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Abstract

One of the hallmarks of human intelligence is the ability

to compose learned knowledge into novel concepts which

can be recognized without a single training example. In

contrast, current state-of-the-art methods require hundreds

of training examples for each possible category to build re-

liable and accurate classifiers. To alleviate this striking

difference in efficiency, we propose a task-driven modular

architecture for compositional reasoning and sample effi-

cient learning. Our architecture consists of a set of neu-

ral network modules, which are small fully connected lay-

ers operating in semantic concept space. These modules

are configured through a gating function conditioned on the

task to produce features representing the compatibility be-

tween the input image and the concept under consideration.

This enables us to express tasks as a combination of sub-

tasks and to generalize to unseen categories by reweighting

a set of small modules. Furthermore, the network can be

trained efficiently as it is fully differentiable and its mod-

ules operate on small sub-spaces. We focus our study on the

problem of compositional zero-shot classification of object-

attribute categories. We show in our experiments that cur-

rent evaluation metrics are flawed as they only consider un-

seen object-attribute pairs. When extending the evaluation

to the generalized setting which accounts also for pairs seen

during training, we discover that naı̈ve baseline methods

perform similarly or better than current approaches. How-

ever, our modular network is able to outperform all existing

approaches on two widely-used benchmark datasets.

1. Introduction

How can machines reliably recognize the vast number of

possible visual concepts? Even simple concepts like “enve-

lope” could, for instance, be divided into a seemingly infi-

nite number of sub-categories, e.g., by size (large, small),

color (white, yellow), type (plain, windowed), or condition

(new, wrinkled, stamped). Moreover, it has frequently been

∗Work done as an intern at Facebook AI Research. Proposed

dataset splits and code available here: http://www.cs.cmu.edu/

˜spurushw/projects/compositional.html
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Figure 1. We investigate how to build a classifier on-the-fly, for

a new concept (“wet dog”) given knowledge of related concepts

(“cute dog”, “cute cat”, and “wet cat”). Our approach consists

of a modular network operating in a semantic feature space. By

rewiring its primitive modules, the network can recognize new

structured concepts.

observed that visual concepts follow a long-tailed distribu-

tion [28, 34, 31]. Hence, most classes are rare, and yet hu-

mans are able to recognize them without having observed

even a single instance. Although a surprising event, most

humans wouldn’t have trouble to recognize a “tiny striped

purple elephant sitting on a tree branch”. For machines,

however, this would constitute a daunting challenge. It

would be impractical, if not impossible, to gather sufficient

training examples for the long tail of all possible categories,

even more so as current learning algorithms are data-hungry

and rely on large amounts of labeled examples. How can we

build algorithms to cope with this challenge?

One possibility is to exploit the compositional nature of

the prediction task. While a machine may not have observed

any images of “wrinkled envelope”, it may have observed

many more images of “white envelope”, as well as “white

paper” and “wrinkled paper”. If the machine is capable of

compositional reasoning, it may be able to transfer the con-

cept of being “wrinkled” from “paper” to “envelope”, and

generalize without requiring additional examples of actual

“wrinkled envelope”.

One key challenge in compositional reasoning is contex-

tuality. The meaning of an attribute, and even the mean-

ing of an object, may be dependent on each other. For

instance, how “wrinkled” modifies the appearance of “en-
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velope” is very different from how it changes the appear-

ance of “dog”. In fact, contextuality goes beyond seman-

tic categories. The way “wrinkled” modifies two images

of “dog” strongly depends on the actual input dog image.

In other words, the model should capture intricate inter-

actions between the image, the object and the attribute in

order to perform correct inference. While most recent ap-

proaches [21, 22] capture the contextual relationship be-

tween object and attribute, they still rely on the original fea-

ture space being rich enough, as inference entails matching

image features to an embedding vector of an object-attribute

pair.

In this paper, we focus on the task of compositional

learning, where the model has to predict the object present

in the input image (e.g., “envelope”), as well as its corre-

sponding attribute (e.g., “wrinkled”). We believe there are

two key ingredients required: (a) learning high-level sub-

tasks which may be useful to transfer concepts, and (b) cap-

turing rich interactions between the image, the object and

the attribute. In order to capture both these properties, we

propose Task-driven Modular Networks (TMN).

First, we tackle the problem of transfer and re-usability

by employing modular networks in the high-level semantic

space of CNNs [15, 8]. The intuition is that by modularizing

in the concept space, modules can now represent common

high-level sub-tasks over which “reasoning” can take place:

in order to recognize a new object-attribute pair, the network

simply re-organizes its computation on-the-fly by appropri-

ately reweighing modules for the new task. Apart from re-

usability and transfer, modularity has additional benefits:

(a) sample efficiency: transfer reduces to figuring out how

to gate modules, as opposed to how to learn their param-

eters; (b) computational efficiency: since modules operate

in smaller dimensional sub-spaces, predictions can be per-

formed using less compute; and (c) interpretability: as mod-

ules specialize and similar computational paths are used for

visually similar pairs, users can inspect how the network op-

erates to understand which object-attribute pairs are deemed

similar, which attributes drastically change appearance, etc.

(§4.2).

Second, the model extracts features useful to assess the

joint-compatibility between the input image and the object-

attribute pair. While prior work [21, 22] mapped images in

the embedding space of objects and attributes by extracting

features only based on images, our model instead extracts

features that depend on all the members of the input triplet.

The input object-attribute pair is used to rewire the modular

network to ultimately produce features invariant to the input

pair. While in prior work the object and attribute can be

extracted from the output features, in our model features

are exclusively optimized to discriminate the validity of the

input triplet.

Our experiments in §4.1 demonstrate that our approach

outperforms all previous approaches under the “general-

ized” evaluation protocol on two widely used evaluation

benchmarks. The use of the generalized evaluation pro-

tocol, which tests performance on both unseen and seen

pairs, gives a more precise understanding of the general-

ization ability of a model [5]. In fact, we found that under

this evaluation protocol baseline approaches often outper-

form the current state of the art. Furthermore, our quali-

tative analysis shows that our fully differentiable modular

network learns to cluster together similar concepts and has

intuitive interpretation.

2. Related Work

Compositional zero-shot learning (CZSL) is a special

case of zero-shot learning (ZSL) [23, 14, 13, 35]. In ZSL

the learner observes input images and corresponding class

descriptors. Classes seen at test time never overlap with

classes seen at training time, and the learner has to per-

form a prediction of an unseen class by leveraging its class

descriptor without any training image (zero-shot). In their

seminal work, Chao et al. [5] showed that ZSL’s evaluation

methodology is severely limited because it only accounts

for performance on unseen classes, and they propose i) to

test on both seen and unseen classes (so called “generar-

alized” setting) and ii) to calibrate models to strike the best

trade-off between achieving a good performance on the seen

set and on the unseen set. In our work, we adopt the same

methodology and calibration technique, although alterna-

tive calibration techniques have also been explored in liter-

ature [4, 17]. The difference between our generalized CZSL

setting and generalized ZSL is that we predict not only an

object id, but also its attribute. The prediction of such pair

makes the task compositional as given N objects and M
attributes, there are potentially N ∗ M possible pairs the

learner could predict.

Most prior approaches to CZSL are based on the idea

of embedding the object-attribute pair in image feature

space [21, 22]. In our work instead, we propose to learn

the joint compatibility [16] between the input image and

the pair by learning a representation that depends on the in-

put triplet, as opposed to just the image. This is potentially

more expressive as it can capture intricate dependencies be-

tween image and object-attribute pair.

A major novelty compared to past work is also the use

of modular networks. Modular networks can be inter-

preted as a generalization of hierarchical mixture of ex-

perts [10, 11, 6], where each module holds a distribution

over all the modules at the layer below and where the gat-

ings do not depend on the input image but on a task descrip-

tor. These networks have been used in the past to speed up

computation at test time [1] and to improve generalization

for multi-task learning [19, 26], reinforcement learning [7],

continual learning [30], visual question answering [2, 25],
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etc. but never for CZSL.

The closest approach to ours is the concurrent work by

Wang et al. [33], where the authors factorize convolutional

layers and perform a component-wise gating which depends

on the input object-attribute pair, therefore also using a task

driven architecture. This is akin to having as many modules

as feature dimensions, which is a form of degenerate mod-

ularity since individual feature dimensions are unlikely to

model high-level sub-tasks.

Finally, our gating network which modulates the compu-

tational blocks in the recognition network, can also be in-

terpreted as a particular instance of meta-learning [29, 32],

whereby the gating network predicts on-the-fly a subset of

task-specific parameters (the gates) in the recognition net-

work.

3. Approach

Consider the visual classification setting where each im-

age I is associated with a visual concept c. The manifes-

tation of the concepts c is highly structured in the visual

world. In this work, we consider the setting where images

are the composition of an object (e.g., “envelope”) denoted

by co, and an attribute (e.g., “wrinkled”) denoted by ca;

therefore, c = (co, ca). In a fully-supervised setting, clas-

sifiers are trained for each concept c using a set of human-

labelled images and then tested on novel images belonging

to the same set of concepts. Instead, in this work we are

interested in leveraging the compositional nature of the la-

bels to extrapolate classifiers to novel concepts at test time,

even without access to any training examples on these new

classes (zero-shot learning).

More formally, we assume access to a training set

Dtrain = {(I(k), c(k)) | k = 1, 2, ..., Ntrain} consisting of

image I labelled with a concept c ∈ Ctrain, with Ctrain ⊂
Co × Ca = {(co, ca) | co ∈ Co, ca ∈ Ca} where Co is the set

of objects and Ca is the set of attributes.

In order to evaluate the ability of our models to per-

form zero-shot learning, we use a similar validation (Dval)

and test (Dtest) sets consisting of images labelled with con-

cepts from Cval and Ctest, respectively. In contrast to a

fully-supervised setting, validation and test concepts do not

fully overlap with training concepts, i.e. Cval\Ctrain 6= ∅,

Ctest\Ctrain 6= ∅ and Ccal ∩Ctrain 6= ∅, Ctest ∩Ctrain 6= ∅. There-

fore, models trained to classify training concepts must also

generalize to “unseen” concepts to successfully classify im-

ages in the validation and test sets. We call this learning

setting, Generalized Zero-Shot Compositional learning, as

both seen and unseen concepts appear in the validation and

test sets. Note that this setting is unlike standard practice in

prior literature where a common validation set is absent and

only unseen pairs are considered in the test set [21, 22, 33].

In order to address this compositional zero-shot learning

task, we propose a Task-Driven Modular Network (TMN)

which we describe next.

3.1. Task­Driven Modular Networks (TMN)

The basis of our architecture design is a scoring

model [16] of the joint compatibility between image, ob-

ject and attribute. This is motivated by the fact that each

member of the triplet exhibits intricate dependencies with

the others, i.e. how an attribute modifies appearance de-

pends on the object category as well as the specific input

image. Therefore, we consider a function that takes as in-

put the whole triplet and extracts representations of it in or-

der to assign a compatibility score. The goal of training is

to make the model assign high score to correct triplets (us-

ing the provided labeled data), and low score to incorrect

triplets. The second driving principle is modularity. Since

the task is compositional, we add a corresponding inductive

bias by using a modular network. During training the net-

work learns to decompose each recognition task into sub-

tasks that can then be combined in novel ways at test time,

consequently yielding generalizeable classifiers.

The overall model is outlined in Fig. 2. It consists of

two components: a gating model G and a feature extrac-

tion model F . The latter F consists of a set of neural

network modules, which are small, fully-connected layers

but could be any other parametric differentiable function as

well. These modules are used on top of a standard ResNet

pre-trained trunk. Intuitively, the ResNet trunk is used to

map the input image I to a semantic concept space where

higher level “reasoning” can be performed. We denote the

mapped I in such semantic space with x. The input to each

module is a weighted-sum of the outputs of all the modules

at the layer below, with weights determined by the gating

model G, which effectively controls how modules are com-

posed.

Let L be the number of layers in the modular part of F ,

M (i) be the number of modules in the i-th layer, m
(i)
j be j-

th module in layer i and x
(i)
j be the input to each module1,

then we have:

x
(i)
j =

M(i−1)
∑

k=1

g
(i)
k→j ∗ o

(i−1)
k , (1)

where ∗ is the scalar-vector product, the output of the k-th

module in layer (i− 1) is o
(i−1)
k = m

(i−1)
k

[

x
(i−1)
k

]

and the

weight on the edge between m
(i−1)
k and m

(i)
j is denoted by

g
(i)
k→j ∈ R. The set of gatings g = {g

(i)
k→j | i ∈ [1, L], j ∈

[1,M (i)], k ∈ [1,M (i−1)]} jointly represent how modules

are composed for scoring a given concept.

The gating network G is responsible for producing the set

of gatings g given a concept c = (co, ca) as input. co and

1We set o
(0)
1 = x, M(0)

= 1, and M(L)
= 1.
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Figure 2. Toy illustration of the task-driven modular network (TMN). A pre-trained ResNet trunk extracts high level semantic representa-

tions of an input image. These features are then fed to a modular network (in this case, three layers with two modules each) whose blocks

are gated (black triangle amplifiers) by a gating network. The gating network takes as input an object and an attribute id. Task driven

features are then projected into a single scalar value representing the joint compatibility of the triplet (image, object and attrtibute). The

overlaid red arrows show the strength of the gatings on each edge.

ca are represented as integer ids, and are then embedded

using a learned lookup table2. These embeddings are then

concatenated and processed by a multilayer neural network

which computes the gatings as:

G(c) = [q
(1)
1→1, q

(1)
2→1, ....q

(L)

M(L−1)
→M(L) ], (2)

g
(i)
k→j =

exp[q
(i)
k→j ]

∑M(i−1)

k′=1 exp[q
(i)
k′

→j ]
. (3)

Therefore, all incoming gating values to a module are posi-

tive and sum to one.

The output of the feature extraction network F is a fea-

ture vector, o
(L)
1 , which is linearly projected into a real value

scalar to yield the final score, sc(I, (co, ca)). This repre-

sents the compatibility of the input triplet, see Fig. 2.

3.2. Training & Testing

Our proposed training procedure involves jointly learn-

ing the parameters of both gating and feature extraction net-

works (without fine-tuning the ResNet trunk for consistency

with prior work [21, 22]). Using the training set described

above, for each sample image I we compute scores for all

concepts c = (co, ca) ∈ Ctrain and turn scores into normal-

ized probabilities with a softmax: pc = exp[sc]∑
c′∈Ctrain

exp[s
c′
] .

The standard (per-sample) cross-entropy loss is then used to

update the parameters of both F and G: L(I, ĉ) = − log pĉ,

if ĉ is the correct concept.

In practice, computing the scores of all concepts may

be computationally too expensive if Ctrain is large. There-

fore, we approximate the probability normalization factor

by sampling a random subset of negative candidates [3].

2Our framwork can be trivially extended to the case where co and

ca are structured, e.g., word2vec vectors [20], enabling generalization to

novel objects and attributes.

Finally, in order to encourage the model to generalize

to unseen pairs, we regularize using a method we dubbed

ConceptDrop. At each epoch, we choose a small random

subset of pairs, exclude those samples and also do not con-

sider them for negative pairs candidates. We cross-validate

the size of the ConceptDrop subset for all the models.

At test time, given an image we score all pairs present

in Ctest ∪ Ctrain, and select the pair yielding the largest score.

However, often the model is not calibrated for unseen con-

cepts, since the unseen concepts were not involved in the

optimization of the model. Therefore, we could add a scalar

bias term to the score of any unseen concept [5]. Varying

the bias from very large negative values to very large posi-

tive values has the overall effect of limiting classification to

only seen pairs or only unseen pairs respectively. Interme-

diate values strike a trade-off between the two.

4. Experiments

We first discuss datasets, metrics and baselines used in

this paper. We then report our experiments on two widely

used benchmark datasets for CZSL, and we conclude with

a qualitative analysis demonstrating how TMN operates.

Datasets We considered two datasets. The MIT-States

dataset [9] has 245 object classes, 115 attribute classes and

about 53K images. On average, each object is associated

with 9 attributes. There are diverse object categories, such

as “highway” and “elephant”, and there is also large varia-

tion in the attributes, e.g. “mossy” and “diced” (see Fig. 4

and 7 for examples). The training set has about 30K images

belonging to 1262 object-attribute pairs (the seen set), the

validation set has about 10K images from 300 seen and 300

unseen pairs, and the test set has about 13K images from

400 seen and 400 unseen pairs.

The second dataset is UT-Zappos50k [37, 36] which has
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12 object classes and 16 attribute classes, with a total of

about 33K images. This dataset consists of different types

of shoes, e.g. “rubber sneaker”, “leather sandal”, etc. and

requires fine grained classification ability. This dataset has

been split into a training set containing about 23K images

from 83 pairs (the seen pairs), a validation set with about

3K images from 15 seen and 15 unseen pairs, and a test set

with about 3K images from 18 seen and 18 unseen pairs.

The splits of both datasets are different from those used

in prior work [22, 21], now allowing fair cross-validation

of hyperparameters and evaluation in the generalized zero-

shot learning setting. We will make the splits publicly avail-

able to facilitate easy comparison for future research.

Architecture and Training Details The common trunk

of the feature extraction network is a ResNet-18 [8] pre-

trained on ImageNet [27] which is not finetuned, similar

to prior work [21, 22]. Unless otherwise stated, our mod-

ular network has 24 modules in each layer. Each module

operates in a 16 dimensional space, i.e. the dimensional-

ity of x
(i)
j and o

(i)
j in eq. 1 is 16. Finally, the gating net-

work is a 2 layer neural network with 64 hidden units. The

input lookup table is initialized with Glove word embed-

dings [24] as in prior work [22]. The network is optimized

by stochastic gradient descent with ADAM [12] with mini-

batch size equal to 256. All hyper-parameters are found by

cross-validation on the validation set (see §4.1.1 for robust-

ness to number of layers and number of modules).

Baselines We compare our task-driven modular network

against several baseline approaches. First, we consider

the RedWine method [21] which represents objects and at-

tributes via SVM classifier weights in CNN feature space,

and embeds these parameters in the feature space to produce

a composite classifier for the (object, attribute) pair. Next,

we consider LabelEmbed+ [22] which is a common compo-

sitional learning baseline. This model involves embedding

the concatenated (object, attribute) Glove word vectors and

the ResNet feature of an image, into a joint feature space

using two separate multilayer neural networks. Finally, we

consider the recent AttributesAsOperators approach [22],

which represents the attribute with a matrix and the object

with a vector. The product of the two is then multiplied by

a projection of the ResNet feature space to produce a scalar

score of the input triplet. All methods use the same ResNet

features as ours. Note that architectures from [21, 22] have

more parameters compared to our model. Specifically, Red-

Wine, LabelEmbed+ and AttributesAsOperators have ap-

proximately 11, 3.5 and 38 times more parameters (exclud-

ing the common ResNet trunk) than the proposed TMN.

We also adapt a more recent ZSL approach [35] (referred

as “FeatureGen”) and train it for the CZSL task. This work

proposes to use adversarial training to generate feature sam-

ples for the unseen classes.

Metrics We follow the same evaluation protocol intro-

duced by Chao et al. [5] in generalized zero-shot learn-

ing, as all prior work on CZSL only tested performance

on unseen pairs without controlling accuracy on seen pairs.

Most recently, Nagarajan et al. [22] introduced an “open

world” setting whereby both seen and unseen pairs are con-

sidered during scoring but only unseen pairs are actually

evaluated. As pointed out by Chao et al. [5], this method-

ology is flawed because, depending on how the system is

trained, seen pairs can evaluate much better than unseen

pairs (typically when training with cross-entropy loss that

induces negative biases for unseen pairs) or much worse

(like in [22] where unseen pairs are never used as negatives

when ranking at training time, resulting in an implicit pos-

itive bias towards them). Therefore, for a given value of

the calibration bias (a single scalar added to the score of all

unseen pairs, see §3.2), we compute the accuracy on both

seen and unseen pairs, (recall that our validation and test

sets have equal number of both). As we vary the value of

the calibration bias we draw a curve and then report its area

(AUC) to describe the overall performance of the system.

For the sake of comparison to prior work, we also report

the “closed-world” accuracy [22, 21], i.e. the accuracy of

unseen pairs when considering only unseen pairs as candi-

dates.

4.1. Quantitative Analysis

The main results of our experiments are reported in

Tab. 1. On both datasets we observe that TMN performs

consistently better than the other tested baselines. We also

observe that the overall absolute values of AUC are fairly

low, particularly on the MIT-States dataset which has about

2000 attribute-object pairs and lots of potentially valid pairs

for a given image due to the inherent ambiguity of the task.

The importance of using the generalized evaluation pro-

tocol becomes apparent when looking directly at the seen-

unseen accuracy curve, see Fig. 3. This shows that as we

increase the calibration bias we improve classification ac-

curacy on unseen pairs but decrease the accuracy on seen

pairs. Therefore, comparing methods at different operating

points is inconclusive. For instance, FeatureGen yields the

best seen pair accuracy of 24.8% when the unseen pair ac-

curacy is 0%, compared to TMN which achieves 20.2%, but

this is hardly a useful operating point.

For comparison, we also report the best seen accuracy,

the best unseen accuracy and the best harmonic mean of

the two for all these methods in Tab. 2. Although our

task-driven modular network may not always yield the best

seen/unseen accuracy, it significantly improves the har-

monic mean, indicating an overall better trade-off between
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Table 1. AUC (multiplied by 100) for MIT-States and UT-Zappos. Columns correspond to AUC computed using precision at k=1,2,3.

MIT-States UT-Zappos

Val AUC Test AUC Val AUC Test AUC

Model Top k → 1 2 3 1 2 3 1 2 3 1 2 3

AttrAsOp [22] 2.5 6.2 10.1 1.6 4.7 7.6 21.5 44.2 61.6 25.9 51.3 67.6

RedWine [21] 2.9 7.3 11.8 2.4 5.7 9.3 30.4 52.2 63.5 27.1 54.6 68.8

LabelEmbed+ [22] 3.0 7.6 12.2 2.0 5.6 9.4 26.4 49.0 66.1 25.7 52.1 67.8

FeatureGen [35] 3.1 6.9 10.5 2.3 5.7 8.8 20.1 45.1 61.1 25.0 48.2 63.21

TMN (ours) 3.5 8.1 12.4 2.9 7.1 11.5 36.8 57.1 69.2 29.3 55.3 69.8

Table 2. Best seen and unseen accuracies, and best harmonic mean

of the two. See companion Fig. 3 for the operating points used.

MIT-States UT-Zappos

Model Seen (#) Unseen (×) HM (�) Seen Unseen HM

AttrAsOp 14.3 17.4 9.9 59.8 54.2 40.8

RedWine 20.7 17.9 11.6 57.3 62.3 41.0

LabelEmbed+ 15.0 20.1 10.7 53.0 61.9 40.6

FeatureGen 24.8 13.4 11.2 61.9 52.8 40.0

TMN (ours) 20.2 20.1 13.0 58.7 60.0 45.0
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Figure 3. Unseen-Seen accuracy curves on MIT-States dataset.

Prior work [22] reported unseen accuracy at different (unknown)

values of seen accuracy, making comparisons inconclusive. In-

stead, we report AUC values [5], see Tab. 1.

the two accuracies.

Our model not only performs better in terms of AUC

but also trains efficiently. We observed that it learns from

fewer updates during training. For instance, on the MIT-

States datatset, our method reaches the reported AUC of 3.5

within 4 epochs. In contrast, embedding distance based ap-

proaches such as AttributesAsOperators [22] and LabelEm-

bed+ require between 400 to 800 epochs to achieve the best

AUC values using the same minibatch size. This is partly

attributed to the processing of a larger number of negatives

candidate pairs in each update of TMN(see §3.2). The mod-

ular structure of our network also implies that for a sim-

ilar number of hidden units, the modular feature extrac-

tor has substantially fewer parameters compared to a fully-

Table 3. Ablation study: Top-1 valid. AUC; see §4.1.1 for details.

Model MIT-States UT-Zappos

TMN 3.5 36.8

a) without task driven gatings 3.2 32.7

b) like a) & no joint extraction 0.8 20.1

c) without ConceptDrop 3.3 35.7

Table 4. AUC(*100) on validaton set of MIT-States varying the

number of modules per layer and the number of layers.

Modules

Layers 12 18 24 30

1 1.86 2.14 2.50 2.51

3 3.23 3.44 3.51 3.44

5 3.48 3.31 3.24 3.19

connected network. A fully-connected version of each layer

would have D2 parameters, if D is the number of input and

output hidden units. Instead, our modular network has M
blocks, each with ( D

M
)2 parameters. Overall, one layer of

the modular network has D2/(M ∗ ( D
M
)2) = M times less

parameters (which is also the amount of compute saved).

See the next section for further analogies with fully con-

nected layers.

4.1.1 Ablation Study

Our first control experiment assesses the importance of us-

ing a modular network by considering the same architec-

ture with two modifications. First, we learn a common set

of gatings for all the concepts; thereby removing the task-

driven modularity. And second, we feed the modular net-

work with the concatenation of the ResNet features and the

object-attribute pair embedding; thereby retaining the joint

modeling of the triplet. To better understand this choice,

consider the transformation of layer i of the modular net-

work in Fig. 2 which can be equivalently rewritten as:

[

o
(i)
1

o
(i)
2

]

= ReLU(

[

g
(i)
1→1m

(i)
1 g

(i)
2→1m

(i)
1

g
(i)
1→2m

(i)
2 g

(i)
2→2m

(i)
2

]

∗

[

o
(i−1)
1

o
(i−1)
2

]

)

assuming each square block m
(i)
j is a ReLU layer. In

a task driven modular network, gatings depend on the input
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object-attribute pair, while in this ablation study we use gat-

ings agnostic to the task, as these are still learned but shared

across all tasks. Each layer is a special case of a fully con-

nected layer with a more constrained parameterization. This

is the baseline shown in row a) of Tab. 3. On both datasets

performance is deteriorated showing the importance of us-

ing task driven gates. The second baseline shown in row

b) of Tab. 3, is identical to the previous one but we also

make the features agnostic to the task by feeding the object-

attribute embedding at the output (as opposed to the input)

of the modular network. This is similar to LabelEmbed+

baseline of the previous section, but replacing the fully con-

nected layers with the same (much more constrained) ar-

chitecture we use in our TMN (without task-driven gates).

In this case, we can see that performance drastically drops,

suggesting the importance of extracting joint representa-

tions of input image and object-attribute pair. The last row

c) assesses the contribution to the performance of the Con-

ceptDrop regularization, see §3.2. Without it, AUC has a

small but statistically significant drop.

Finally, we examine the robustness to the number of lay-

ers and modules per layer in Tab. 4. Except when the mod-

ular network is very shallow, AUC is fairly robust to the

choice of these hyper-parameters.

4.2. Qualitative Analysis

Task-driven modular networks offer both an increase in

performance and improved interpretability. In this section,

we explore simple ways to visualize them and inspect their

inner workings. We start by visualizing the learned gatings

in three ways. First, we look at which object-attribute pair

has the largest gating value on a given edge of the modular

network. Tab. 5 shows some examples indicating that vi-

sually similar pairs exhibit large gating values on the same

edge of the computational graph. Similarly, we can inspect

the blocks of the modular architecture. We can easily do

so by associating a module to those pairs that have largest

total outgoing gatings. This indicates how much a module

effects the next layer for the considered pair. As shown in

Tab. 6, we again find that modules take ownership for ex-

plaining specific kinds of visually similar object-attribute

Table 5. Edge analysis. Example of the top 3 object-attribute pairs

(rows) from MIT-States dataset that respond most strongly on 6

edges (columns) connecting blocks in the modular network.
dry river tiny animal cooked pasta unripe pear old city

dry forest small animal raw pasta unripe fig ancient city

dry stream small snake steaming pasta unripe apple old town

Table 6. Module analysis. Example of the top 3 object-attribute

pairs (rows) for 6 randomly chosen modules (columns) according

to the sum of outgoing edge weights in each pair’s gating.
dark fire large tree wrinkled dress small elephant pureed soup

dark ocean small tree ruffled dress young elephant large pot

dark cloud mossy tree ruffled silk tiny elephant thick soup

Figure 4. t-SNE embedding of Attribute-Object gatings on MIT-

States dataset. Colors indicate high-level WordNet categories

of objects. Text boxes with white background indicate exam-

ples where changing the attribute results in similar gatings (e.g.,

large/small table); conversely, pairs in black background indicate

examples where the change of attribute/object leads to very dis-

similar gatings (e.g., molten/brushed/coil steel, rusty water/rusty

wire).

pairs. A t-SNE [18] embedding of the gating values as-

sociated with all the object-attribute pairs provides a more

comprehensive visualization, as shown in Fig. 4. This vi-

sualization shows that the gatings are mainly organized by

visual similarity. Within this map, there are clusters that

correspond to the same object with various attributes. In-

stances where the attribute greatly changes the visual ap-

pearance of the object are interesting exceptions (“coiled

steel” VS “molten steel”, see other examples highlighted

with dark tags). Likewise, pairs sharing the same attribute

may be located in distant places if the object is visually dis-

similar (“rusty water” VS ”rusty wire”). The last gating vi-

sualization is through the topologies induced by the gatings,

as shown in Fig. 5, where only the edges with sufficiently

large gating values are shown. Overall, the degree of edge

overlap between object-attribute pairs strongly depends on

their visual similarity.

Besides gatings and modules, we also visualized the

task-driven visual features o
(L)
1 , just before the last linear

projection layer, see Fig. 2. The map in Fig. 6 shows that

valid (image, object, attribute) triplets are well clustered to-

gether, while invalid triplets are nicely spread on one side

of the plane. This is quite different than the feature or-

ganization found by methods that match concept embed-

dings in the image feature space [22, 21], which tend to be
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Figure 5. Examples of task driven topologies learned in TMN.

Edges whose associated weight is within 3% of the highest weight

for that edge are displayed. Source features x at the bottom are

projected to a scalar score at the top. Each subplot compares the

gatings of two object-attribute pairs. The red edges are the edges

that are common between the two pairs. The green and the blue

segments are edges active only in one of the two pairs. Left: two

sets of pairs sharing the same attribute, “wrinkled”. Right: Two

sets of pairs sharing the same object, “fish”. Top: examples of vi-

sually similar pairs. Bottom: example of visually dissimilar pairs

(resulting in less overlapping graphs).

organized by concept. While TMN extracts largely task-

invariant representations using a task-driven architecture,

they produce representations that contain information about

the task using a task-agnostic architecture3. TMN places all

valid triplets on a tight cluster because the shared top linear

projection layer is trained to discriminate between valid and

invalid triplets (as opposed to different types of concepts).

Finally, Fig. 7 present image retrieval results. Given a

query of an unseen object-attribute pair, the highest scoring

images in the test set are returned. The model is able to

retrieve relevant images despite not having been exposed to

these concepts during training.

5. Conclusion

The distribution of highly structured visual concepts is

very heavy tailed in nature. Improvement in sample effi-

ciency of our current models is crucial, since labeled data

will never be sufficient for concepts in the tail of the dis-

tribution. A promising approach is to leverage the intrinsic

3A linear classifier trained to predict the input object-attribute pair

achieves only 5% accuracy on TMN’s features, 40% on LabelEmbed+ fea-

tures and 41% on ResNet features.

Figure 6. t-SNE embedding of the output features (penultimate

layer) on MIT-States dataset. Red markers show valid (image, ob-

ject, attribute) triplets (from either seen or unseen pairs), while

blue markers show invalid triplets.

Ancient

Clock

Barren

Road

Ancient

House

Cluttered

Desk

Coiled

Basket

Figure 7. Example of image retrievals from the test set when

querying an unseen pair (title of each column).

compositionality of the label space. In this work, we inves-

tigate this avenue of research using the Zero-Shot Compo-

sitional Learning task as a use case. Our first contribution is

a novel architecture: TMN, which outperforms all the base-

line approaches we considered. There are two important

ideas behind its design. First, the joint processing of input

image, object and attribute to account for contextuality. And

second, the use of a modular network with gatings depen-

dent on the input object-attribute pair. Our second contribu-

tion is to advocate for the use of the generalized evaluation

protocol which not only tests accuracy on unseen concepts

but also seen concepts. Our experiments show that TMN

provides better performance, while being efficient and in-

terpretable. In future work, we will explore other gating

mechanisms and applications in other domains.
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