through evo-

lution. We constrain the complexity of the connections be-

tween the layers within a module while making the evolu-

tion explore temporal aspects of the modules. More specif-

ically, we make each module have 1-6 parallel ‘streams’

with four different stream types: (i) one 1x1x1 conv., (ii)

one space-time conv. layer after one 1x1x1 layer, (iii) two

space-time conv. layers after one 1x1x1, and (iv) a space-

time pooling followed by one 1x1x1. Figure 5 shows the

four types. The architecture evolution focuses on modify-

ing each module: selecting layer types and its parameters,

selecting the number of parallel layers, and for the residual

ones, how many times should each module be repeated.

The convolutional layers have {1, 3, 5, 7, 9, 11} as the set

of possible temporal kernel sizes. As a result, the architec-

ture search space size is O((3×6+1)5+B×N+(6+1)D×N )
where B and D are the maximum of number of space-

time conv and pooling layers we allow in each module, and

N = 4 or 9 is the number modules in the meta-architecture.

There are 2 or 5 individual layers (often also called a ‘stem’)

before the modules. Each space-time conv. layer has 3 × 6
possible options and each space-time pooling has 6 options.

Also, there is the option to add/omit the layer, making the

total number of choices 3×6+1 and 6+1. For the ResNet-

like models, we allow modules to be repeated up to 6 times.

We fix the spatial size of the kernels to be 3 × 3. Although

the search space is very big, the idea is that an exhaustive

search is not necessary and it is possible to find good local

optima by evolving from various initial samples (i.e., archi-

tectures).

4.2. Evolutionary algorithm

Algorithm 1 summarizes the architecture search. In a

standard genetic algorithm setting, we maintain a popula-

tion of size P , where each individual in the population is a

particular architecture. Initial architectures are obtained by

randomly sampling from our large search space, encourag-

ing diversity and exploration. At each round of the evolu-

tion, the algorithm randomly selects S number of samples

from the entire population and compares their recognition

performance. The architecture with the highest fitness (i.e.,

validation accuracy) becomes the ‘parent’, and mutation op-

erators are applied to the selected parent to generate a new

1796



Lx3x3

1x1x1

1x1x1 1x1x1 Lx3x3
Max-Pool

1x1x1

Lx3x3

Concatenation

Input

+

Output

Lx3x3

Figure 5. A example structure of the a residual Inception module

with 4 layer streams. There could be 1-6 parallel streams (with 4

types) and a residual connection from input to output.

‘child’ architecture to be added to the population. Whenever

a new architecture is added, it is trained with the training set

for a number of iterations, and is evaluated with a separate

validation set (different from the actual test and validation

sets) to measure the recognition accuracy. This performance

becomes the ‘fitness’ of the architecture. Having S where

1 < S ≤ P controls the randomness in of the parent selec-

tion. It avoids the algorithm repeatedly selecting the same

parent, which might already be at a local maximum.

Algorithm 1 Evolutionary search algorithm

function SEARCH

Randomly initialize the population, P
Evaluate each individual in P
for i < number of evolutionary rounds do

S = random sample of 25 individuals

parent = the most fit individual in S
child = parent
for max(⌈d− i

r
⌉, 1) do

child = mutate(child)
end for

evaluate child and add to population

remove least fit individual from population

end for

end function

Mutations. The mutation operators modify the parent ar-

chitecture to generate a new child architecture. In order to

explore the architecture search space we describe in Section

4.1 efficiently, we consider the following 4 mutation oper-

ators: (i) Select a space-time conv. layer within the parent

architecture, and change its ‘type’. (ii) Select a space-time

conv. layer or a pooling layer, and change its temporal size

(i.e., L) . (iii) Select a module from the parent architecture,

and add/remove a parallel layer stream. We constrain the

number of parallel layer streams to be 1-6. We additionally

constrain each module to have a fixed number of output fil-

ters which are evenly divided between the parallel layers.

(iv) Select a module and change the number of times it is

3DConv
3x3x3

1x1x1

1x1x1 1x1x1 3x3x3
Max-Pool

1x1x1TGM
7x3x3

Concatenation

Input

Output

(2+1)D
3x3x3

1x1x1

1x1x1 1x1x1 3x3x3
Max-Pool

1x1x1TGM
7x3x3

Concatenation

Input

Output

3DConv
3x3x3

1x1x1

1x1x1 1x1x1 3x3x3
Max-Pool

1x1x1TGM
7x3x3

Concatenation

Input

Output

3DConv
3x3x3

1x1x1

1x1x1 1x1x1 3x3x3
Max-Pool

1x1x1TGM
9x3x3

Concatenation

Input

Output

Change Layer 
Type

Mutation

Change 
Temporal Size 

Mutation

3DConv
3x3x3

1x1x1

1x1x1 1x1x1 3x3x3
Max-Pool

1x1x1TGM
7x3x3

Concatenation

Input

Output

3DConv
3x3x3

1x1x1

1x1x1 1x1x1 3x3x3
Max-Pool

1x1x1TGM
7x3x3

Concatenation

Input

Output

Add Layer
Mutation

1x1x1

(2+1)D
5x3x3

(a)

(b)

(c)

Figure 6. Example mutations applied to a module, including (a)

layer type change, (b) filter length change, and (c) layer addition.

repeated. Figure 6 illustrates examples of our mutation op-

erators applied to layers of a module.

Diversity. Importantly, we design the mutation in our al-

gorithm to happen by applying multiple randomly chosen

mutation operators. In order to encourage more diverse ar-

chitectures, we develop the strategy of applying many mu-

tation operators in the early stage of the evolution while re-

ducing the amount of mutations in the later stages, which

is analogous to controlling the learning rate in a CNN

model learning. As described in Algorithm 1, we apply

max(d − i
r
, 1) number of mutation operators where d is

the maximum number of operators we want to apply in the

beginning, and r controls how quickly we want to decrease

their numbers linearly. Once a child architecture is added to

the population, in order to maintain the size of the popula-

tion to P , the evolutionary algorithm selects an individual

to discard from the pool. We tried different removal criteria

including the lowest fitness and the oldest (i.e., [22]), which

did not make much difference in our case.

Ensemble. We obtain a number of top performing archi-

tectures after the evolutionary search is completed, thanks

to our evolutionary algorithm promoting populations with

diverse individual architectures. Thus, we are able to con-

struct a strong ensemble from the diverse models by averag-

ing the outputs of their softmax layers: F ∗(x) =
∑

i Fi(x)
where x is the input video and Fi are the top models. In the

experiments, we found our approach obtains very diverse,

top performing architectures. Ensembling further improves

the overall recognition. We named our final ensemble net-

work as EvaNet (Evolved Video Architecture).

1797



5. Experiments

Although our evolutionary architecture search is applica-

ble to various different video understanding tasks, here we

focus on human activity recognition. The video CNN ar-

chitectures are evolved using public datasets. Fitness of the

architectures during evolution is measured on a subset of the

training data. In all experiments, the evolutionary algorithm

has no access to the test set during training and evolution.

In more detail, we use following datasets:

HMDB [12] is a dataset of human motion videos collected

from a variety of sources. It is a common datasets for video

classification and has ∼7K videos of 51 action classes.

Kinetics [10] is a large challenging video dataset with

225,946 training and 18,584 validation videos. We use the

currently available version (Kinetics-400 dataset), which

has about 25k fewer training videos than original Kinetics

dataset (i.e., missing about 10% of train/val/test data). This

makes the dataset more difficult to train, and not compara-

ble to the previous version.

Charades [26] is an activity recognition dataset with ∼10K

videos, whose durations are 30 seconds on average. We

chose Charades to particularly confirm whether our archi-

tecture evolution finds structures different from those found

with shorter videos like Kinetics. We use the standard clas-

sification evaluation protocol.

Moments in Time [18] is a large-scale dataset for un-

derstanding of actions and events in videos (339 classes,

802,264 training, 33,900 validation videos).

5.1. Experimental setup

Architecture evolution is done in parallel on smaller in-

put size and fewer number of iterations. Details can be

found in the appendix. We perform evolution for 2000

rounds: generating, mutating, training/evaluating, and dis-

carding 2000 CNN architectures. Note that ∼300 rounds

were often sufficient to find good architectures (Figure 7).

Once the architecture evolution is complete and the top per-

forming models are found, they are trained on full inputs.

Baselines. We compare our results to state-of-the-art activ-

ity recognition methods. We train (1) the original I3D [1]

with standard 3D conv. layers. We also train an Inception

model with: (2) 3D conv. layers with L = 3, (3) (2+1)D

conv. layers, and (4) the proposed iTGM layers. The dif-

ference between (1) and (2) is that (1) uses L = 7 in the

first 3D conv. layer and L = 3 in all the other 3D layers (a

handcrafted design), while (2) uses L = 3 in all its layers.

5.2. Results

Next, we report the results of the proposed method and

compare with baselines and prior work. This is not only

done in terms of recognition accuracy but also in terms of

computational efficiency. As shown in Table 7, our individ-

ual models are 4x faster and the ensemble (EvaNet) is 1.6x

Table 1. HMDB split 1 comparison to baselines, with and without

Kinetics pre-training. The models were all initialized with Ima-

geNet weights.

HMDB HMDB(pre-train)

RGB Flow RGB+F RGB Flow RGB+F

Baselines

I3D 49.5 61.9 66.4 74.8 77.1 80.1

3D Conv 47.4 60.5 65.9 74.3 76.8 79.9

(2+1)D Conv 27.8 56.4 51.8 74.4 76.5 79.9

iTGM Conv 56.5 62.5 68.2 74.6 76.7 79.9

3D-Ensemble 67.6 80.4

iTGM-Ensemble 69.5 80.6

Top individual models from evolution

Top 1 60.7 63.2 70.3 74.4 78.7 81.4

Top 2 63.4 62.5 71.2 75.8 78.4 80.6

Top 3 60.5 63.1 70.5 75.4 78.9 79.7

EvaNet 72.8 82.7

Table 2. HMDB performances averaged over the 3 splits.

Two-stream [27] 59.4

Two-stream+IDT [3] 69.2

R(2+1)D [33] 78.7

Two-stream I3D [1] 80.9

PoTion [2] 80.9

Dicrim. Pooling [35] 81.3

DSP [34] 81.5

Top model (Individual, ours) 81.3

3D-Ensemble 79.9

iTGM-Ensemble 80.1

EvaNet (Ensemble, ours) 82.3

faster than standard methods like ResNet-50. Both of our

meta-architectures perform similarly. Below, we report re-

sults of the ResNet-like architecture (see suppl. material for

further results).

HMDB: Table 1 shows the accuracy of the evolved

CNNs compared to the baseline architectures, where the

evaluation is done on ‘split 1’. We see improved accu-

racy of our individual models as well as ensembles. We

also confirm that the EvaNet ensemble is superior to the en-

sembles obtained by combining other architectures (e.g., 3D

ResNet). Table 2 compares our performance with the pre-

vious state-of-the-arts on all three splits following the stan-

dard protocols. As seen, our EvaNet models have strong

performances outperfoming the state-of-the-art.

Kinetics: Table 3 shows the classification accuracy of

our algorithm on Kinetics-400, and compares with base-

lines, other ensembles, and the state-of-the-art. The archi-

tecture evolution finds better performing models than any

prior model. Further the ensemble of 3 models (EvaNet) im-

proves the performance and outperforms other ensembles,

including and ensemble of diverse, standard architectures.

1798



Table 3. Performances on Kinetics-400 Nov. 2018 version. Note

that this set is ∼10% smaller (in training/validation set size) than

the initial version of Kinetics-400. We report the numbers based

on models trained on this newest version. Baselines are shown on

top, followed by the state-of-the-arts, and then our methods.

Method Accuracy

3D Conv 72.6

(2+1)D Conv 74.3

iTGM Conv 74.4

ResNet-50 (2+1)D 72.1

ResNet-101 (2+1)D 72.8

3D-Ensemble 74.6

iTGM-Ensemble 74.7

Diverse Ensemble (3D, (2+1)D, iTGM) 75.3

Two-stream I3D [1] 72.6

Two-stream S3D-G [38] 76.2

ResNet-50 + Non-local[36] 73.5

Arch. Ensemble (I3D, ResNet-50, ResNet-101) 75.4

Top 1 (Individual, ours) 76.4

Top 2 (Individual, ours) 75.5

Top 3 (Individual, ours) 75.7

Random Ensemble 72.6

EvaNet (Ensemble, ours) 77.2

Table 4. Charades classification results against state-of-the-arts.

mAP

Two-Stream [25] 18.6

Two-Stream + LSTM [25] 17.8

Async-TF [25] 22.4

TRN [40] 25.2

Dicrim. Pooling [35] 26.7

Non-local NN [36] 37.5

3D-Ensemble (baseline) 35.2

iTGM-Ensemble (baseline) 35.7

Top 1 (Individual, ours) 37.3

Top 2 (Individual, ours) 36.8

Top 3 (Individual, ours) 36.6

EvaNet (Ensemble, ours) 38.1

Charades: We also test our approach on the popular

Charades dataset. Table 4 compares against the previously

reported results (we use Kinetics pre-training as in [36]).

As shown, we outperform the state-of-the-art and establish

a new one with our EvaNet. Our CNNs only use RGB input

(i.e., one-stream) in this experiment.

Transfer learned architectures - Moments in Time:

We evaluate the models evolved on Kinetics by training it

on another dataset: Moments in Time [18]. Table 5 shows

the results, where we see that the models outperform prior

Table 5. Moments in time. We show that models evolved on Ki-

netics transfer to similar datasets.

Method Accuracy

I3D [18] 29.5

ResNet-50 30.5

ResNet-50 + NL [36] 30.7

Arch. Ensemble (I3D, ResNet-50, ResNet-101) 30.9

Top 1 (Individual, ours) 30.5

EvaNet (Ensemble, ours) 31.8

Table 6. Test accuracy across datasets for a model evolved on a

single dataset.

Method Kinetics Charades HMDB MiT

Evolved on Kinetics 77.2 37.8 82.3 31.8

Evolved on Charades 76.5 38.1 81.8 31.1

Evolved on HMDB 77.0 37.5 82.3 31.6

Best without evolution 76.2 37.5 81.5 30.7

Table 7. Runtime measured on a V100 GPU. Accuracy numbers on

Kinetics-400 are added for context. These numbers are evaluation

time for 1 128 frame clip at 224x224.

Method Accuracy Runtime

I3D 72.6 337ms

S3D 75.2 439ms

ResNet-50 71.9 526ms

ResNet-50 + Non-local 73.5 572ms

I3D iTGM (ours) 74.4 274ms

Individual learned model (ours) 75.5 108ms

EvaNet (Ensemble, ours) 77.2 258ms

methods and baselines. This is particularly appealing as the

evolution is done on another dataset and successfully trans-

fers to a new dataset.

Ensembling and runtime. One key benefit of evolving

model architectures is that the resulting models are natu-

rally diverse, as they are evolved from very different initial

random models. As shown in Table 3, we compared with an

ensemble of three different baselines (3D Conv + (2+1)D +

iTGM) and with an ensemble of different architectures (e.g.,

I3D + ResNet-50 + ResNet-101). Both are outperformed by

EvaNet, although the base models are individually strong.

Furthermore, our evolved models are very efficient per-

forming inference on a video in ∼100 ms (Table 7). Note

that even an ensemble is faster, 258 ms, than previous in-

dividual models which makes the proposed approach very

suitable for practical use with higher accuracy and faster

runtimes. This gain in runtime is due to the use of parallel

shallower layers and the use of iTGM layers, which is by

itself faster than prior layers (274ms vs 337ms).

Architecture findings. Figures 1 and 2 show examples

of the architectures found. Interesting substructures dis-

covered include: (1) modules combining multiple space-

time pooling layers with different temporal intervals and (2)

1799



Table 8. Comparison between models from different hybrid meta-

architectures. Kinetics dataset.

Method Accuracy

EvaNet Inception (Ensemble, ours) 76.8

EvaNet ResNet (Ensemble, ours) 77.2

EvaNet Combined (Ensemble, ours) 77.4

Table 9. Statistics of the top models. iTGM layers are most com-

mon and have longest temporal duration. Kinetics dataset.

Number of Layers Ave. Temporal Length

3D (2+1)D iTGM 3D (2+1)D iTGM Pool

Top 1 2 6 16 5 7.2 7.2 6.0

Top 2 6 7 12 7.8 8.1 8.6 5.7

Top 3 2 6 15 6 7.8 8.5 6.2

modules heavily relying on Inflated TGM or (2+1)D conv.

layers instead of standard 3D conv. layers. Such modules

were commonly observed at most of the locations in the ar-

chitectures, while being very diverse and heterogeneous.

Video CNN architectures may evolve differently depend-

ing on the datasets. This is as expected, and we were able to

explicitly confirm this. The architectures have many more

layers with longer space-time filters (e.g., 9 or 11) when

evolved for Charades, while they only had a small number

of them when evolved for HMDB or Kinetics. An average

activity duration in Charades videos are around 12 seconds,

while HMDB and Kinetics videos are on the average of 3

to 5 seconds. Different architectures are needed for differ-

ent datasets/tasks, and we are providing an evolutionary ap-

proach to automate the architecture design.

Table 8 further shows that both Inception-like and

ResNet-like meta-architectures are successful, and a com-

bination of them is even more successful.

5.3. Ablation Studies

Effectiveness of iTGM models. In Table 9, we show the

layer statistics for the best models. In the EvaNet archi-

tecture, iTGM layers have the longest average length (8.6).

Further, our models have quite large temporal resolution

of 368 frames on average (compared to I3D/S3D with 99

frames). To further confirm the usefulness of the iTGM

layer, we conduct several experiments. In Table 10, we

show the results using iTGM layers with various temporal

durations. Since we can increase the temporal length with-

out changing the number of parameters, we can improve

performance by simply taking longer temporal durations.

We also compare to replacing all iTGM layers with (2+1)D

layers and performing the architecture search without the

iTGM layer as an option. Both restrictions degrade perfor-

mance, confirming that iTGMs are needed. We also note

that iTGM layers are most common in the best models (Ta-

ble 9), further confirming their importance.

‘Stretching’ of iTGM layer Since the number of param-

eters of the iTGM layer is independent of length, we use

0 500 1000 1500 2000
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55
Evolutionary Search

Random Search

Figure 7. Random search vs. evolutionary algorithm on HMDB.

X axis is number of rounds, Y axis is accuracy.

Table 10. Experiments evaluating effect of iTGM layer on Kinet-

ics.

Model Accuracy

iTGM (L = 3) 74.4

iTGM (L = 11) 74.9

EvaNet replacing iTGM with (2+1)D 76.6

Arch Search without iTGM in space 76.8

EvaNet 77.2

Table 11. Stretching iTGM kernels from Kinetics to Charades.

Model mAP

iTGM Baseline (L = 3) 33.8

iTGM Stretched (L = 11) 34.2

Kinetics EvaNet 37.7

Kinetics EvaNet Stretched (L = 11) 38.1

Charades EvaNet 38.1

a model from the Kinetics dataset and ‘stretch’ the iTGM

layers and apply it to Charades, which has activities with

much longer temporal duration. In Table 11, we show the

results using models with L = 3 on Kinetics and stretched

to L = 11 on Charades, which shows similar performance.

Evolution vs. random search. We compared our architec-

ture evolution with random architecture search (Figure 7).

We observe that both the evolution and the random search

accuracies improve as they explore more samples (benefit-

ing from the search space designed). However, the archi-

tecture evolution obtains much higher accuracy and much

more quickly with few initial rounds of evolution, suggest-

ing the mutations are being effective.

6. Conclusion

We present a novel evolutionary algorithm that automati-

cally constructs architectures of layers exploring space-time

interactions for videos. The discovered architectures are ac-

curate, diverse and very efficient. Ensembling such mod-

els leads to further accuracy gains and yields faster and

more accurate solutions than previous state-of-the-art mod-

els. Evolved models can be used across datasets and to build

more powerful models for video understanding.

1800



References

[1] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2017. 1, 2, 3, 6, 7

[2] Vasileios Choutas, Philippe Weinzaepfel, Jérôme Revaud,

and Cordelia Schmid. Potion: Pose motion representation

for action recognition. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2018. 6

[3] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman.

Convolutional two-stream network fusion for video action

recognition. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 1933–

1941, 2016. 1, 2, 6

[4] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Learn-

ing spatio-temporal features with 3d residual networks for

action recognition. In Proceedings of the ICCV Workshop

on Action, Gesture, and Emotion Recognition, volume 2,

page 4, 2017. 2

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016. 1, 3

[6] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-

ian Q. Weinberger. Densely connected convolutional net-

works. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2017. 3

[7] Simon Jegou, Michal Drozdzal, David Vazquez, Adriana

Romero, and Yoshua Bengio. One hundred layers tiramisu:

Fully convolutional densenets for semantic segmentation.

2016. 3

[8] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolu-

tional neural networks for human action recognition. In In-

ternational Conference on Machine Learning (ICML), pages

495–502, 2010. 3

[9] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas

Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video

classification with convolutional neural networks. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 1725–1732, 2014. 1, 2

[10] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,

Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,

Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-

man action video dataset. arXiv preprint arXiv:1705.06950,

2017. 6

[11] A Krizhevsky, I Sutskever, and GE Hinton. Imagenet classi-

fication with deep convolutional neural networks. 2012. 3

[12] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre.

HMDB: a large video database for human motion recogni-

tion. In Proceedings of the IEEE International Conference

on Computer Vision (ICCV), 2011. 6

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. 1998. 3

[14] Min Lin, Qiang Chen, and Shuicheng Yan. Network in net-

work. 2013. 3

[15] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollar. Focal loss for dense object detection. 2017. 3

[16] Wenjie Luo, Bin Yang, and Raquel Urtasun. Fast and furi-

ous: Real time end-to-end 3d detection, tracking and motion

forecasting with a single convolutional net. 2018. 3

[17] Elman Mansimov, Nitish Srivastava, and Ruslan Salakhutdi-

nov. Initialization strategies of spatio-temporal convolutional

neural networks. arXiv preprint arXiv:1503.07274, 2015. 3

[18] Mathew Monfort, Alex Andonian, Bolei Zhou, Kandan Ra-

makrishnan, Sarah Adel Bargal, Tom Yan, Lisa Brown,

Quanfu Fan, Dan Gutfruend, Carl Vondrick, et al. Moments

in time dataset: one million videos for event understanding.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 2019. 6, 7

[19] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vi-

jayanarasimhan, Oriol Vinyals, Rajat Monga, and George

Toderici. Beyond short snippets: Deep networks for video

classification. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages

4694–4702. IEEE, 2015. 2, 3

[20] AJ Piergiovanni, Chenyou Fan, and Michael S Ryoo. Learn-

ing latent sub-events in activity videos using temporal atten-

tion filters. In Proceedings of the American Association for

Artificial Intelligence (AAAI), 2017. 2

[21] AJ Piergiovanni and Michael S. Ryoo. Temporal gaussian

mixture layer for videos. In International Conference on Ma-

chine Learning (ICML), 2019. 1, 3

[22] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. arXiv preprint arXiv:1802.01548, 2018. 4, 5

[23] Esteban Real, Sherry Moore, Andrew Selle, Yutaka

Leon Suematsu Saurabh Saxena, Quoc Le, and Alex Ku-

rakin. Large-scale evolution of image classifiers. In Inter-

national Conference on Machine Learning (ICML), 2017. 3

[24] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. 2015. 3

[25] Gunnar A Sigurdsson, Santosh Divvala, Ali Farhadi, and Ab-

hinav Gupta. Asynchronous temporal fields for action recog-

nition. arXiv preprint arXiv:1612.06371, 2016. 7

[26] Gunnar A. Sigurdsson, Gül Varol, Xiaolong Wang, Ali

Farhadi, Ivan Laptev, and Abhinav Gupta. Hollywood in

homes: Crowdsourcing data collection for activity under-

standing. In Proceedings of European Conference on Com-

puter Vision (ECCV), 2016. 6

[27] Karen Simonyan and Andrew Zisserman. Two-stream con-

volutional networks for action recognition in videos. In Ad-

vances in Neural Information Processing Systems (NIPS),

pages 568–576, 2014. 2, 6

[28] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception ar-

chitecture for computer vision. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 2818–2826, 2016. 1, 3

[29] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

and Quoc V Le. Mnasnet: Platform-aware neural architec-

ture search for mobile. arXiv preprint arXiv:1807.11626,

2018. 1, 3

1801



[30] Du Tran, Lubomir D Bourdev, Rob Fergus, Lorenzo Torre-

sani, and Manohar Paluri. C3d: generic features for video

analysis. CoRR, abs/1412.0767, 2(7):8, 2014. 1, 2

[31] Du Tran, Jamie Ray, Zheng Shou, Shih-Fu Chang, and

Manohar Paluri. Convnet architecture search for spatiotem-

poral feature learning. arXiv preprint arXiv:1708.05038,

2017. 2

[32] Du Tran, Jamie Ray, Zheng Shou, Shih-Fu Chang, and

Manohar Paluri. Convnet architecture search for spatiotem-

poral feature learning. arXiv preprint arXiv:1708.05038,

2017. 3

[33] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann

LeCun, and Manohar Paluri. A closer look at spatiotemporal

convolutions for action recognition. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2018. 1, 2, 3, 6

[34] Jue Wang and Anoop Cherian. Learning discriminative video

representations using adversarial perturbations. In Proceed-

ings of European Conference on Computer Vision (ECCV),

2018. 6

[35] Jue Wang, Anoop Cherian, Fatih Porikli, and Stephen Gould.

Video representation learning using discriminative pooling.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 1149–1158, 2018.

6, 7

[36] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2018. 7

[37] Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2017. 3

[38] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and

Kevin Murphy. Rethinking spatiotemporal feature learning

for video understanding, 2018. 1, 2, 3, 4, 7

[39] Serena Yeung, Olga Russakovsky, Ning Jin, Mykhaylo An-

driluka, Greg Mori, and Li Fei-Fei. Every moment counts:

Dense detailed labeling of actions in complex videos. In-

ternational Journal of Computer Vision (IJCV), pages 1–15,

2015. 3

[40] Bolei Zhou, Alex Andonian, and Antonio Torralba. Tem-

poral relational reasoning in videos. arXiv preprint

arXiv:1711.08496, 2017. 7

[41] Barret Zoph and Quoc Le. Neural architecture search with

reinforcement learning. In International Conference on

Learning Representations (ICLR), 2017. 1, 3, 4

[42] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2018. 3

1802


