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Abstract

The learning of Transformation-Equivariant Represen-

tations (TERs), which is introduced by Hinton et al. [16],

has been considered as a principle to reveal visual struc-

tures under various transformations. It contains the cel-

ebrated Convolutional Neural Networks (CNNs) as a spe-

cial case that only equivary to the translations. In con-

trast, we seek to train TERs for a generic class of trans-

formations and train them in an unsupervised fashion. To

this end, we present a novel principled method by Autoen-

coding Variational Transformations (AVT), compared with

the conventional approach to autoencoding data. Formally,

given transformed images, the AVT seeks to train the net-

works by maximizing the mutual information between the

transformations and representations. This ensures the re-

sultant TERs of individual images contain the intrinsic in-

formation about their visual structures that would equivary

extricably under various transformations in a generalized

nonlinear case. Technically, we show that the resultant op-

timization problem can be efficiently solved by maximizing

a variational lower-bound of the mutual information. This

variational approach introduces a transformation decoder

to approximate the intractable posterior of transformations,

resulting in an autoencoding architecture with a pair of the

representation encoder and the transformation decoder. Ex-

periments demonstrate the proposed AVT model sets a new

record for the performances on unsupervised tasks, greatly

closing the performance gap to the supervised models.

∗Corresponding author: G.-J. Qi. Email: guojunq@gmail.com. The

idea was conceived and formulated by G.-J. Qi, and L. Zhang performed

experiments while interning at Huawei Cloud.

1. Introduction

Convolutional Neural Networks (CNNs) have demon-

strated tremendous successes when a large volume of la-

beled data are available to train the models. Although a

solid theory is still lacking, it is thought that both equiv-

alence and invariance to image translations play a critical

role in the success of CNNs [6, 7, 34, 16], particularly for

supervised tasks.

Specifically, while the whole network is trained in an

end-to-end fashion, a typical CNN model consists of two

parts: the convolutional feature maps of an input image

through multiple convolutional layers, and the classifier of

fully connected layers mapping the feature maps to the tar-

get labels. It is obvious that a supervised classification task

requires the fully connected classifier to predict labels in-

variant to transformations. For training a CNN model, such

a transformation invariance criterion is achieved by min-

imizing the classification errors on the labeled examples

augmented with various transformations [22]. Unfortunate-

ly, it is impossible to simply apply transformation invari-

ance to learn an unsupervised representation without label

supervision, since this would result in a trivial constant rep-

resentation for any input images.

On the contrary, it is not hard to see that the represen-

tations generated through convolutional layers are equivari-

ant to the transformations – the feature maps of translat-

ed images are also shifted in the same way subject to edge

padding effect [22]. It it natural to generalize this idea by

considering more types of transformations beyond transla-

tions, e.g., image warping and projective transformations

[6].

In this paper, we formalize the concept of transforma-

tion equivariance as the criterion to train an unsupervised

representation. We expect it could learn the representation-
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s that are generalizable to unseen tasks without knowing

their labels. This is contrary to the criterion of transfor-

mation invariance in supervised tasks, which aims to tai-

lor the representations to predefined tasks and their labels.

Intuitively, training a transformation equivariant represen-

tation is not surprising – a good representation should be

able to preserve the intrinsic visual structures of images, so

that it could extrinsically equivary to various transforma-

tions as they change the represented visual structures. In

other words, a transformation will be able to be decoded

from such representations that well encode the visual struc-

tures before and after the transformation [37].

For this purpose, we present a novel paradigm of Au-

toencoding Variational Transformations (AVT) to learn

powerful representations that equivary against a gener-

ic class of transformations. We formalize it from an

information-theoretic perspective by considering a join-

t probability between images and transformations. This

enables us to use the mutual information to characterize

the dependence between the representations and the trans-

formations. Then, the AVT model can be trained directly

by maximizing the mutual information in an unsupervised

fashion without any labels. This will ensure the resultant

representations contain intrinsic information about the vi-

sual structures that could be transformed extrinsically for

individual images. Moreover, we will show that the rep-

resentations learned in this way can be computed directly

from the transformations and the representations of the orig-

inal images without a direct access to the original samples,

and this allows us to generalize the existing linear Transfor-

mation Equivariant Representations (TERs) to more general

nonlinear cases [31].

Unfortunately, it is intractable to maximize the mutual

information directly as it is impossible to exactly evaluate

the posterior of a transformation from the associated rep-

resentation. Thus, we instead seek to maximize a varia-

tional lower bound of the mutual information by introduc-

ing a transformation decoder to approximate the intractable

posterior. This results in an efficient autoencoding transfor-

mation (instead of data) architecture by jointly encoding a

transformed image and decoding the associated transforma-

tion.

The resultant AVT model disruptively differs from the

conventional auto-encoders [18, 19, 35] that seek to learn

representations by reconstructing images. Although the

transformation could be decoded from the reconstructed o-

riginal and transformed images, this is a quite strong as-

sumption as such representations could contain more than

enough information about both necessary and unnecessary

visual details. The AVT model is based on a weaker as-

sumption that the representations are trained to contain on-

ly the necessary information about visual structures to de-

code the transformation between the original and trans-

formed images. Intuitively, it is harder to reconstruct a high-

dimensional image than decoding a transformation that has

fewer degrees of freedom. In this sense, conventional auto-

encoders tend to over-represent an image with every detail,

no matter if they are necessary or not. Instead, the AVT

could learn more generalizable representations by identi-

fying the most essential visual structures to decode trans-

formations, thereby yielding better performances for down-

stream tasks.

This remainder of this paper is organized as follows. In

Section 2, we will review the related works on unsuper-

vised methods. We will formalize the proposed AVT model

by maximizing the mutual information between representa-

tions and transformations in Section 3. It is followed by the

variational approach elaborated in Section 4. Experiment

results will be demonstrated in Section 5 and we conclude

the paper in Section 6.

2. Related Works

In this section, we will review some related methods for

training transformation-equivariant representations, along

with the other unsupervised models.

2.1. Transformation­Equivariant Representations

The study of transformation-equivariance can be traced

back to the idea of training capsule nets [34, 16, 17], where

the capsules are designed to equivary to various transfor-

mations with vectorized rather than scalar representations.

However, there was a lack of explicit training mechanism to

ensure the resultant capsules be of transformation equivari-

ance.

To address this problem, many efforts have been made in

literature [6, 8, 24] to extend the conventional translation-

equivariant convolutions to cover more transformation-

s. For example, group equivariant convolutions (G-

convolution) [6] have been developed to equivary to more

types of transformations so that a richer family of geometric

structures can be explored by the classification layers on top

of the generated representations. The idea of group equiv-

ariance has also been introduced to the capsule nets [24] by

ensuring the equivariance of output pose vectors to a group

of transformations with a generic routing mechanism.

However, these group equivariant convolutions and cap-

sules must be trained in a supervised fashion [6, 24] with

labeled data for specific tasks, instead of learning unsuper-

vised transformation-equivariant representations generaliz-

able to unseen tasks. Moreover, their representations are

restricted to be a function of groups, which limits the a-

bility of training future classifiers on top of more flexible

representations.

Recently, Zhang et al. [37] present a novel Auto-

Encoding Transformation (AET) model by learning a rep-

resentation from which an input transformation can be re-
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constructed. This is closely related to our motivation of

learning transformation equivariant representations, consid-

ering the transformation can be decoded from the learned

representation of original and transformed images. On the

contrary, in this paper, we approach it from an information-

theoretic point of view in a more principled fashion.

Specifically, we will define a joint probability over the

representations and transformations, and this will enable us

to train unsupervised representations by directly maximiz-

ing the mutual information between the transformations and

the representations. We wish the resultant representations

can generalize to new tasks without access to their labels

beforehand.

2.2. Other Unsupervised Representations

Auto-Encoders and GANs. Training auto-encoders in an

unsupervised fashion has been studied in literature [18,

19, 35]. Most auto-encoders are trained by minimizing

the reconstruction errors on input data from the encod-

ed representations. A large category of auto-encoder vari-

ants have been proposed. Among them is the Variational

Auto-Encoder (VAE) [20] that maximizes the lower-bound

of the data likelihood to train a pair of probabilistic en-

coder and decoder, while beta-VAE seeks to disentangle

representations by introducing an adjustable hyperparam-

eter on the capacity of latent channel to balance between

the independence constraint and the reconstruction accura-

cy [15]. Denoising auto-encoder [35] seeks to reconstruct

noise-corrupted data to learn robust representation, while

contrastive Auto-Encoder [33] encourages to learn repre-

sentations invariant to small perturbations on data. Along

this line, Hinton et al. [16] propose capsule nets by mini-

mizing the discrepancy between the reconstructed and tar-

get data.

Meanwhile, Generative Adversarial Nets (GANs) have

also been used to train unsupervised representations in liter-

ature. Contrary to the auto-encoders, a GAN model gener-

ates data from the noises drawn from a simple distribution,

with a discriminator trained adversarially to distinguish be-

tween real and fake data. The sampled noises can be viewed

as the representation of generated data over a manifold, and

one can train an encoder by inverting the generator to find

the generating noise. This can be implemented by jointly

training a pair of mutually inverse generator and encoder

[10, 12]. There also exist better generalizable GANs in pro-

ducing unseen data based on the Lipschitz assumption on

the real data distribution [30, 3], which can give rise to more

powerful representations of data out of training examples

[10, 12, 13]. Compared with the Auto-Encoders, GANs do

not rely on learning one-to-one reconstruction of data; in-

stead, they aim to generate the entire distribution of data.

Self-Supervisory Signals. There exist many other unsu-

pervised learning methods using different types of self-

supervised signals to train deep networks. Mehdi and

Favaro [25] propose to solve Jigsaw puzzles to train a con-

volutional neural network. Doersch et al. [9] train the net-

work by predicting the relative positions between sampled

patches from an image as self-supervised information. In-

stead, Noroozi et al. [26] count features that satisfy equiv-

alence relations between downsampled and tiled images,

while Gidaris et al. [14] classify a discrete set of image rota-

tions to train deep networks. Dosovitskiy et al. [11] create a

set of surrogate classes by applying various transformations

to individual images. However, the resultant features could

over-discriminate visually similar images as they always be-

long to different surrogate classes. Unsupervised features

have also been learned from videos by estimating the self-

motion of moving objects between consecutive frames [2].

3. Formulation

We begin with the notations for the proposed unsuper-

vised learning of the transformation equivariant representa-

tions (TERs). Consider a random sample x drawn from the

data distribution p(x). We sample a transformation t from

a distribution p(t), and apply it to x, yielding a transformed

image t(x).
Usually, we consider a distribution p(t) of parameter-

ized transformations, e.g., affine transformations with the

rotations, translations and shearing constants being sampled

from a simple distribution, and projective transformation-

s that randomly shift and interpolate four corners of im-

ages. Our goal is to learn an unsupervised representation

that contains as much information as possible to recover the

transformation. We wish such a representation is able to

compactly encode images such that it could equivary as the

visual structures of images are transformed.

Specifically, we seek to learn an encoder that maps a

transformed sample t(x) to the mean fθ and variance σθ

of a desired representation. This results in the following

probabilistic representation z of t(x):

z = fθ(t(x)) + σθ(t(x)) ◦ ǫ (1)

where ǫ is sampled from a normal distribution N (ǫ|0, I),
and ◦ denotes the element-wise product. In this case, the

probabilistic representation z follows a normal distribu-

tion pθ(z|t,x) , N
(

z|fθ(t(x)), σ
2
θ(t(x))

)

conditioned on

the randomly sampled transformation t and input data x.

Meanwhile, the representation z̃ of the original sample x

can be computed as a special case when t is set to an iden-

tity transformation.

As discussed in Section 1, we seek to learn a represen-

tation z eqivariant to the sampled transformation t whose

information thus should be recovered from z as much as

possible. Therefore, the most natural choice to formalize

this notion of transformation equivariance is the mutual in-
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formation I(t, z|z̃) between z and t from an information-

theoretic perspective. The larger the mutual information,

the more knowledge about t can be inferred from the repre-

sentation z that equivaries to t.

Moreover, it can be shown that the mutual informa-

tion I(t; z|z̃) is the lower bound of the joint mutual in-

formation I(z; (t, z̃)) that attains its maximum value when

I(z;x|z̃, t) = 0. In this case, x provides no additional in-

formation about z once (z̃, t) are given. This implies one

can estimate z directly from (z̃, t) without accessing the

original sample x, which generalizes the linear transforma-

tion equivariance to nonlinear case. For more details, we

refer the readers to the long version [31] and the supple-

mentary material of this paper, where we elaborate on such

generalized transformation-equivariant representations.

Therefore, we maximize the mutual information between

the representation and the transformation to train the model

max
θ

I(t; z|z̃)

Unfortunately, this maximization problem requires us

to evaluate the posterior pθ(t|z, z̃) of the transformation,

which is often difficult to compute directly. This makes

it intractable to train the representation by directly maxi-

mizing the above mutual information. Thus, we will turn

to a variational approach by introducing a transformation

decoder qφ(t|z, z̃) with the parameter φ to approximate

pθ(t|z, z̃). In the next section, we will elaborate on this

variational approach.

4. Autoencoding Variational Transformations

First, we present a variational lower bound of the mutual

information I(t; z|x) that can be maximized over qφ in a

tractable fashion.

Instead of lower-bounding data likelihood in other varia-

tional approaches such as variational auto-encoders [20], it

is more natural for us to maximize the lower bound of the

mutual information [1] between the representation z and the

transformation t in the following way

I(t; z|z̃) = H(t|z̃)−H(t|z, z̃)

= H(t|z̃) + E
pθ(t,z,z̃)

log pθ(t|z, z̃)

= H(t|z̃) + E
pθ(t,z,z̃)

log qφ(t|z, z̃)

+ E
p(z,z̃)

D(pθ(t|z, z̃)‖qφ(t|z, z̃))

≥ H(t|z̃) + E
pθ(t,z,z̃)

log qφ(t|z, z̃) , Ĩθ,φ(t; z|z̃)

where H(·) denotes the (conditional) entropy, and

D(pθ(t|z, z̃)‖qφ(t|z, z̃)) is the Kullback divergence be-

tween pθ and qφ, which is always nonnegative.

We choose to maximize the lower variational bound

Ĩ(t; z|z̃). Since H(t|z̃) is independent of the model pa-

rameters θ and φ, we simply maximize

max
θ,φ

E
pθ(t,z,z̃)

log qφ(t|z, z̃) (2)

to learn θ and φ under the expectation over p(t, z, z̃).
This variational approach differs from the variational

auto-encoders [20]: the latter attempts to lower bound the

data loglikelihood, while we instead seek to lower bound the

mutual information here. Although both are derived based

on an auto-encoder structure, the mutual information has a

simpler form of lower bound than the data likelihood – it

does not contain an additional Kullback-Leibler divergence

term, and thus shall be easier to maximize.

4.1. Algorithm

In practice, given a batch of samples {xi|i = 1, · · · , n},

we first draw a transformation t
i corresponding to each

sample. Then we use the reparameterization (1) to generate

the probabilistic representation z
i with fθ and σθ as well as

a sampled noise ǫi.

On the other hand, we use a normal distribution

N (t|dφ(z, z̃), σ
2
φ(z, z̃)) as the decoder qφ(t|z, z̃), where

the mean dφ(z, z̃) and variance σ2
φ(z, z̃) are implemented

by deep network respectively.

With the above samples, the objective (2) can be approx-

imated as

max
θ,φ

1

n

n
∑

i=1

logN (ti|dφ(z
i, z̃i), σφ(z

i, z̃i)) (3)

where

z
i = fθ(t

i(xi)) + σθ(t
i(xi)) ◦ ǫi

and

z̃
i = fθ(x

i) + σθ(x
i) ◦ ǫ̃.

and ǫi, ǫ̃i ∼ N (ǫ|0, I), and t
i ∼ p(t) for each i = 1, · · · , n.

4.2. Architecture

As illustrated in Figure 1, we implement the transforma-

tion decoder qφ(t|z, z̃) by using a Siamese encoder network

with shared weights to represent the original and trans-

formed images with z̃ and z respectively, where the mean

dφ and the variance σ2
φ of the sampled transformation are

predicted from the concatenation of both representations.

We note that, in a conventional auto-encoder, error sig-

nals must be backpropagated through a deeper decoder to

reconstruct images before they train the encoder of inter-

est. In contrast, the AVT allows a shallower decoder to es-

timate transformations with fewer variables so that stronger

training signals can reach the encoder before it attenuates

remarkably. This can more sufficiently train the encoder to

represent images in downstream tasks.
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Figure 1: The architecture of the proposed AVT. The origi-

nal and transformed images are fed through the encoder pθ
where 1 denotes an identity transformation to generate the

representation of the original image. The resultant repre-

sentations z̃ and z of original and transformed images are

sampled and fed into the transformation decoder qφ from

which the transformation t is sampled.

5. Experiments

In this section, we evaluate the proposed AVT model by

following the standard protocol in literature.

5.1. CIFAR­10 Experiments

We evaluate the AVT model on the CIFAR-10 dataset.

5.1.1 Experiment Settings

Architecture For a fair comparison with existing models,

the Network-In-Network (NIN) is adopted on the CIFAR-

10 dataset for the unsupervised learning task [37]. The NIN

consists of four convolutional blocks, each containing three

convolutional layers. The AVT has two NIN branches, each

of which takes the original and transformed images as it-

s input, respectively. We average-pool and concatenate the

output feature maps from the forth block of two branches

to form a 384-d feature vector. Then an output layer fol-

lows to output the mean dφ and the log-of-variance log σ2
φ

of the predicted transformation, with the logarithm scaling

the variance to a real value.

The two branches share the same network weights, with

the first two blocks of each branch being used as the encoder

network to directly output the mean fθ of the representation.

An additional 1×1 convolution followed by a batch normal-

ization layer is added on top of the representation mean to

output the log-of-variance log σ2
θ .

Implementation Details The AVT networks are trained by

the SGD with a batch size of 512 images and their trans-

formed versions. Momentum and weight decay are set to

0.9 and 5 × 10−4, respectively. The model is trained for

a total of 4, 500 epochs. The learning rate is initialized to

10−3. Then it is gradually decayed to 10−5 from 3, 000
epochs after it is increased to 5 × 10−3 after the first 50
epochs. The previous research [37] has shown the projec-

tive transformation outperforms the affine transformation in

training unsupervised models, and thus we adopt it to train

the AVT for a fair comparison. The projective transforma-

tion is composed of a random translation of the four corners

of an image in both horizontal and vertical directions by

±0.125 of its height and width, after it is scaled by a fac-

tor of [0.8, 1.2] and rotated randomly with an angle from

{0◦, 90◦, 180◦, 270◦}.

During training the AVT model, a single representation

is randomly sampled from the encoder pθ(z|t,x), which is

fed into the surrogate decoder qφ(t|x, z). In contrast, to

fully exploit the uncertainty of probabilistic representations

in training the downstream classification tasks, five random

samples are drawn and averaged as the representation of an

image used by the classifiers. We found averaging randomly

sampled representations outperforms only using the mean

of the representation to train the downstream classifiers.

5.1.2 Results

Comparison with Other Methods. A classifier is usually

trained upon the representation learned by an unsupervised

model to assess the performance. Specifically, on CIFAR-

10, the existing evaluation protocol [28, 11, 32, 27, 14, 37]

is strictly followed by building a classifier on top of the sec-

ond convolutional block.

First, we evaluate the classification results by using the

AVT features with both model-based and model-free clas-

sifiers. For the model-based classifier, we follow [37] by

training a non-linear classifier with three Fully-Connected

(FC) layers – each of the two hidden layers has 200 neu-

rons with batch-normalization and ReLU activations, and

the output layer is a soft-max layer with ten neurons each

for an image class. We also test a convolutional classifier

upon the unsupervised features by adding a third NIN block

whose output feature map is averaged pooled and connected

to a linear soft-max classifier.

Table 1 shows the results by the AVT and other models.

It compares the AVT with both fully supervised and unsu-

pervised methods on CIFAR-10. The unsupervised AVT

with the convolutional classifier almost achieves the same

error rate as its fully supervised NIN counterpart with four

convolutional blocks (7.75% vs. 7.2%). This remarkable

result demonstrates the AVT could greatly close the perfor-

mance gap with the fully supervised model on CIFAR-10.

We also evaluate the AVT when varying numbers of FC

layers and a convolutional classifier are trained on top of

unsupervised representations respectively in Table 2. The

results show that AVT can consistently achieve the smallest

errors no matter which classifiers are used.

Comparison based on Model-free KNN Classifiers. We

also test the model-free KNN classifier based on the

averaged-pooled feature representations from the second

convolutional block. The KNN classifier is model-free

without training a classifier from labeled examples. This en-
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Table 1: Comparison between unsupervised feature learn-

ing methods on CIFAR-10. The fully supervised NIN and

the random Init. + conv have the same three-block NIN ar-

chitecture, but the first is fully supervised while the second

is trained on top of the first two blocks that are randomly

initialized and stay frozen during training.

Method Error rate

Supervised NIN [14] (Upper Bound) 7.20

Random Init. + conv [14] (Lower Bound) 27.50

Roto-Scat + SVM [28] 17.7

ExamplarCNN [11] 15.7

DCGAN [32] 17.2

Scattering [27] 15.3

RotNet + non-linear [14] 10.94

RotNet + conv [14] 8.84

AET-affine + non-linear [37] 9.77

AET-affine + conv [37] 8.05

AET + non-linear [37] 9.41

AET + conv [37] 7.82

AVT + non-linear 8.96

AVT + conv 7.75

Table 2: Error rates of different classifiers trained on top

of the learned representations on CIFAR 10, where n-FC

denotes a classifier with n fully connected layers and con-

v denotes the third NIN block as a convolutional classifier.

Two AET variants are chosen for a fair direct comparison s-

ince they are based on the same architecture as the AVT and

have outperformed the other unsupervised representations

before [37].

1 FC 2 FC 3 FC conv

AET-affine [37] 17.16 9.77 10.16 8.05

AET-project [37] 16.65 9.41 9.92 7.82

(Ours) AVT 16.19 8.96 9.55 7.75

Table 3: The comparison of the KNN error rates by different

models with varying numbers K of nearest neighbors on

CIFAR-10.

K 3 5 10 15 20

AET-affine [37] 24.88 23.29 23.07 23.34 23.94

AET-project [37] 23.29 22.40 22.39 23.32 23.73

(Ours) AVT 22.46 21.62 23.7 22.16 21.51

ables us to make a direct evaluation on the quality of learned

features. Table 3 reports the KNN results with varying num-

bers of nearest neighbors. Again, the AVT outperforms the

compared representations when they are used to calculate

K nearest neighbors for classifying images.

Comparison with Small Labeled Data. Finally, we also

conduct experiments when a small number of labeled ex-

amples are used to train the downstream classifiers on top

of the learned representations. This will give us some in-

sight into how the unsupervised representations could help

with only few labeled examples. Table 4 reports the results

of different models on CIFAR-10. The AVT outperforms

the fully supervised models when only a small number of

labeled examples (≤ 1000 samples per class) are available.

It also performs better than the other unsupervised models

in most of cases. Moreover, if we adopt the widely used 13-

layer network [23] on CIFAR-10 to train the unsupervised

and supervised parts, the error rates can be further reduced

significantly particularly when very few labeled examples

are used.

5.2. ImageNet Experiments

We further evaluate the performance by AVT on the Ima-

geNet dataset. The AlexNet is used as the backbone to learn

the unsupervised features.

5.2.1 Architectures and Training Details

Two AlexNet branches with shared parameters are created

with original and transformed images as inputs respective-

ly to train unsupervised AVT. The 4, 096-d output features

from the second last fully connected layer in two branches

are concatenated and fed into the output layer producing the

mean and the log-of-variance of eight projective transfor-

mation parameters. We still use SGD to train the network,

with a batch size of 768 images and the transformed coun-

terparts, a momentum of 0.9, a weight decay of 5 × 10−4.

The initial learning rate is set to 10−3, and it is dropped by

a factor of 10 at epoch 300 and 350. The AVT is trained for

400 epochs in total. Finally, the projective transformations

are randomly sampled in the same fashion as on CIFAE-10,

and the unsupervised representations fed into the classifiers

are the average over five sampled representations from the

probabilistic encoder.

5.2.2 Results

Table 5 reports the Top-1 accuracies of the compared meth-

ods on ImageNet by following the evaluation protocol in

[25, 38, 14, 37]. Two settings are adopted for evaluation,

where Conv4 and Conv5 mean to train the remaining part

of AlexNet on top of Conv4 and Conv5 with the labeled

data. All the bottom convolutional layers up to Conv4 and

Conv5 are frozen after they are trained in an unsupervised

fashion. From the results, in both settings, the AVT model

consistently outperforms the other unsupervised models.

We also compare with the fully supervised models that

give the upper bound of the classification performance by
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Table 4: Error rates on CIFAR-10 when different numbers of samples per class are used to train the downstream classifiers.

A third convolutional block is trained with the labeled examples on top of the first two blocks of the NIN (∗ the 13-layer

network) pre-trained with the unlabeled data. We compare with the fully supervised models that are trained with all the

labeled examples from scratch.

20 100 400 1000 5000

Supervised conv 66.34 52.74 25.81 16.53 6.93

Supervised non-linear 65.03 51.13 27.17 16.13 7.92

RotNet + conv [14] 35.37 24.72 17.16 13.57 8.05

AET-project + conv [37] 34.83 24.35 16.28 12.58 7.82

AET-project + non-linear [37] 37.13 25.19 18.32 14.27 9.41

AVT + conv 35.44 24.26 15.97 12.27 7.75

AVT + non-linear 37.62 25.01 17.95 14.14 8.96

AVT + conv (13 layers)∗ 26.2 18.44 13.56 10.86 6.3

Table 6: Top-1 accuracy with linear layers on ImageNet. AlexNet is used as backbone to train the unsupervised models under

comparison. A 1, 000-way linear classifier is trained upon various convolutional layers of feature maps that are spatially

resized to have about 9, 000 elements. Fully supervised and random models are also reported to show the upper and the lower

bounds of unsupervised model performances. Only a single crop is used and no dropout or local response normalization is

used during testing for the AVT, except the models denoted with * where ten crops are applied to compare results.

Method Conv1 Conv2 Conv3 Conv4 Conv5

ImageNet labels(Upper Bound) 19.3 36.3 44.2 48.3 50.5

Random (Lower Bound) 11.6 17.1 16.9 16.3 14.1

Random rescaled [21] 17.5 23.0 24.5 23.2 20.6

Context [9] 16.2 23.3 30.2 31.7 29.6

Context Encoders [29] 14.1 20.7 21.0 19.8 15.5

Colorization[39] 12.5 24.5 30.4 31.5 30.3

Jigsaw Puzzles [25] 18.2 28.8 34.0 33.9 27.1

BIGAN [10] 17.7 24.5 31.0 29.9 28.0

Split-Brain [38] 17.7 29.3 35.4 35.2 32.8

Counting [26] 18.0 30.6 34.3 32.5 25.7

RotNet [14] 18.8 31.7 38.7 38.2 36.5

AET-project [37] 19.2 32.8 40.6 39.7 37.7

(Ours) AVT 19.5 33.6 41.3 40.3 39.1

DeepCluster* [5] 13.4 32.3 41.0 39.6 38.2

AET-project* [37] 19.3 35.4 44.0 43.6 42.4

(Ours) AVT* 20.9 36.1 44.4 44.3 43.5

training the whole AlexNet with all labeled data end-to-end.

The classifiers of random models are trained on top of Con-

v4 and Conv5 whose weights are randomly sampled, which

set the lower bounded performance. By comparison, the

AVT model further closes the performance gap to the full

supervised models to 5.5% and 11.3% on Conv4 and Con-

v5 respectively. This is a relative improvement by 15% and

11% over the previous state-of-the-art AET model.

Moreover, we also follow the testing protocol adopted in

[37] to compare the models by training a 1, 000-way linear

classifier on top of different numbers of convolutional layers

in Table 6. Again, the AVT consistently outperforms all

the compared unsupervised models in terms of the Top-1

accuracy.

5.3. Places Experiments

Finally, we evaluate the AVT model on the Places

dataset. Table 7 reports the results. Unsupervised models

are pretrained on the ImageNet dataset, and a linear logis-
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Table 7: Top-1 accuracy on the Places dataset. A 205-way logistic regression classifier is trained on top of various layers

of feature maps that are spatially resized to have about 9, 000 elements. All unsupervised features are pre-trained on the

ImageNet dataset, and then frozen when training the logistic regression classifiers with Places labels. We also compare with

fully-supervised networks trained with Places Labels and ImageNet labels, as well as with random models. The highest

accuracy values are in bold and the second highest accuracy values are underlined.

Method Conv1 Conv2 Conv3 Conv4 Conv5

Places labels(Upper Bound)[40] 22.1 35.1 40.2 43.3 44.6

ImageNet labels 22.7 34.8 38.4 39.4 38.7

Random (Lower Bound) 15.7 20.3 19.8 19.1 17.5

Random rescaled [21] 21.4 26.2 27.1 26.1 24.0

Context [9] 19.7 26.7 31.9 32.7 30.9

Context Encoders [29] 18.2 23.2 23.4 21.9 18.4

Colorization[39] 16.0 25.7 29.6 30.3 29.7

Jigsaw Puzzles [25] 23.0 31.9 35.0 34.2 29.3

BIGAN [10] 22.0 28.7 31.8 31.3 29.7

Split-Brain [38] 21.3 30.7 34.0 34.1 32.5

Counting [26] 23.3 33.9 36.3 34.7 29.6

RotNet [14] 21.5 31.0 35.1 34.6 33.7

AET-project [37] 22.1 32.9 37.1 36.2 34.7

AVT 22.3 33.1 37.8 36.7 35.6

Table 5: Top-1 accuracy with non-linear layers on Ima-

geNet. AlexNet is used as backbone to train the unsu-

pervised models. After unsupervised features are learned,

nonlinear classifiers are trained on top of Conv4 and Con-

v5 layers with labeled examples to compare their perfor-

mances. We also compare with the fully supervised mod-

els and random models that give upper and lower bounded

performances. For a fair comparison, only a single crop is

applied in AVT and no dropout or local response normal-

ization is applied during the testing.

Method Conv4 Conv5

Supervised from [4](Upper Bound) 59.7 59.7

Random from [25] (Lower Bound) 27.1 12.0

Tracking [36] 38.8 29.8

Context [9] 45.6 30.4

Colorization [39] 40.7 35.2

Jigsaw Puzzles [25] 45.3 34.6

BIGAN [10] 41.9 32.2

NAT [4] - 36.0

DeepCluster [5] - 44.0

RotNet [14] 50.0 43.8

AET-project [37] 53.2 47.0

(Ours) AVT 54.2 48.4

tic regression classifier is trained on top of different layers

of convolutional feature maps with Places labels. It assess-

es the generalizability of unsupervised features from one

dataset to another. The models are still based on AlexNet

variants. We compare with the fully supervised models

trained with the Places labels and ImageNet labels respec-

tively, as well as with the random networks. The AVT mod-

el outperforms the other unsupervised models, except per-

forming slightly worse than Counting [38] with a shallow

representation by Conv1 and Conv2.

6. Conclusion

In this paper, we present a novel paradigm of learning

representations by Autoencoding Variational Transforma-

tions (AVT) instead of reconstructing data as in conven-

tional autoencoders. It aims to maximize the mutual in-

formation between the transformations and the represen-

tations of transformed images. The intractable maximiza-

tion problem on mutual information is solved by introduc-

ing a transformation decoder to approximate the posterior

of transformations through a variational lower bound. This

naturally leads to a new probabilistic structure with a repre-

sentation encoder and a transformation decoder. The resul-

tant representations should contain as much information as

possible about the transformations to equivary with them.

Experiment results show the AVT representations set new

state-of-the-art performances on CIFAR-10, ImageNet and

Places datasets, greatly closing the performance gap to the

supervised models as compared with the other unsupervised

models.
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