Sampling-free Epistemic Uncertainty Estimation Using Approximated Variance Propagation

Janis Postels1,2, Francesco Ferroni2, Huseyin Coskun1, Nassir Navab1, Federico Tombari1,3
1Technische Universität München, 2Autonomous Intelligent Driving GmbH, 3Google
\{janis.postels, huseyin.coskun, nassir.navab\}@tum.de francesco.ferroni@aid-driving.eu tombari@in.tum.de

Abstract

We present a sampling-free approach for computing the epistemic uncertainty of a neural network. Epistemic uncertainty is an important quantity for the deployment of deep neural networks in safety-critical applications, since it represents how much one can trust predictions on new data. Recently promising works were proposed using noise injection combined with Monte-Carlo (MC) sampling at inference time to estimate this quantity (e.g. MC dropout). Our main contribution is an approximation of the epistemic uncertainty estimated by these methods that does not require sampling, thus notably reducing the computational overhead. We apply our approach to large-scale visual tasks (i.e., semantic segmentation and depth regression) to demonstrate the advantages of our method compared to sampling-based approaches in terms of quality of the uncertainty estimates as well as of computational overhead.

1. Introduction

Quantifying the uncertainty associated with the prediction of neural networks is a prerequisite for their deployment and use in safety-critical applications. Whether used to detect road users and make driving decisions in an autonomous vehicle, or in a medical setting within a surgical robot, neural networks must be able not just to predict accurately, but also to quantify how certain they are regarding predictions. Moreover, it is important that uncertainty is provided during inference in real-time, so that the uncertainty can be exploited by a real-time safety-critical system.

One can estimate two types of uncertainty of a machine learning model [8]: aleatoric and epistemic. Aleatoric uncertainty is inherent to the data itself, e.g. uncertainty resulting from noisy sensors. This type of uncertainty can be incorporated into the deep model itself by applying e.g. mixture density networks [2]. Epistemic uncertainty is the uncertainty in the chosen model parameters. In order to detect situations which are unfamiliar for a given machine learning model, and consequently quantify how much one can trust predictions on the given data, one has to determine the latter of the two types of uncertainty.

Recently many approaches have been proposed that make it possible to estimate epistemic uncertainty for large scale neural network architectures\cite{9, 27, 20, 23}. A promising research direction is the use of noise injection \cite{9, 27} via, e.g., stochastic regularization techniques. The underlying idea is to train a neural network while injecting noise at certain layers. During training, the network learns how to compensate the noise on the training data distribution, and thus minimize the variance of the prediction. At inference time, one can then use the variance in the prediction generated by different noise samples as an epistemic uncertainty estimate, since the neural network only learned to compensate the noise on the training data distribution.

Unfortunately, while these methods are conceptually
simple and have been successful in delivering a measure of epistemic uncertainty for neural networks (even large architectures, e.g. [18, 10, 1]), they rely on MC sampling at inference time in order to determine the variance of the prediction as an uncertainty estimate. This means that computation time scales linearly with the number of samples, and therefore, can become prohibitively expensive for performance-critical or compute-limited applications, such as autonomous vehicles, robots, and mobile devices. In such cases, obtaining epistemic uncertainty as part of a model prediction can be a functional safety requirement, but the need to perform real-time inference from sensor data makes MC dropout a difficult proposition.

In this work, we side-step these issues and produce epistemic uncertainty estimates of a neural network’s prediction which are at the same time accurate and computationally inexpensive. Our contributions are specifically:

- A sampling-free approach to approximate uncertainty estimates that rely on noise injection at training time.
- Further simplification specifically for convolutional neural networks using ReLU activation functions.

Subsequently, we will first outline relevant work, secondly present our sampling-free framework and finally show experimental results. Specifically, we compare the quality of our approximation to Bayesian SegNet [18] on CamVid dataset [4], and show the ability of our approximation to detect out-of-distribution samples by training Bayesian SegNet only on a subset of classes. We further apply our approximation in a common regression task for computer vision, *i.e.*, monocular depth estimation [12].

We release all code used for this work.

2. Related Work

Recently there has been a wealth of proposals regarding epistemic uncertainty estimation for large-scale neural networks [3, 14, 23, 20, 9, 27, 31, 22, 24]. The common goal is to approximate the full posterior distribution of the parameters of a neural network.

Some works aim to directly learn the parameters of a family of distributions within back-propagation [31, 3, 14]. Another line of research approximates the posterior by training ensembles of neural networks via random changes in the training setup [23, 20] estimating the target distribution by an ensemble of sample distributions [6].

A different research avenue utilizes stochastic regularization methods to estimate epistemic uncertainty at inference time [9, 27, 31]. The most prominent example is MC dropout [9] - train a dropout regularized neural network, and then, at inference time, keep dropout turned on to estimate the epistemic uncertainty via the variance of the prediction. These approaches have gained popularity due to the simplicity with which they integrate into the current training methodology. Consequently they have been applied to a variety of tasks [10, 1, 18, 7, 17]. Despite their achievements, they still suffer from large computational overhead at inference time due to sampling, which makes them prohibitively expensive in applications that demand real-time inference from large neural networks.

[15] optimizes the application of MC dropout on videos. Therefore the authors treat images which are close in time as constant, and thus samples of the same scene. Consequently each image only has to be processed once while performing approximate MC sampling.

Sampling-free estimation of epistemic uncertainty has been only partially covered in literature. [5] incorporates sampling-free epistemic uncertainty into mixture density networks, which, following [21], suffers from non-convergence for high dimensional problems. Natural Parameter Networks [28, 16] can be considered related to our work. Instead of processing point estimates through a neural network, the authors adjust the transformations at each layer to propagate the natural parameters of a pre-defined distribution, e.g. mean and standard deviation of a Gaussian. Our approach mainly differs from [28] due to the following two points. Firstly, [28] requires all operations to preserve (approximately) the exponential family of distributions. This constrains the architecture (e.g. one cannot apply batch normalization/softmax due to inverse distributions). On the contrary, we explicitly do not alter the training procedure and the Jacobian-based propagation of uncertainty allows practically every transformation. Secondly, [28] assumes independent activations which our general approach does not. Thus we will not compare against this work, as we are interested in approaches applicable to arbitrary neural networks without altering the training process.

[30] concurrently proposed sampling-free variational inference. Our work differs by leaving the training unchanged and only propagating uncertainties at test time. Hence, it can be applied to any network with any loss function using a stochastic process at training time, compared with [30], which thus far only implements a simple regression setting. We stress that our results on the UCI regression datasets are not comparable with [30], since we only approximate sampling at test time. Thus, our performance is upper bounded by the corresponding MC method (e.g. MC dropout).

3. Method

Our goal is to estimate the epistemic uncertainty of a neural network trained with injected noise at inference time to quantify the level of trust in the predictions, in a single shot. Note, that our method (OUR) leaves the training unchanged. At its core OUR uses error propagation [26], com-
monly used in physics, where the error is equivalent to the variance. We treat the noise injected in a neural network as errors on the activation values. By training with noise injection, the network implicitly learns to minimize the accumulated errors on the training data distribution, since larger errors correspond to large loss signals. To give an intuition for this, we consider a simple computational graph (see Fig. 2). Let A and B be independent random variables and let C = f_1(A, B) and D = f_2(A, B) be, possibly non-linear, functions of A and B. Knowing the mean and the variance \(\sigma^2_{A/B} \) of A and B, we want to compute the variance of C and D. We apply error propagation, where:

\[
\sigma^2_{C/D} = \left(\frac{\partial f_{1/2}}{\partial A} \right)^2 \sigma^2_A + \left(\frac{\partial f_{1/2}}{\partial B} \right)^2 \sigma^2_B \tag{1}
\]

Note that the partial derivatives only approximate the outcome given non-linear functions \(f_{1/2} \). Let us assume now that we have another function \(E = f_3(C, D) \). We cannot apply Eq. 1 directly to determine the variance of E because C and D, unlike A and B, are not statistically independent. Thus we have to consider the full covariance matrix of C and D which we can obtain again by applying error propagation. We start with the covariance matrix \(\Sigma_{A,B} \) of A and B. This is a diagonal matrix with entries \(\sigma^2_A \) and \(\sigma^2_B \) on its main diagonal. Then we can approximate the covariance matrix over C and D by computing:

\[
\Sigma_{C,D} = J^T \Sigma_{A,B} J \tag{2}
\]

J is the Jacobian of the vector-valued function \(\tilde{f} = (f_1(A, B), f_2(A, B))^T \). The variance \(\sigma^2_E \) of E is obtained by applying Eq. 2 considering that \(f_3 \) is not a vector-valued function. Thus one can exchange the Jacobian with the gradient \(J = \nabla_{C,D} f_3(C, D) = (\frac{\partial f_3}{\partial C}, \frac{\partial f_3}{\partial D})^T f_3(C, D) \).

This minimal example already illustrates all the tools we need to approximate the variance at the output layer of a neural network given some noise layer, such as dropout or batch-norm [27] by applying error propagation. In the following, we explain the propagation of covariance for specific parts of a neural network: noise layers, affine layers, and non-linearities. Afterwards, we simplify the above equations for the common setup of a convolution and ReLU activation. This is necessary for high dimensional feature spaces due to the size of the covariance matrix (which scales quadratically with the number of activations).

Note that the propagation of the mean is unchanged. Thus, given e.g. dropout, we apply the usual inference scheme by scaling activations. We explore variance propagation using error propagation and leave adjusting the mean propagation to future work. The nature of the uncertainty estimate produced by OUR is inherited from MC dropout. Consequently, it mainly models epistemic uncertainty (though partially also aleatoric uncertainty)[19].

In the following \(X \) and \(Z \) denote random variables and \(\bar{X} \) and \(\bar{Z} \) denote random vectors. Superscripts correspond to layers, thus \(\bar{X}^i \) is the random vector representing the activations at layer i. Further \(\Sigma_{\bar{X}}/V ar[\bar{X}] \) denote the covariance matrix/variance (main diagonal of \(\Sigma_{\bar{X}} \)) of \(\bar{X} \).

3.1. Noise Layer

We derive the covariance matrix of a noise layer’s activation values. The following is independent of the implementation of the noise layer. We assume independent noise across the nodes of the noise layer which is not a necessity but common practice. In the following, superscripts correspond to layers and subscripts to nodes within a layer.

Consider a neural network with \(l \) layers and \(N \) noise layers at positions \(i \in [0, l] \), where \(l = 0 \) denotes the input. Let the input to a noise layer be a random vector \(\bar{X}^{i-1} \) with covariance matrix \(\Sigma_{\bar{X}^{i-1}} \) at layer \(i-1 \). Furthermore, let the random vector representing the noise be \(\bar{Z} \in \mathbb{R}^n \) with a diagonal covariance matrix \(\Sigma_{\bar{Z}} \), where the entries of \(\bar{Z} \) are independent and the entries of \(\bar{X}^{i-1} \) are generally dependent. There are two ways how the noise is commonly injected: addition and element-wise multiplication of \(\bar{X}^{i-1} \) and \(\bar{Z} \).

When the noise is injected by adding the random vectors, the resulting covariance at layer \(i \) is simply given by:

\[
\Sigma_{\bar{X}^i} = \Sigma_{\bar{X}^{i-1}} + \Sigma_{\bar{Z}} \tag{3}
\]

When the noise injection resembles an element-wise multiplication of the random vectors \(\bar{X}^{i-1} \) and \(\bar{Z} \) (e.g. dropout), the covariance matrix at layer \(i \) is given by [13]

\[
\Sigma^i = \Sigma_{\bar{Z} \circ \bar{X}^{i-1}}, \Sigma_{\bar{Z} \circ \bar{X}^{i-1}} = \Sigma_{\bar{Z}} \circ \Sigma_{\bar{X}^{i-1}} + E[\bar{Z}]E[\bar{Z}]^T \circ \Sigma_{\bar{X}^{i-1}} + E[\bar{X}^{i-1}]E[\bar{X}^{i-1}]^T \circ \Sigma_{\bar{Z}} \tag{4}
\]

where \(\circ \) is the Hadamard product. We refer to the supplementary material for a detailed derivation of this formula.

For the special case of the first noise layer in the network, we can either model the input noise from prior knowledge (i.e. sensor noise) or simplify it by assuming zero noise. In the latter case, the resulting covariance matrix will be diagonal given independent noise, resulting in:

\[
\Sigma_{\bar{X}^1} = diag(\sigma^2_1, ..., \sigma^2_n) \tag{5}
\]

where \(n \) is the dimensionality of the activation vector and \(\sigma^2_i \) is the variance of activation \(i \). The variance introduced by the regular dropout, which follows a Bernoulli distribution, is given by \(p(1-p)a_i^2 \), with \(p \) defining the dropout rate and \(a_i \) the mean activation of node \(i \).
3.2. Affine Layers and Non-Lineairties

After obtaining the covariance matrix of a noise layer, we propagate it to the output layer. This means applying a series of affine layers and non-linearities. Here, we detail the case of a fully-connected and convolutional layer. It is straightforward to apply Eq. 2, given that for the transformation of an affine layer the Jacobian J equals the weight matrix W. The covariance matrix is therefore,

$$\Sigma_{\bar{X}^i} = W \Sigma_{\bar{X}^{i-1}} W^T$$ \hspace{1cm} (6)

This is an exact transformation which does not depend on the underlying distribution. For the non-linearities in a neural network we approximate the transformation by a first-order Taylor expansion. The covariance transformation at a non-linearity is then given by:

$$\Sigma_{\bar{X}^i} \approx J \Sigma_{\bar{X}^{i-1}} J^T$$ \hspace{1cm} (7)

The particular Jacobians of the activation functions used in our experiments (ReLU, sigmoid and softmax) can be found in the supplementary material where we also provide an analysis of the error introduced by the first-order Taylor expansion of the softmax activation function.

3.3. Special Case: Convolutional Layers combined with ReLU Activations

Though the proposed approach does not require sampling, propagating the full covariance matrix may become prohibitively expensive for very high dimensional problems, such as images. This can be understood by considering that our method requires the full covariance matrix $\Sigma \in \mathbb{R}^{N \times N}$ at each layer with N nodes. This leads to a memory complexity of $O(N^2)$. Since the many neural network architectures contain multiple applications of convolutional layers and rectified linear units, we simplify the above formulas for the sake of computational efficiency.

For a fully connected layer, since each of its output nodes is a linear combination of all input nodes, modeling the full covariance is a necessity. However, this is not the case for a convolutional layer which strength comes from sharing weights across the entire input space and consequently applying a linear transformation only to a local neighborhood of each pixel. For the following approximation we assume a convolutional layer with kernel $K \in \mathbb{R}^{W' \times H' \times C'}$ and an input to the convolutional layer $I \in \mathbb{R}^{W \times H 	imes C}$ with $W' \ll W$ and $H' \ll H$. Given a diagonal covariance matrix prior to the convolutional layer, by applying e.g. a dropout layer, the output covariance would be a sparse matrix with a few non-zero entries off the main diagonal for local neighborhoods in the input space. This is illustrated in Fig. 3 using a convolutional architecture on CIFAR10. Furthermore, given approximately symmetrical distributed weights ReLU activation leads to a probability of roughly 0.5 with which a variance value is dropped. This results in the observed decrease in the mean variance with the number of convolutional layers using ReLU activation functions. The observation that this architectural setup does not transport significant mass to wide regions of the covariance matrix motivates us to assume a diagonal covariance matrix.

As a result the computational complexity of propagating the variance reduces to the same level of normal forward propagation because one only needs to propagate the vector of the main diagonal of the covariance matrix. Under this assumption Eq. 4 simplifies to:

$$\text{Var}[\bar{X}^i] = E[\bar{X}^{i-1}]^2 \circ \text{Var}[\bar{Z}] + E[\bar{Z}]^2 \circ \text{Var}[\bar{X}^{i-1}] + \text{Var}[\bar{X}^{i-1}] \circ \text{Var}[\bar{Z}]$$ \hspace{1cm} (8)

Here $\text{Var}[\bar{X}^i]$ denotes the variance of the random vector \bar{X}^i, thus the main diagonal of its covariance matrix. A derivation can be found in the supplementary material.

To determine variances under the transformation of weight matrices and Jacobians of non-linearities using the above simplification, we need to square the corresponding matrix element-wise and multiply it with the vector representing the main diagonal of the covariance matrix:

$$\text{Var}[\bar{X}^i] = (W^2) \text{Var}[\bar{X}^{i-1}]$$ \hspace{1cm} (9)

and respectively

$$\text{Var}[\bar{X}^i] \approx (J^2) \text{Var}[\bar{X}^{i-1}]$$ \hspace{1cm} (10)

Assuming independent activations, it is straightforward to improve upon the Jacobian approximation of ReLU by explicitly computing the variance resulting from applying ReLU to a Gaussian. Therefore we assume a Gaussian distribution of activations prior to ReLU. The respective formulas can be found in the supplementary material.

By assuming Gaussian distributed activations we follow[29]. The authors argue that the output of an affine layer with weights, unimodal distributed and centered around 0, and incoming activations, either unimodal or in a fixed interval, is approximately Gaussian. [30] draws the same conclusion while explicitly extending it to weakly correlated activations. According to [29] this assumption breaks when individual summands dominate the sum in the affine operation (e.g. unnormalized data with one dimension having much larger magnitude than the rest).

4. Experiments

In this section we provide experimental evidence that OUR can produce fast and accurate uncertainty estimates in a classification and regression setting.
We train a neural network (convolution - DropoutBlock - fully connected layer, where DropoutBlock corresponds to above sequence of dropout (D), convolution (C) and ReLU (R)) on CIFAR10. The feature maps in the DropoutBlock have the dimensionality 10x10x3 and the convolutional filters are of dimensionality 3x3x3. The upper part shows the mean variance of the activation values normalized with respect to the first dropout layer (blue). The lower part shows images (zoomed in for better visualization) of the mean covariance matrix at the corresponding layer (blue: small absolute values, yellow: large absolute value). We make two observations. Firstly, dropout strengthens the main diagonal. Secondly, variance decays in absence of additional dropout layers. Consequently, large regions of the covariance matrix stay approximately zero.

4.1. Synthetic Data

We give an intuition for the validity of OUR by applying it to a synthetic dataset, and comparing with MC sampling. We create a regression dataset consisting of a single input and a single output, where the input is uniformly distributed in the interval [0, 20] and the target is the sine of the input plus Gaussian noise of mean $\mu = 0$ and sigma $\sigma = 0.3$. We fit a fully connected neural network with three hidden layers each containing 100 hidden units to the data. We apply dropout ($p = 0.1$) prior to the last hidden layer. Since our primary goal is to approximate the epistemic uncertainty, we populate the test set with out-of-distribution (OOD) samples (i.e. samples smaller than 0 or larger than 20) alongside samples from the training data distribution [0, 20]. We approximate the variance, and thus the standard deviation, of the prediction in two ways - MC sampling (100 samples) and propagating the variance with OUR.

Fig. 4 visualizes the results for both approaches. The standard deviation of the prediction outside of the training data increases characteristically for epistemic uncertainty. For this example, our approximation is in fact exact. In the supplementary material we show empirically that the sampling-based variance estimate converges towards our analytic estimate for large number of samples.

4.2. Predictive Performance

Following prior work estimating epistemic uncertainty [14, 9, 27], we analyze the predictive performance on 9 of the 10 UCI regression datasets. As in [27], we omit the Year Prediction MSD dataset. We only compare OUR to MC dropout since we approximate the latter.

We evaluate two metrics - root mean squared error (RMSE) on the test set and test log-likelihood (TLL). We expect our RMSE to be higher than MC dropout, as dropout sampling is a better approximation than scaling activations [9]. The TLL represents the value of interest in our experiments as it quantifies the quality of the predicted distribution. It measures the probability mass on the target without making assumptions on the underlying distribution.

We follow the original setup in [14]². We split the training data 20 times randomly into training and validation set, except for the dataset Protein Structure where we use five splits, and perform a separate grid search for the hyperparameters dropout rate and τ. Following [14, 9] we use one hidden layer with 50 hidden units, except for Protein Structure where we use 100 hidden units. Dropout is applied di-

²Instead of using Bayesian optimization [25] for hyper-parameter optimization we use grid search
directly to the input and after the hidden layer and we train the network for 400 epochs. We use the full covariance matrix to propagate uncertainty, defined in Eq 4, 6, 7.

The TLL in the original experiment requires sampling from distributions of outputs. Since our method naturally just returns the parameters of a unimodal distribution over the outputs, we assume a Gaussian distribution and sample from it to compute the TLL (compare with chapter 3.3). We perform the same grid search as for MC dropout. For both, MC dropout and our proposed approximation, we sample 10000 predictions to compute the TLL.

Table 1 shows the results of this experiment. The TLL of OUR is for most regression datasets only marginally lower or even larger than the TLL obtained by MC dropout. It is only for the Naval Propulsion dataset much worse than the original sampling-based method. However, given a RMSE of 0.00 ± 0.00, we perfectly fit this dataset. In this case, extremely confident and accurate predictions may lead to a regime where the Gaussian assumption loses validity or higher accuracy of MC sampling has a stronger impact on the TLL. Given the deviation of other methods from MC dropout(see [9]) OUR performs well.

4.3. Classification Task: Bayesian SegNet

A recent large scale architecture applying MC dropout is Bayesian SegNet [18] for semantic segmentation. The original work examines several architectures differing in the placement of dropout within the network. According to the authors, for the quality of the uncertainty estimate the location of dropout within the architecture is irrelevant. We train Bayesian SegNet on CamVid dataset [4]. We primarily investigate the best performing architecture, where dropout is placed after the central four encoder/decoder blocks.

We compare the performance of used implementation3 of Bayesian SegNet to the original work in Table 2. The performance drop is not caused by OUR, since we only refer

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Boston Housing</td>
<td>3.06 ± 0.18</td>
<td>-2.55 ± 0.07</td>
<td>3.47 ± 0.06</td>
</tr>
<tr>
<td>Concrete Strength</td>
<td>5.42 ± 0.10</td>
<td>-3.11 ± 0.02</td>
<td>3.63 ± 0.06</td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td>1.60 ± 0.05</td>
<td>-1.91 ± 0.03</td>
<td>3.27 ± 0.06</td>
</tr>
<tr>
<td>Kin8nm</td>
<td>0.08 ± 0.00</td>
<td>1.10 ± 0.01</td>
<td>4.75 ± 0.06</td>
</tr>
<tr>
<td>Naval Propulsion</td>
<td>0.00 ± 0.00</td>
<td>4.36 ± 0.01</td>
<td>5.10 ± 0.06</td>
</tr>
<tr>
<td>Power Plant</td>
<td>4.04 ± 0.04</td>
<td>-2.82 ± 0.01</td>
<td>4.46 ± 0.06</td>
</tr>
<tr>
<td>Protein Structure</td>
<td>4.42 ± 0.03</td>
<td>-2.90 ± 0.01</td>
<td>4.38 ± 0.06</td>
</tr>
<tr>
<td>Wine Quality Red</td>
<td>0.63 ± 0.01</td>
<td>-0.95 ± 0.02</td>
<td>3.49 ± 0.06</td>
</tr>
<tr>
<td>Yacht Hydrodynamics</td>
<td>2.89 ± 0.25</td>
<td>-2.32 ± 0.10</td>
<td>3.42 ± 0.06</td>
</tr>
</tbody>
</table>

Table 2. table

<table>
<thead>
<tr>
<th>Method</th>
<th>G</th>
<th>C</th>
<th>I/U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Bayesian SegNet [18]</td>
<td>86.9</td>
<td>76.3</td>
<td>63.1</td>
</tr>
<tr>
<td>Our implementation</td>
<td>86.1</td>
<td>76.4</td>
<td>54.1</td>
</tr>
</tbody>
</table>

3https://github.com/Kautenja/semantic-segmentation-baselines
Figure 5. Qualitative results of our approximation. First row: Input image. Second row: Segmentation result using MC dropout [9] with 50 samples. Third row: Uncertainty estimate using MC dropout. Fourth row: Our approximation. We use differently scaled colormaps for uncertainty to emphasize their similarity.

Fig. 6. a): Comparison of pixel misclassification rate depending on quantile of standard deviation between MC dropout (MC) [9] with 50 samples (blue, MC) and our approximation (orange, OUR) (e.g. 50% implies that 50% of the pixels have a smaller standard deviation.) b): Runtime comparison between MC (blue) and OUR (orange). OUR is constant (no sampling) and MC increases linearly with the number of samples. We cache results prior to the first dropout layer to optimize performance of MC dropout.

approximated uncertainty is much lower than the sampling-based uncertainty (mean absolute difference is 93.7% of the mean variance received by MC sampling). We understand that the difference arises from the fact that the last dropout layer is far away from the output layer. Given the qualitative similarity of the predicted uncertainty, we deduce that mixture terms, which lie off the main diagonal of the covariance matrix, primarily act as a variance bias.

Fig. 6 compares the runtime of sampling-based uncertainty estimation with our approximation. We cache the results prior to the first dropout layer in the architecture and only repeatedly propagate the part of the network that contains dropout layers to optimize MC sampling. As expected we observe a linear dependence on the number of samples of the sampling-based approach where the slope depends on the location of the first dropout layer. We clearly see the computational advantage of our approximation.

To prove the coherence of the uncertainties on the data distribution, we investigate the correlation of the uncertainty with the misclassification rate on the test set. Since we are explicitly interested in epistemic uncertainty, we further prove that our uncertainty estimate increases for OOD samples.

We plot the pixel misclassification rate against the uncertainty value (see Fig. 6). Obviously we wish to observe an increasing pixel misclassification rate with larger uncertainty estimates. Since the scale of magnitude of our uncertainty estimates is different from the sampling-based approach we do not plot it directly against the uncertainty value. To be able to compare their behavior directly, we plot the misclassification rate against quantile of the uncertainty estimate. Both curves behave similarly, which implies similar calibration of the uncertainty.

Moreover, we investigate whether our approximation is able to detect OOD samples\(^4\). It is difficult to design adequate experiments to validate this characteristic. Here, we withhold certain classes during training time and present them to the network at test time. Thus, we exclude respective regions of the data distribution. We exclude pedestrians and cyclists. We selected them based on the fact that they differ from other classes in their appearance, are similar to each other and do not make up large enough areas of the images to endanger convergence. Qualitative results of this training can be found in the supplementary material. Fig 7 shows that the mean uncertainty value of each classes with and without withholding classes. The average relative increase of uncertainty is maximal for withheld classes.

\(^4\) Applying only dropout prior to last layer

4.4. Regression Task: Depth Regression

We evaluate OUR on a regression task. Without a softmax, we expect OUR to not only show similar behavior
but also to be compellingly close to the sampling-based approach. We apply OUR to monocular depth regression [12]. The final activation of this architecture is a sigmoid function. Thus it is expected that OUR will not exactly match the sampling-based result. Following the original work, we train on the KITTI dataset [11] and keep the setup unchanged with exception of inserting a dropout layer prior to the final convolution to estimate uncertainty. As uncertainty estimate we choose the variance of the regression output and we use Eq. 8, 9 and 10 to propagate variance. Note that this setup does not require modeling the full covariance matrix because sigmoid is an element-wise operation.

Figure 8. Qualitative results of our depth regression network. First row: Input image. Second row: Depth regression using MC dropout [9]. Third row: Logarithm of variance (white: low, black: high) using MC dropout with 50 samples. We use the logarithm because high uncertainties from non-overlapping stereo images on the left and right of the image are dominating the colormap. Fourth row: logarithm of variance using our approximation.

a) Misclassification rate b) Runtime comparison

Figure 9. a): Standard deviation of depth prediction depending on the absolute difference between the predicted depth and the ground truth. The standard deviation for both, MC dropout [9] with 50 samples (blue) and OUR (orange), behave similarly. b): Runtime of our method (orange) and MC dropout [9] with 50 samples (blue) depending on the number of samples. We visualize the mean relative difference between our variance approximation and the variance computation based on MC dropout (red).

5. Conclusion

We have shown that the framework of error propagation can be used to approximate the sampling procedure of epistemic uncertainty estimates that rely on noise injection at training time. We applied the proposed approximation to two large scale computer vision tasks illustrating the computational efficiency and the coherence of the resulting uncertainty maps. The approximation is numerically better for noise layer located closer to the output layer. Having a methodology to analytically approximate the uncertainty estimate based on stochastic regularization, in future research we aim to represent the noise injection by a loss function which will enable us to learn the noise parameter (e.g. dropout rate). This has the potential to provide an estimate for aleatoric and epistemic uncertainty.

6. Acknowledgements

We thank Nutan Chen and Seong Tae Kim for the valuable discussions and constructive feedback. This work was supported by Autonomous Intelligent Driving GmbH.
References

