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Figure 1: 3DPeople Dataset. We present a synthetic dataset with 2 Million frames of 80 subjects (40 female/40 male) performing 70

different actions. The dataset contains a large range of distinct body shapes, skin tones and clothing outfits, and provides 640 × 480

RGB images under different viewpoints, 3D geometry of the body and clothing, 3D skeletons, depth maps, optical flow and semantic

information (body parts and cloth labels). In this paper we use the 3DPeople dataset to model the geometry of dressed humans.

Abstract

Recent advances in 3D human shape estimation build

upon parametric representations that model very well the

shape of the naked body, but are not appropriate to rep-

resent the clothing geometry. In this paper, we present an

approach to model dressed humans and predict their geom-

etry from single images. We contribute in three fundamen-

tal aspects of the problem, namely, a new dataset, a novel

shape parameterization algorithm and an end-to-end deep

generative network for predicting shape.

First, we present 3DPeople, a large-scale synthetic

dataset with 2 Million photo-realistic images of 80 subjects

performing 70 activities and wearing diverse outfits. Be-

sides providing textured 3D meshes for clothes and body

we annotated the dataset with segmentation masks, skele-

tons, depth, normal maps and optical flow. All this together

makes 3DPeople suitable for a plethora of tasks.

We then represent the 3D shapes using 2D geometry im-

ages. To build these images we propose a novel spheri-

cal area-preserving parameterization algorithm based on

the optimal mass transportation method. We show this ap-

proach to improve existing spherical maps which tend to

shrink the elongated parts of the full body models such as

the arms and legs, making the geometry images incomplete.

Finally, we design a multi-resolution deep generative

network that, given an input image of a dressed human,

predicts his/her geometry image (and thus the clothed body

shape) in an end-to-end manner. We obtain very promising

results in jointly capturing body pose and clothing shape,

both for synthetic validation and on the wild images.

1. Introduction

With the advent of deep learning, the problem of pre-

dicting the geometry of the human body from single im-

ages has experienced a tremendous boost. The combi-

nation of Convolutional Neural Networks with large Mo-

2242



Cap datasets [44, 21], resulted in a substantial number of

works that robustly predict the 3D position of the body

joints [29, 30, 32, 36, 40, 49, 52, 56, 64].

In order to estimate the full body shape a standard prac-

tice adopted in [12, 14, 19, 24, 54, 66] is to regress the pa-

rameters of low rank parametric models [10, 28]. Never-

theless, while these parametric models describe very accu-

rately the geometry of the naked body, they are not appro-

priate to capture the shape of clothed humans.

Current trends focus on proposing alternative represen-

tations to the low rank models. Varol et al. [55] advocate

for a direct inference of volumetric body shape, although

still without accounting for the clothing geometry. Very re-

cently, [35] uses 2D silhouettes and the visual hull algo-

rithm to recover shape and texture of clothed human bod-

ies. Despite very promising results, this approach still re-

quires frontal-view input images of the person with no back-

ground, and under relatively simple body poses.

In this paper, we introduce a general pipeline to esti-

mate the geometry of dressed humans which is able cope

with a wide spectrum of clothing outfits and textures, com-

plex body poses and shapes, and changing backgrounds and

camera viewpoints. For this purpose, we contribute in three

key areas of the problem, namely, the data collection, the

shape representation and the image-to-shape inference.

Concretely, we first present 3DPeople a new large-scale

dataset with 2 Million photorealistic synthetic images of

people under varying clothes and apparel. We split the

dataset 40 male/40 female with different body shapes and

skin tones, performing 70 distinct actions (see Fig. 1). The

dataset contains 3D geometry of both the naked and dressed

body, and additional annotations including skeletons, depth

and normal maps, optical flow and semantic segmentation

masks. This additional data is indeed very similar to SUR-

REAL [56] which was built for similar purposes. The key

difference between SURREAL and 3DPeople, is that in

SURREAL the clothing is directly mapped as a texture on

top of the naked body, while in 3DPeople the clothing does

have its own geometry.

As essential as gathering a rich dataset, is the question of

what is the most appropriate geometry representation for a

deep network. In this paper we consider the “geometry im-

age” proposed originally in [18] and recently used to encode

rigid objects in [46, 47]. The construction of the geome-

try image involves two steps, first a mapping of a genus-0

surface onto a spherical domain, and then to a 2D grid re-

sembling an image. Our contribution here is on the spher-

ical mapping. We found that existing algorithms [13, 46]

were not accurate, especially for the elongated parts of the

body. To address this issue we devise a novel spherical

area-preserving parameterization algorithm that combines

and extends the FLASH [13] and the optimal mass trans-

portation methods [33].

Our final contribution consists of designing a generative

network to map input RGB images of a dressed human into

his/her corresponding geometry image. Since we consider

128×128×3 geometry images, learning such a mapping is

highly complex. We alleviate the learning process through a

coarse-to-fine strategy, combined with a series of geometry-

aware losses. The full network is trained in an end-to-end

manner, and the results are very promising in variety of in-

put data, including both synthetic and real images.

2. Related work

3D Human shape estimation. While the problem of lo-

calizing the 3D position of the joints from a single image

has been extensively studied [29, 30, 32, 36, 40, 45, 49,

52, 56, 64, 67], the estimation of the 3D body shape has re-

ceived relatively little attention. This is presumably due to

the existence of well-established datasets [44, 21], uniquely

annotated with skeleton joints.

The inherent ambiguity for estimating human shape from

a single view is typically addressed using shape embeddings

learned from body scan repositories like SCAPE [10] and

SMPL [28]. The body geometry is described by a reduced

number of pose and shape parameters, which are optimized

to match image characteristics [11, 12, 27]. Dibra et al. [14]

are the first in using a CNN fed with silhouette images to

estimate shape parameters. In [50, 54] SMPL body param-

eters are predicted by incorporating differential renders into

the deep network to directly estimate and minimize the error

of image features. On top of this, [24] introduces an adver-

sarial loss that penalizes non-realistic body shapes. Very

recently [6, 8] extended the SMPL parametric representa-

tion to model cloth and [7] used shape from shading and

better texture merging to predict higher details.

Non-parametric representations for 3D objects. What

is the most appropriate 3D object representation to train a

deep network remains an open question, especially for non-

rigid bodies. Standard non-parametric representations for

rigid objects include voxels [16, 63], octrees [51, 59, 60]

and point-clouds [53]. [46, 47] uses 2D embeddings com-

puted with geometry images [18] to represent rigid objects.

Interestingly, very promising results for the reconstruction

of non-rigid hands were also reported. DeformNet [38] pro-

poses the first deep model to reconstruct the 3D shape non-

rigid surfaces from a single image. Bodynet [55] explores

a network that predicts voxelized human body shape. Very

recently, [35] introduces a pipeline that given a single image

of a person in frontal position predicts the body silhouette

as seen from different views, and then uses a visual hull

algorithm to estimate 3D shape.

Generative Adversarial Networks. Originally introduced

by [17], GANs have been used to model human body distri-

butions and generate novel images of a person under arbi-
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Figure 2. Annotations of the 3D People Dataset. For each of the 80 subjects of the dataset, we generate 280 video sequences (70 actions

seen from 4 camera views). The bottom of the figure shows 5 sample frames of the Running sequence. Every RGB frame is annotated with

the information reported in the top of the figure. 3DPeople is the first large-scale dataset with geometric meshes of body and clothes.

trary poses [39]. Kanazawa et al. [24] explicitly learned the

distribution on SMPL parameters. DVP [25], paGAN [34]

and GANimation [37] presented models for continuous face

animation and manipulation. GANs have also been applied

to edit [20, 48, 58] and generate [15] talking faces.

Datasets for body shape analysis. Datasets are fundamen-

tal in the deep-learning era. While obtaining annotations is

quite straightforward for 2D poses [43, 9, 23], it requires

using sophisticated MoCap systems for the 3D case. Ad-

ditionally, the datasets acquired this way [44, 21, 21] are

mostly indoors. Even more complex is the task of obtain-

ing 3D body shape, which requires expensive setups with

muti-cameras or 3D scanners. Marcard et al. [57] proposed

solution based on IMUs and a moving camera but still does

not provide perfect ground-truth annotation. To overcome

this situation, datasets with synthetic but photo-realistic im-

ages have emerged as a tool to generate massive amounts of

training data. SURREAL [56] is the largest and more com-

plete dataset so far, with more than 6M frames generated by

projecting synthetic textures of clothes onto random SMPL

body shapes. The dataset is further annotated with body

masks, optical flow and depth. However, since clothes are

projected onto the naked SMPL shapes just as textures, they

cannot be explicitly modeled. To fill this gap, we present the

3DPeople dataset of 3D dressed humans in motion.

3. 3DPeople dataset

We next introduce 3DPeople, the first dataset of dressed

humans with specific geometry representation for the

clothes. The dataset contains 2 Million photorealistic 640×

480 images split into 40 male/40 female performing 70

actions. For every subject-action sequence we randomly

change the texture of the clothes, the lighting direction and

the background, and capture it from 4 camera views. Each

frame is annotated with (see Fig. 2): 3D textured mesh of

the naked and dressed body; 3D skeleton; normals; body

part and cloth segmentation masks; depth map; optical flow;

and camera parameters. In the following we describe the

generation process:

Body models: We have generated fully textured triangular

meshes for 80 human characters using Adobe Fuse [1] and

MakeHuman [2]. The distribution of the subjects physical

characteristics cover a broad spectrum of body shapes, skin

tones and hair geometry (see Fig. 1).

Clothing models: Each subject is dressed with a different

outfit including a variety of garments, combining tight and

loose clothes. Additional apparel like sunglasses, hats and

caps are also included. The final rigged meshes of the body

and clothes contain approximately 20K vertices.

Mocap sequences: We gather 70 realistic motion se-

quences from Mixamo [3]. These include human move-

ments with different complexity, from drinking and typ-

ing actions that produce small body motions to actions like

breakdance or backflip that involve very complex patterns.

The mean length of the sequences is of 110 frames. While

these are relatively short sequences, they have a large ex-

pressivity, which we believe make 3DPeople also appropri-

ate for exploring action recognition tasks.

Textures, camera, lights and background: We then use

Blender [4] to apply the 70 MoCap animation sequences to
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(a) (b) (c) (d) (e) (f)

Figure 3. Geometry image representation of the reference mesh. (a) Reference mesh in a tpose configuration color coded using the

xyz position. (b) Spherical parameterization; (c) Octahedral parameterization; (d) Unwarping the octahedron to a planar configuration; (e)

Geometry image, resulting from the projection of the octahedron onto a plane; (f) mesh reconstructed from the geometry image. Colored

edges in the octahedron and in the geometry image represent the symmetry that is later exploited by the mesh regressor Φ.

Figure 4. Comparison of spherical mapping methods. Shape re-

constructed from a geometry image obtained with three different

algorithms. Left: FLASH [13]; Center: [46]; Right: SAPP algo-

rithm we propose. Note that SAPP is the only method that can

effectively recover feet and hands.

each character. Every sequence is rendered from 4 camera

views, yielding a total of 22,400 clips. We use a projective

camera with a 700 mm focal length and 640×480 pixel res-

olution. The 4 viewpoints correspond approximately to or-

thogonal directions aligned with the ground. The distance to

the subject changes for every sequence to ensure a full view

of the body in all frames. The textures of the clothes are ran-

domly changed for every sequence (see again Fig. 1). The

illumination is composed of an ambient lighting plus a light

source at infinite, which direction is changed per sequence.

As in [56] we render the person on top of a static back-

ground image, randomly taken from the LSUN dataset [65].

Semantic labels: For every rendered image, we provide

segmentation labels of the clothes (8 classes) and body

(14 parts). Observe in Fig. 2-top-right that the former are

aligned with the dressed human, while the body parts are

aligned with the naked body.

4. Problem formulation

Given a single image I ∈ R
H×W×3 of a person wearing

an arbitrary outfit, we aim at designing a model capable of

directly estimating the 3D shape of the clothed body. We

represent the body shape through the mesh associated to a

geometry image with N2 vertices X ∈ R
N×N×3 where

xi = (xi, yi, zi) are the 3D coordinates of the i-th vertex,

expressed in the camera coordinates system and centered

on the root joint xr. This representation is a key ingredi-

ent of our design, as it maps the 3D mesh to a regular 2D

grid structure that preserves the neighborhood relations, ful-

filling thus the locality assumption required in CNN archi-

tectures. Furthermore, the geometry image representation

allows uniformly reducing/increasing the mesh resolution

by simply uniformly downsampling/upsampling. This will

play an important role in our strategy of designing a coarse-

to-fine shape estimation approach.

We next describe the two main steps of our pipeline: 1)

the process of constructing the geometry images, and 2) the

deep generative model we propose for predicting 3D shape.

5. Geometry image for dressed humans

The deep network we describe later will be trained using

pairs {I,X} of images and their corresponding geometry

image. For creating the geometry images we consider two

different cases, one for a reference mesh in a tpose configu-

ration, and another for any other mesh of the dataset.

5.1. Geometry image for a reference mesh

One of the subjects of our dataset in a tpose configuration

is chosen as a reference mesh. The process for mapping this

mesh into a planar regular grid is illustrated in Fig. 3. It

involves the following steps:

Repairing the mesh. Let Rtpose ∈ R
NR×3 be the refer-

ence mesh with NR vertices in a tpose configuration (Fig. 3-

a). We assume this mesh to be a manifold mesh and to be

genus-0. Most of the meshes in our dataset, however, do

not fulfill these conditions. In order to fix the mesh we

follow the heuristic described in [46] which consists of a

voxelization, a selection of the largest connected region of

the α-shape, and subsequent hole filling using a medial axis

approach. We denote by R̃tpose the repaired mesh.

Spherical parameterization. Given the repaired genus-0

mesh R̃tpose, we next compute the spherical parameteriza-

tion S : R̃tpose → S that maps every vertex of R̃tpose onto

the unit sphere S (Fig. 3-b). Details of the algorithm we use

are explained below.
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(a) (b) (c) (d) (e) (f)

Figure 5. Geometry image estimation for an arbitrary mesh. (a) Input mesh Q in an arbitrary pose color coded using the xyz position

of the vertices; (b) Same mesh in a tpose configuration (Qtpose). The color of the mesh is mapped from Q; (c) Reference tpose Rtpose. The

colors again correspond from those transferred from Q through the non-rigid map between Qtpose and Rtpose; (d) Spherical mapping of Q;

(e) Geometry image of Q; (f) Mesh reconstructed from the geometry image. Note that while being computed through a non-rigid mapping

between the two reference poses, the recovered shape is a very good approximation of the input mesh Q.

Unfolding the sphere. The sphere S is mapped onto an oc-

tahedron and then cut along edges to output a flat geometry

image X. Let us formally denote by U : S → X, and by

GR = U ◦ S : R̃tpose → X the mapping from the refer-

ence mesh to the geometry image. The unfolding process

is shown in Fig. 3-(c,d,e). Color lines in the geometry im-

age correspond to the same edge in the octahedron, and are

split after the unfolding operation. We will later enforce this

symmetry constraint when predicting geometry images.

5.2. Spherical areaPreserving parameterization

Although there exist several spherical parameterization

schemes (e.g. [13, 46]) we found that they tend to shrink the

elongated parts of the full body models such as the arms and

legs, making the geometry images incomplete (see Fig. 4).

In this work, we develop a spherical area-preserving param-

eterization algorithm for genus-0 full body models by com-

bining and extending the FLASH method [13] and the opti-

mal mass transportation method [33]. Our algorithm is par-

ticularly advantageous for handling models with elongated

parts. The key idea is to begin with an initial parameteriza-

tion onto a planar triangular domain with a suitable rescal-

ing correcting the size of it. The area distortion of the ini-

tial parameterization is then reduced using quasi-conformal

composition. Finally, the spherical area-preserving param-

eterization is produced using optimal mass transportation

followed by the inverse stereographic projection. We pro-

vide further details in the supplemental material.

5.3. Geometry image for arbitrary meshes

The approach for creating the geometry image described

in the previous subsection is quite computationally demand-

ing (up to 15 minutes for complex meshes). To compute the

geometry image for several thousand training meshes we

have devised an alternative approach. Let Q ∈ R
NQ×3 be

the mesh of any subject of the dataset under an arbitrary

pose (Fig. 5-a), and let Qtpose ∈ R
NQ×3 be its tpose config-

uration (Fig. 5-b). We assume there is a 1-to-1 vertex corre-

spondence between both meshes, that is, ∃ I : Q → Qtpose

where I is a known bijective function1. We then compute

dense correspondences between Qtpose and the reference

tpose R̃tpose, using a nonrigid icp algorithm [5]. We denote

this mapping as N : Qtpose → R̃tpose (see Fig. 5-c). We can

then finally compute the geometry image for the input mesh

Q by concatenating mappings:

GQ = GR ◦ N ◦ I : Q → X (1)

where GR is the mapping from the reference mesh to the

geometry image domain estimated in Sec. 5.1. It is worth

pointing that the nonrigid icp between the pairs of tposes is

also highly computationally demanding, but it only needs

to be computed once per every subject of the dataset. Once

this is done, the geometry image for a new input mesh Q

can be created in a few seconds.

An important consequence of this procedure is that all

geometry images of the dataset will be semantically aligned,

that is, every uv entry in X will correspond to (approxi-

mately) the same semantic part of the model. This will sig-

nificantly alleviate the learning task of the deep network.

6. GimNet

We next introduce GimNet, our deep generative network

to estimate geometry images (and thus 3D shape) of dressed

humans from a single image. An overview of the model is

shown in Fig. 6. Given the input image, we first extract

the 2D joint locations p represented as heatmaps [62, 38],

which are then fed into a mesh regressor Φ(I,p) trained

to reconstruct the shape X̂ of the person in I employ-

ing a geometry image based representation. Due to the

high complexity of the mapping (both I and X̂ are of size

128 × 128 × 3), the regressor operates in a coarse-to-fine

manner, progressively reconstructing meshes at higher res-

olution. To further enforce the reconstruction to lie on

the manifold of anthropomorphic shapes, an adversarial

scheme with two discriminators D is applied.

1This is guaranteed in our dataset, with all meshes of the same subject

having the same number of vertices.
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Figure 7. Mean Error Distance on the test set. We plot the results for the 15 worst and 15 best actions. Besides the results of GimNet,

we report the results obtained by the ground truth GIM (recall that it is an approximation of the actual ground truth mesh). We also display

the results obtained by the recent parametric approach of [24]. The results of this method, however are merely indicative, as we did not

retrain the network with our dataset.

Feature matching loss. To improve training stabilization

we penalize higher level features on the discriminators [61].

Similar to a perception loss, the estimated geometry image

is compared with the ground truth at multiple feature lev-

els of the discriminators. Being Dk
l the lth layer of the kth

discriminator, LF is defined as:

E
X∼Pr,X̂∼Pg

K
∑

k=1

L
∑

l=1

1

Nk
l

∥

∥

∥
Dk

l (XS)−Dk
l (X̂S)

∥

∥

∥

1

, (4)

where Nk
l is a weight regularizer denoting the number of

elements in the lth layer of the kth discriminator.

Total Loss. Finally, we to solve the min-max problem:

Φ⋆ = argmin
Φ

max
D

Ladv + λRLR + λPLP + λFLF (5)

where λR, λP and λF are the hyper-parameters that control

the relative importance of every loss term.

6.3. Implementation details

For the mesh regressor Φ we build upon the U-Net archi-

tecture [41] consisting on an encoder-decoder structure with

skip connections between features at the same resolution

extended to estimate geometry images at multiple scales.

Detailed explanation of its architecture can be found in the

supplemental material.

Both discriminator networks operate at different mesh

resolutions [61] but have the same PatchGan [22] archi-

tecture mapping from the geometry image X to a matrix

Y ∈ R
H/8×W/8, where Y[i, j] represents the probability

of the patch ij to be close to a real geometry image distri-

bution. The global discriminator evaluates the final mesh

resolution at scale S and the local discriminator the down-

sampled mesh at scale S − 1. Detailed explanation of their

architecture can be found in the supplemental material.

The model is trained with 170,000 synthetic images of

cropped clothed people resized to 128× 128 pixels and ge-

ometry images of 128× 128× 3 (meshes with 16,384 ver-

tices) during 60 epochs and S = 4. As for the optimizer,

we use Adam [26] with learning rate of 2e − 4, beta1 0.5,

beta2 0.999 and batch size 110. Every 40 epochs we decay

the learning rate by a factor of 0.5. The weight coefficients

for the loss terms are set to λR = 20, λP = 0.1, λF = 10
and λdgp = 0.01.

7. Experimental evaluation

We next present quantitative and qualitative results on

synthetic images of our dataset and on images in the wild.

Synthetic Results. We evaluate our approach on 25,000 test

images randomly chosen for 8 subjects (4 male/ 4 female)

of the test split. For each test sample we feed GimNet with

the RGB image and the ground truth 2D pose, corrupted by

Gaussian noise with 2 pixel std. For a given test sample, let

Ŷ be the N2 × 3 estimated mesh, resulting from a direct

reshaping of its estimated geometry image X̂. Also, let Y

be the ground truth mesh, which does not need to have nei-

ther the same number of vertices as Ỹ, nor necessarily the

same topology. Since there is no direct 1-to-1 mapping be-

tween the vertices of the two meshes we propose using the

following metric:

dist(Ŷ,Y) =
1

2
(KNN(Ŷ → Y) + KNN(Y → Ŷ)) (6)

where KNN(Ŷ → Y) represents the average Euclidean

distance for all vertices of Ŷ to their nearest neighbor in Y.

Note that KNN(·, ·) is not a true distance measure because it

is not symmetric. This is why we compute it bidirectionally.

The quantitative results are summarized in Fig. 7. We re-

port the average error (in mm) of GimNet for 30 actions (the

15 with the highest and lowest error). Note that the error of

GimNet is bounded between 15 and 35mm. Recall, how-

ever, that we do not consider outlier 2D detections in our

experiments, but just 2D noise. We also evaluate the error of
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Figure 8. Qualitative results. For the synthetic images we plot our estimated results and the shape reconstructed directly from the ground

truth geometry image. In all cases we show two different views. The color of the meshes encodes the xyz vertex position.

the ground truth geometry image, as it is an approximation

of the actual ground truth mesh. This error is below 5mm,

indicating that the geometry image representation does in-

deed capture very accurately the true shape. Finally, we also

provide the error of the recent parametric approach of [24],

that fits SMPL parameters to the input images. Neverthe-

less, these results are just indicative, and cannot be directly

compared with our approach, as we did not retrain [24]. We

add them here just to demonstrate the challenge posed by

the new 3DPeople dataset. Indeed, the distance error in [24]

was computed after performing a rigid-icp of the estimated

mesh with the ground truth mesh (there was no need of this

for GimNet).

Qualitative Results. We finally show in Fig. 8 qualitative

results on synthetic images from 3DPeople and real fashion

images downloaded from Internet. Remarkably, note how

our approach is able to reconstruct long dresses (top row

images), known to be a major challenge [35]. Note also

that some of the reconstructed meshes have spikes. This

is one of the limitations of the non-parametric models, that

the reconstructions tend to be less smooth than when using

parametric fittings. However, non-parametric models have

also the advantage that, if properly trained, can span a much

larger configuration space.

8. Conclusions

In this paper we have made three contributions to the

problem of reconstructing the shape of dressed humans: 1)

we have presented the first large-scale dataset of 3D humans

in action in which cloth geometry is explicitly modelled;

2) we have proposed a new algorithm to perform spherical

parameterizations of elongated body parts, to later model

rigged meshes of human bodies as geometry images; and 3)

we have introduced an end-to-end network to estimate hu-

man body and clothing shape from single images, without

relying on parametric models. While the results are very

promising, there are still several avenues to explore. For in-

stance, extending the problem to video, exploring new reg-

ularization schemes on the geometry images, or combining

segmentation and 3D reconstruction are all open problems

that can benefit from the proposed 3DPeople dataset.
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