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Abstract

Single-view 3D shape reconstruction is an important but
challenging problem, mainly for two reasons. First, as
shape annotation is very expensive to acquire, current meth-
ods rely on synthetic data, in which ground-truth 3D anno-
tation is easy to obtain. However, this results in domain
adaptation problem when applied to natural images. The
second challenge is that there are multiple shapes that can
explain a given 2D image. In this paper, we propose a
framework to improve over these challenges using adver-
sarial training. On one hand, we impose domain confusion
between natural and synthetic image representations to re-
duce the distribution gap. On the other hand, we impose
the reconstruction to be ‘realistic’ by forcing it to lie on a
(learned) manifold of realistic object shapes. Our experi-
ments show that these constraints improve performance by
a large margin over baseline reconstruction models. We
achieve results competitive with the state of the art with a
much simpler architecture.

1. Introduction

Humans can easily understand the underlying 3D struc-
ture of scenes and objects from single images. This is a
hallmark of a human visual system and it is an essential
step towards higher level visual understanding. This is an
extremely ill-posed problem because a single image does
not contain enough information to allow 3D reconstruction.
Therefore, a machine vision system needs to rely on priors
over the shape to infer 3D structure.

Efficient and effective 3D prototyping plays an impor-
tant role in many different fields, such as virtual/augmented
reality, architecture, robotics and 3D printing to name a
few. Perhaps more importantly, studying 3D object rep-
resentations could bring insights on how this information
is encoded in intermediate and higher-level visual cor-
tices [53, 26].

Traditional reconstruction methods rely on multiple im-
ages of same object instance [28, 4, 6, 39, 14]. These meth-
ods possess two strong limitations due to some key assump-
tions [8]: (i) it requires a large number of views to achieve
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Figure 1: We propose a framework for (natural) single-
view 3D reconstruction exploiting adversarial training in
two ways. These constraints are achieved with additional
loss terms. We impose domain confusion between natural
and rendered images (top) and exploit shape priors to force
reconstructions to look realistic (bottom).

reconstruction, (ii) the objects’ appearance are expected to
be Lambertian (i.e., non-reflective) and their albedos are
supposed to be non-uniform (i.e., rich of non-homogeneous
textures).

Another way to achieve 3D reconstruction is to leverage
knowledge from object’s appearance and shape. The main
advantages of relying on shape priors is that we do not need
to rely on accurate feature correspondences across different
views. In this case 3D reconstruction can, in principle, be
done from a single-view 2D image (assuming the priors are
rich enough).

Recently, there has been a growing interest in learning-
based approaches to tackle the problem of predicting the
canonical shape of an object from a single image [24, 8,

, 41, 54,22, 48, 33, 44, 47, 49, 55]. Two technical ad-
vances were responsible for this surge: (i) the easy access
to large-scale 3D Computer-Aided Design (CAD) repos-
itories, such as ShapeNet [7], Pascal3D+ [52], Object-
Net3D [51], Pix3D [40] and (ii) advances in deep learning
techniques [17].

Most of these methods contain a similar high-level archi-
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tecture that regresses a 3D shape from (rendered) images:
an encoder transforms a 2D image into a latent representa-
tion and a decoder reconstructs the 3D representation. They
differentiate in how constraints from 3D world are imposed,
e.g., [8, 54, 44] force multi-view consistency to learn the 3D
representation, while [47, 49] make use of 2.5D sketches.
These approaches use a large number of CAD models to
leverage shape priors (either making explicit use of 3D rep-
resentation or not).

Single-view 3D reconstruction is a very ill-posed prob-
lem. In order to learn strong shape priors to infer 3D struc-
ture, deep learning methods require a large amount of 3D
object annotations. However, acquiring good 3D object an-
notation from natural images is an extremely challenging
endeavor. Most deep learning approaches, therefore, make
use of synthetic images (which can be rendered easily if a
proper 3D representation is given).

Convolutional neural networks (CNNs) [29] are known
to perform sub-optimally when the data distribution of in-
puts changes, a problem known in the computer vision liter-
ature as domain shift [43]. For this reason, CNN-based 3D
reconstruction, trained on synthetic images, performs worse
when applied to natural images.

In this paper, we introduce a method to improve the per-
formance of reconstruction models in natural images, where
proper 3D labels are very difficult to acquire. To achieve
this goal, we impose two constraints on the network’s re-
construction loss (expressed as additional loss terms) based
on shape prior learned from large 3D CAD repository (see
Figure 1).

First, inspired by the domain adaptation literature [9, 15],
we force the encoded 2D features to be invariant with re-
spect to the domain they come from (rendered or natural).
This way, a decoder trained on synthetic images will natu-
rally perform better on real images. Second, we constraint
the encoded 2D features to lie in the manifold of realistic
objects shapes. This constraint forces the decoded 3D re-
construction to look more realistic. These two loss terms
are characterized through adversarial training [18, 15], an
active research topic.

Our main contributions can be summarized as follows:
(i) we propose a model and a loss function that exploit
learned shape priors to improve performance of natural im-
age 3D reconstructions (using adversarial training in two
different ways), (ii) we show that this method boost perfor-
mance in both voxel and point cloud representations, and
(iii) the proposed method achieves results competitive with
state of the art on different datasets, with a much simpler
architecture. Moreover, the proposed approach is indepen-
dent of the encoder-decoder architecture and can be applied
to different single-view 3D reconstruction models.

The rest of the paper is organized as follows: Section 2
presents related work, Section 3 describes how we learn the

shape prior and leverage it in two different ways for learning
reconstruction, and Section 4 describes our experiments in
different datasets. We conclude in Section 5.

2. Related Work

Single-view 3D reconstruction. Traditional reconstruc-
tion methods rely on multiple images of same object in-
stance to achieve reconstruction [28, 4, 6, 39, 14]. Re-
cently, data-driven approaches to 3D reconstruction from
single image have appeared. These methods can roughly
be divided into two types: (i) those that explicitly use 3D
structures [16, 8, 48, 13, 19, 47, 50] and (ii) those that
use other sources of information to infer the 3D struc-
ture [46, 24, 54, 22, 20, 6, 44, 55].

These approaches, based on deep learning techniques,
usually share a similar (high-level) architecture: an en-
coder that maps 2D (rendered) images into a latent repre-
sentation and a decoder that maps this representation into
a 3D object. They tend to differ in the way 3D world con-
straints are imposed. For instance, [8, 54, 54, 44,20, 22, 27]
force multiview consistency to learn the 3D representation,
while [46, 24, 23] leverage keypoints and silhouette anno-
tations. Other approaches [47, 49] leverage 2.5D sketches
(surface normals, depth and silhouette) information to im-
prove prediction.

More recently, Zhang, Zhang et. al. [56] consider spher-
ical maps (in additional to 2.5D sketches) to learn 3D rep-
resentations. Contrary to most work on single-view 3D re-
construction, the proposed method does not use canonical
shape: every ground-truth 3D representation is on the same
viewpoint as the 2D training sample. This work is the first to
look at reconstructing shapes for unseen classes, however,
it does not deal with domain-adaptation issues.

Contrary to all these methods, our approach does not use
any additional information besides RGB images. However,
in addition to rendered images, we also use unlabeled nat-
ural images (which are easy to acquire). We note that our
contributions are independent of the encoder and decoder
architecture (as long as they are differentiable), and could
be applied in many of these more powerful encoder-decoder
architectures. In experiments, we show that our approach
improves performance over two baselines: a simple voxel
encoder-decoder architecture and AtlasNet [19], a state-of-
the-art encoder-decoder architecture based on point clouds
representation.

Domain adaptation. The difficulty to acquire 3D anno-
tations for natural images forces reconstruction models to
learn from rendered images. It is well known in the liter-
ature [43, 9] that the performance of a model drops if ap-
plied in data coming from a distribution different from the
one used during training. Ganin et al. [15] deal with this
issue by forcing domain confusion (between two domains)
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through an adversarial objective. Many works have been
dealing with domain adaptation from synthetic to real for
image classification [36, 37, 34, 38].

In this work, we borrow ideas from domain adaptation
literature to impose domain confusion in a similar way as
these previous work. We consider, however, the more chal-
lenging problem of 3D reconstruction instead of simple im-
age classification.

Shape priors. Reconstruction of 3D structure from
single-view images requires strong priors about object’s
shape. Many works focus on better capturing the mani-
fold of realistic shapes. Non-deep approaches had focus
on low-dimensional parametric models [3, 24].The authors
of [16, 30] use CNNs to learn a common embedding space
for 2D rendered images and 3D shapes. Other methods rely
on generative modeling to learn shape prior, e.g., [50] use
deep belief nets to model 3D representations, [22, 6, 11]
consider variants of variational autoencoders and [48] use
a variant of GANs [18] to capture the manifold of shapes.
In [31], the authors propose an adversarial autoencoder that
uses adversarial training techniques to match aggregated
posterior to perform variational inference.

A few works use adversarial training for single-view 3D
reconstruction. Gwak et al. [20] use GANs to model 2D
projections instead of 3D shapes. More similar to our work,
Wu, Zhang et al. [49] use adversarial training techniques to
impose reconstructions to look more natural. They use the
discriminator of a pre-trained 3D GAN [48] to determine
whether a shape is realistic. This approach is similar in
principle to one of our contributions. It is, however, imple-
mented in very different way. The input to the discriminator
is a high dimensional 3D shape, which makes the training to
be very unstable. In our method, the input is a single vector
in a low-dimensional space.

3. Method

In our reconstruction setting, we are interested in pre-
dicting a volumetric representation v" € )V from a canoni-
cal view of a natural image " € Z" C R***>W 1In our
experiments, the volumetric representation is either voxel
(V C {0, 1}dxdvxdvy or point cloud (V C R%*3),

At training time, we have access to a large repository of
3D CAD objects, where pairs of rendered images and vol-
umetric representation Dye,q = {(2},v;)}7, are drawn
from a distribution p,.(z,v), and unlabeled natural images,
Drat = {x?};v:"l, from a different distribution p,,(z,v).
We note that during training the model has access to natu-
ral images (which are easy to acquire), but not their voxel
occupancy grid (which are very difficult to gather).

The proposed method, dubbed Domain-Adaptive RE-
Construction network (DAREC), is composed of two com-
ponents: (i) a shape autoencoder, responsible for learning

a rich latent representation of 3D objects and (ii) a recon-
struction network, responsible for inferring the voxel occu-
pancy grid from a 2D image.

The shape autoencoder is made of an encoder E and a
decoder D. The encoder maps 3D representation v € } into
a low-dimensional embedding representation e € £ C R,
The decoder maps a data point in the latent space back to a
3D representation. The voxel shape autoencoder is trained
by minimizing the Ly reconstruction loss. The point cloud
shape autoencoder is trained by minimizing the Chamfer
distance between predicted and ground truth points.

Since the shape autoencoder is trained with true 3D
shapes, the learned latent representation lies in the shape
manifold &, containing low-dimensional embeddings of ‘re-
alistic’ shapes. This component is trained prior to the train-
ing of the reconstruction network. The shape prior informa-
tion is implicitly encoded in this rich representation space.

The reconstruction network also possesses an encoder-
decoder architecture. The encoder f, parameterized by 6,
is responsible to transform a 2D image into an embedding
space from which a 3D representation can be reconstructed
with a decoder. At inference time, the reconstruction net-
work is the sole network used to predict the voxel occu-
pancy of a given natural test image.

The model is trained in a way that the encoder mapping
f T — & can, at the same time: (i) reconstruct a 3D
representation given a rendered image, (ii) be indistinguish-
able w.r.t. the domain that the image comes from (either
synthetic or real) and (iii) stay in the manifold of ‘realistic’
shapes (learned with the shape autoencoder). To impose
these constraints, we define and add the relevant terms to
the loss function. Figure 2 shows an overview of the ap-
proach.

The reconstruction loss, L., is applied to tuples of ren-
dered images and 3D representations (from D,.c,,4). We use
the Lo for reconstruction loss when considering voxel rep-
resentation and the Chamfer distance (as in [13, 19]) for the
point cloud representation. We opt to not update the de-
coder parameters at this training stage. This design choice,
combined with the constraint imposed by the third loss,
forces the image representations to lie on the manifold of
‘realistic’ shapes.

In the rest of this section, we show how we leverage ad-
versarial training techniques and (learned) shape prior to
improve performance of natural image 3D reconstruction.

3.1. Confusing Image Domains

It is well known that machine learning algorithms suf-
fer from domain shift [43]. Therefore, a model trained to
reconstruct 3D shape from rendered images performs sub-
optimally when applied to natural ones.

Theoretical studies [2, 1] suggest that a good cross-
domain representation is one in which input domain can-
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Figure 2: (a) The reconstruction network maps an image to a rich embedding space £ which is then decoded into a 3D shape
with the shape decoder D* (the star indicates we do not update the parameters of D and E). The two constraints are imposed
on the embedding space with the help of two discriminators: D;,,, imposes image domain confusion and Dpqpe forces the
embeddings to lie on the shape manifold. (b) Overview of the proposed architecture.

not be easily identified. We implement such domain con-
fusion by mapping cross-domain features into a common
space through adversarial training. We cast this problem
as a minimax game between a domain classifier and feature
encoders. That is, we encourage the feature encoder to learn
features f(x) that maximize the domain confusion between
natural and rendered images.

We consider a discriminator D;,,,, parameterized by
Oimg. The discriminator that classifies the domain of a given
feature vector, is optimized by the standard adversarial clas-
sification loss as follows:

Limg(ofaaimg) = - TE IOg Dzmg(f(xr)) +
T ~Pr (1)

— E log (1 = Dimg(f(z"))) .

T ~py,

We achieve domain confusion by applying Reverse Gra-
dient algorithm [15], which optimizes the parameters 0 to
maximize the discriminator loss directly, while 0;,,4 mini-
mizes it.

3.2. Exploiting Shape Priors

A lot of inherent ambiguity exists in single image recon-
struction. Multiple objects exists that can explain a single
view. For this reason, as noted by Wu, Zhang et al. [49],
3D reconstruction with only supervised loss tends to pre-
dict unrealistic mean shapes.

We characterized a representation to be ‘realistic’ if it be-
longs close to the manifold created by the (learned) shape
autoencoder. We argue that if the feature of a single 2D im-
age f(x) lies in the same manifold, a realistic reconstruc-
tion can be achieved by leveraging the decoder of the shape
autoencoder.

The third component of our loss, Lspqpe, imposes this
constraint by penalizing the model if the distribution of la-
tent embeddings does not match that of the points in the
shape manifold. We rely on the learned shape autoencoder
to sample these points. Again, we use adversarial training
to optimize the loss.

Similar to Equation 1, we train a discriminator Dy, qpe
(parameterized by Ogpqpe) to classify whether a sample is
drawn from a 2D encoding representation or from the shape
manifold. Samples from the shape manifold are generated
by sampling voxel (or point cloud) instances from ShapeNet
and mapping them to the &, using the learned shape encoder
E*. The star means that the parameters of the encoder are
kept unchanged during this stage of training. This way, we
guarantee the encoded samples lie on the learned manifold.

Learning is achieved by minimizing the following loss:

[,shape((gfa eshape) = _xT]Ep 10g Dshap6<f<xr)) +
Dshape(E*(Ur))) .
)

— E log (1 -

v~py

As before, the parameters 0,4, are optimized to min-
imize this loss while the parameters 6y maximize it, there-
fore, forcing the 2D embeddings to lie on the shape mani-
fold.

3.3. Training Details

The training procedure is done in two stages.

We start by training the shape autoencoder to learn shape
priors. As we want to capture the intrinsic shape complex-
ity of different objects, we train the model using the full
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ShapeNet dataset. We use a different shape autoencoder for
each 3D representation considered.

The voxel autoencoder has an encoder £ composed of
four 3D convolutional layers, each followed by a max-
pooling and ReLU [32] non-linearity. The first layer con-
tains 5 x 5 filters while the remaining have 3 x 3. The
number of hidden units are 32, 64, 128 and 256 respec-
tively. Similarly, the voxel decoder D has four convolution
layers, but instead of max-pooling, we use bilinear upsam-
pling. The dimension of the latent representation is 256.

We use AtlasNet [19] ! for the point cloud autoencoder.
The encoder, similar to PointNet [35], transforms the in-
put point cloud into a latent representation of dimension
1024. The decoder contains four fully-connected layers of
size 1024, 512, 256, 128 with ReL.U non-linearities (except
the last layer, which has a tanh).

Once training converges, we freeze the parameters of the
encoder and the decoder and use them in the reconstruction
step.

The architecture of the reconstruction network is shown
on Figure 2b. The parameters of network f are initialized
with a ResNet-50 [2 1] that was pre-trained to perform clas-
sification on ImageNet dataset [10]. We replace the classi-
fication layer by a randomly initialized layer that outputs a
vector with dimension of the latent space.

The two discriminators D;,, g and Dpqpe map the em-
bedded features to the probability of which domain the input
comes from (modeled by a softmax [5]). We use two fully-
connected layers of dimension 1024, followed by ReLU.
We choose not to share but have different set of parameters
between the two discriminators because it performs sightly
better in practice.

Finally the model is optimized to learn 3D representa-
tions that are domain-invariant and that lie in the manifold
from the prior of realistic shapes. Consequently, our final
goal is to optimize the following objective:

‘CT'eC(ef)
- /\iﬁimg (ef; Himg) (3)
- As£«sht1,1)e(9f7 eshape) )

where \; and )\, are balance parameters between the loss
terms. We chose \; and A, to be both 0.001 when consider-
ing voxel representation and 0.01 with point cloud represen-
tation. To optimize, we used Adam [25] with learning rate
of 10~* for voxel and 10~ for point cloud representation.

min  max
Gf eimgaashape

4. Experiments

In this section, we start by comparing the performance of
our approach with other methods on the problem of single-

'we use the official code provided at https://github.com/

ThibaultGROUEIX/AtlasNet

view reconstruction from natural images. We report results
with two variants of the model: DAREC-vox, which pre-
dicts voxel representations and DAREC-pc, which predicts
point cloud representations. We evaluate the models in two
important datasets: the recently released Pix3D [40] and
PASCAL 3D+ [52]. Then, we study how DAREC behaves
with respect to the different loss terms. Finally, we analyze
the learned representation and show qualitative results that
corroborates with the notion of domain confusion and shape
manifold.

4.1. Experimental Setup

Voxels and point clouds. In the first stage of training, we
learn shape priors by training a shape autoencoder for the
two 3D representations considered. In both cases, the au-
toencoder is trained to reconstruct the shape (voxels or point
clouds) from ShapeNet dataset [7] (we use the ShapeNet-
Core subset). This dataset contains over 50k object in-
stances of 55 categories. We use a voxel resolution of 323 (a
downsampled version of the voxels provided by the official
repository) and 2500 points in the point cloud representa-
tion.

The second training stage is responsible for inferring

shape representation from a single-view image. We train
two versions of our model: (i) DAREC-vox, which outputs
voxel representations and uses the voxel autoencoder and
(ii)) DAREC-pc, which regresses point clouds and uses At-
lasNet for the point cloud shape autoencoder. In this step,
we make use of both natural and rendered 2D images. We
follow previous work and use the same rendered view pro-
vided by [8]. This allow a more fair comparison between
the proposed method and other approaches. Since we eval-
uate the model in natural images, we use all rendered data
for training.
Evaluation metrics. We evaluate the performance of our
method using two metrics: Intersection over Union (IoU)
and Chamfer Distance (CD). The metric IoU measures the
similarity between ground-truth and (discretized) recon-
struction voxels. This is the 3D extension of the common
metric (of same name) used in segmentation. The Chamfer
distance between two point clouds Py, P, C R3 is defined
as:

CD(P,Py) = 2 in ||z — = in|lx — .
( b 2) ‘Pllzgl:J];IEHPEHT 7/”2 + |P2‘x§;‘2;21g’}||j’ sz
“4)

For each point in each set, CD finds the closest point (in
the other set) and average the distances. When dealing with
voxel occupancy, we first sample points in the the voxel iso-
surface before computing CD. It is shown by Sun, Wu et
al. [40] that CD better correlates with human perception.
For fair comparison, in the following sections we use the
same evaluation code provided by the authors of Pix3D>.

Zhttp://pix3d.csail.mit.edu/
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IoU CD
3D-R2N2[8] 0.136 0.239
3D-VAE-GAN [48] 0.171 0.182
PSGN* [13] - 0.199
MarrNet! [47] 0.231 0.144
DRCT [44] 0.265 0.160
AtlasNet [19] - 0.148
AtlasNet + g.t. mask™* [19] - 0.126
ShapeHDT [49] 0.284 0.123
DAREC-vox 0.241 0.140
DAREC-pc - 0.112

Table 1: Single-view 3D reconstruction results on Pix3D.
We show results on both IoU and CD metrics. * PSGN
require ground-truth mask as input. T MarrNet, DRC and
ShapeHD use 2.5D sketches to guide training. Our ap-
proach only considers (easily available) natural images dur-
ing training. We show competitive results in both metrics.

4.2. Comparison to Other Methods

Reconstruction on Pix3D. Pix3D is a large-scale bench-
mark of diverse image-shape pairs with pixel-level 2D-3D
alignment. A significant part of the dataset is chairs because
they are common and highly diverse. Following the previ-
ous works [40, 49], we evaluate our approach on the 2,894
untruncated and unoccluded ‘chair’ images.

During training, the reconstruction network has access
to synthetic ShapeNet renderings (and their corresponding
ground-truth, voxels or point clouds) and unlabeled natu-
ral images of ‘chair’ category (we use the natural images
of the PASCAL 3D+ rl.1, which contains also ImageNet
images). Figure 3 shows the qualitative results of voxel re-
constructions generated by our approach. As illustrated in
this figure, DAREC is able to reconstruct even in situations
of strong self-occlusion.

Table 1 compares the performance of our approach with
different methods on the Pix3D dataset. We show results on
both IoU (higher is better) and CD (lower is better) metrics.
Results from other models are taken from Wu, Zhang et
al. [49].

It is also important to mention that these methods use
different types of data during training. For instance,
PSGN [13] require ground-truth masks as input. Marr-
Net [47], DRC [44] and ShapeHD [49] use depth, surface
normals and silhouettes during training. DAREC achieves
competitive results using only RGB images as input and
with a much simpler architecture.

Reconstruction on Pascal 3D+. PASCAL 3D+ [52] pro-
vides annotations for (rough) 3D shape of different rigid
object instances from PASCAL VOC 2012 [12]. Each cate-
gory has a small set of about 10 CADs per category.

g.t. pred. g.t.

F AT vl T R
FAFLTFBR L
¥Ry LW RN

Figure 3: 3D reconstruction from single image on Pix3D
dataset. For each image, we show the predicted and the
ground-truth voxel representations. Our method is capable
of learning shape with very different appearances. We show
two different views for each 3D representation.

Similar to most of the recent works, we do not use any of
the PASCAL 3D+ training set. We use the CAD annotations
only for benchmarking purposes. As discussed in Tulsiani
et al. [44], using the small set of CADs for both training
and test would bias the model toward those samples and
therefore is not a recommended benchmark protocol.

We train our model in the categories that are present in
both Pascal3D+ and ShapeNet renderings provided by [8]:
‘aeroplane’,‘car’, ‘chair’,‘table’ and ‘tv monitor’. During
training, our approach uses ShapeNet rendered images-
shape tuples and natural images (we use natural images
from ImageNet [10]). Figure 4 shows voxel reconstruction
results on different images (and their corresponding ground-
truths).

Table 2 shows the performance (in terms of CD) of dif-
ferent methods. Following previous work [44, 49], we show
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chair car  plane average
3D-R2N2[8] 0.238 0.305 0.305 0.284
DRC [44] 0.158 0.099 0.112 0.122
OGN [42] - 0.087 - -
ShapeHD [49] | 0.137 0.129 0.094 0.119
DAREC-vox 0.135 0.101 0.108 0.115
DAREC-pc 0.140 0.100 0.112  0.117

Table 2: Single-view 3D reconstruction results on Pas-
cal3D+. We show results on CD metrics. DRC and
ShapeHD use depth/normals/silhouettes as extra informa-
tion during training. OGN considers a much stronger de-
coder and much higher voxel resolution. Our approach only
considers (easily available) natural images.

results in three categories. Our approach achieves compara-
ble state-of-the-art results with both 3D representations. As
before, our reconstruction network, contrary to other meth-
ods, does not make use of depths, surface normals, silhou-
ette nor it exploits any form of multiview consistency. In-
stead, we make use of unlabeled natural images, which are
very easy to obtain. We also note that OGN [42] uses a
much more complex decoder (based on octrees) and consid-
ers much higher resolution volumetric occupancy ground-
truths during training.

We note that the two novelties of our approach are com-
plementary to previous works and thus could potentially be
integrated with those methods for further performance gain.

4.3. Analyzing the Loss

Here, we perform an ablation study to see how our
method performs with respect to different loss terms. Ta-
ble 3 shows results of our method on Pix3D chair dataset
when considering: (i) only the reconstruction loss (L;¢c),
(ii) the reconstruction and the shape prior losses (L. and
Lshape), (iii) the reconstruction and the image domain-
confusion losses (Ly.c. and Ly, 4) and (iv) the full loss. In
all those cases, the models have same capacity at inference
time (all of them consists of same encoder/decoder archi-
tecture).

The first row (L. only) ignores the adversarial losses
and is trained only with synthetic images. Our method is
able to improve the performance by a large margin with
both 3D representations (e.g., from .220 to .140 with voxel
and .148 to .112 with point cloud).

We first observe that, for both datasets, each loss term
has a positive impact on the the final reconstruction re-
sult. The shape prior loss alone is not sufficient to sig-
nificantly improve the performance. However, the domain
confusion loss alone already provides a substantial boost in
performance. Finally, the model achieves its best perfor-
mance when combining both constraints at the same time.

Pix3D
Lree Limg Lshape | voxel point cloud
v 220 148
v v .196 .140
v v 156 .129
v v v .140 112

Table 3: The performance of our model, considering differ-
ent loss terms, measured with CD on Pix3D chair datasets.
We note the importance of each loss component on both
metrics, although the shape prior loss alone does not give
considerable improvement.

These results therefore confirm that each of the proposed
loss terms is critical in obtaining the final performance.

4.4. Analyzing the Learned Representations

Feature visualization. We use t-SNE [45] to visualize
feature representations from different domains and at dif-
ferent adaptation stages (we use the DAREC-vox model on
Pix3D). Figure 5(a-b) shows t-SNE features from synthetic
(blue) and real (red) images before and after adaptation, re-
spectively. Figure 5(c-d) shows embeddings (before and af-
ter training, respectively) of 2D rendered images (blue) and
points from the learned shape manifold, i.e., latent repre-
sentations from the shape autoencoder (yellow).

In both cases, we can see that features become much
more domain-invariant after training, as desired. During
our experiments, we indeed observed a strong correspon-
dence between reconstruction performance (on natural im-
ages) and the overlap between the different feature distribu-
tions.

Shape interpolation. In Figure 6, we show results of in-
terpolating between two natural images of different shapes.
We first transform each image into its latent representation.
Then, we walk through the shape manifold and reconstruct
the shape at different interpolated representations. We show
qualitatively that the learned shape manifold gives smooth
transition between the two object shapes.

Shape arithmetic.  Another way to probe the learned rep-
resentations is to show arithmetic on the latent space. Pre-
vious work [8, 48, 55] showed they are able to learn a se-
mantic manifold of shapes in its latent space and arithmetic
is done in samples from this space. In Figure 7, we per-
form shape arithmetic on different natural images. We first
map them to the learned shape manifold (where arithmetical
operations are done), then we reconstruct its shape. We ob-
serve that the representation after the arithmetic operations
are still reasonable to reconstruct a realistic shape.
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Figure 4: 3D reconstruction from single image on PASCAL 3D+. For each image, we show the predicted and ground-truth
(left) voxel representation (right). We show two different views for each 3D representation.

(c) (d)
Figure 5: t-SNE visualization on Pix3D. (a-b) Rendered and
natural image embeddings before and after domain confu-
sion. (c-d) 2d rendered embedding and points from mani-
fold before and after training.

5. Conclusion

In this paper, we presented a framework for improved 3D
reconstruction from single-view natural image. Our method
leverages adversarial training and shape priors in two dif-
ferent ways. First it imposes learned features to be domain-
invariant to help with the problem of domain adaptation.
Second, we force the learned representations to lie in a rich
shape prior manifold, imposing the reconstructions to be re-
alistic. We show our method is able to improve the perfor-
mance when considering different 3D representations. By
using only RGB signal and with a much simpler network
architecture, our model achieves competitive performance
with the state of the art.

Figure 7: Shape arithmetic from natural images. The top
row show that ‘curviness’ vector can be added to other
chairs. The other rows show that ‘arm’ vector can be added
to other chairs.
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