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Abstract

Unsupervised cross-domain person re-identification (Re-

ID) faces two key issues. One is the data distribution dis-

crepancy between source and target domains, and the other

is the lack of label information in target domain. They are

addressed in this paper from the perspective of representa-

tion learning. For the first issue, we highlight the presence

of camera-level sub-domains as a unique characteristic of

person Re-ID, and develop “camera-aware” domain adap-

tation to reduce the discrepancy not only between source

and target domains but also across these sub-domains. For

the second issue, we exploit the temporal continuity in each

camera of target domain to create discriminative informa-

tion. This is implemented by dynamically generating on-

line triplets within each batch, in order to maximally take

advantage of the steadily improved feature representation

in training process. Together, the above two methods give

rise to a novel unsupervised deep domain adaptation frame-

work for person Re-ID. Experiments and ablation studies

on benchmark datasets demonstrate its superiority and in-

teresting properties.

1. Introduction

Person re-identification (Re-ID) matches images of

the same identity captured by different cameras of non-

overlapping views [4]. In unsupervised cross-domain per-

son Re-ID, labeled data is only available in source domain,

while all data in target domain is unlabeled [20]. It aims to

learn an effective model to conduct Re-ID in target domain.

Unsupervised cross-domain person Re-ID faces two key
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issues. One is the data distribution discrepancy of source

and target domains, caused by the variations such as body

pose, view angle, illumination, image resolution, occlusion

and background. The other is the lack of label information

in target domain, due to time-consuming or even infeasible

manual annotation in real applications. Tangible progress

has been made to address them [24, 20, 25, 6, 31, 2], as

reviewed in next section. However, unsupervised cross-

domain person Re-ID is still far from satisfactory, especially

when compared with the supervised counterpart [1, 29, 11].

This paper aims to better address the above two issues

from the perspective of representation learning. We try to

learn a deep feature representation (or equally, a shared sub-

space) in which the discrepancy of source and target do-

mains is more effectively reduced and the discriminative in-

formation in target domain is more effectively reflected.

First, in most practical applications, the camera ID of a

frame can be readily obtained1. The frames from the same

camera exhibit a common visual style (e.g., in terms of

background, image resolution, viewing angle, and so on).

This camera-specific style has recently started attracting at-

tention in person Re-ID (e.g., image-image translation)[31].

The presence of camera-level sub-domains is a unique char-

acteristic of cross-domain person Re-ID. Nevertheless, it

has not been well exploited from the perspective of repre-

sentation learning. To utilize this characteristic, we pro-

pose a novel camera-aware domain adaptation. It empha-

sizes that with the learned representation, the distribution

discrepancy across camera-level sub-domains shall also be

sufficiently reduced, dealing with the discrepancy of source

and target domains at a finer level. This idea is realized

by adversarial learning with a novel criterion called cross-

domain camera equiprobability.

Second, temporal information is usually available for the

1For example, camera ID is provided for each frame in benchmark

datasets of person Re-ID, as will be shown in the experiment.
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images from a camera (e.g., via frame ID) in person Re-ID.

Temporally close frames more likely correspond to the same

subject, which has long been used as an important cue for

video analysis. Nevertheless, it has not been well exploited

for unsupervised cross-domain person Re-ID to handle the

lack of label information in target domain. In this paper,

temporal information is jointly used with image distances

to generate, in an unsupervised manner, triplets from each

camera in target domain. A smart scheme is proposed to

better seek true positive and true negative images. More im-

portantly, instead of generating triplets offline, we dynami-

cally generate triplets online in each batch during training.

This allows us to fully take advantage of the steadily im-

proved feature representation to produce better triplets. In

turn, these triplets help networks to learn better feature rep-

resentations, forming a positive loop to exploit discrimina-

tive information from target domain.

Together, the above two improvements give rise to a

novel domain adaptation framework for unsupervised cross-

domain person Re-ID. As will be shown, both improve-

ments are essential and it is their joint effort that makes the

proposed framework really function. For clarity, the contri-

butions in this work are summarized as follows.

First, a camera-aware domain adaptation method is de-

veloped by considering the unique presence of camera-level

sub-domains in person Re-ID. To the best of our survey, our

adversarial learning based method is the first one, among

those aiming to learn better feature representation, to inte-

grate source and target domains at this fine level.

Second, an unsupervised online in-batch triplet genera-

tion method is proposed to explore the underlying discrim-

inative information in unlabeled target domain. Through

high-quality triplets, it provides important information to

boost the performance of the whole framework.

Last, both theoretical analysis and experimental studies

are conducted to illustrate the proposed camera-aware do-

main adaptation. The results and ablation studies demon-

strate the superiority of the proposed framework and its in-

teresting properties.

2. Related Work

Unsupervised domain adaptation. Unsupervised

cross-domain person Re-ID is related to unsupervised do-

main adaptation, a more general technique handling unla-

beled target domain with the help of labeled source do-

main. In the literature, most unsupervised domain adap-

tation methods learn a common mapping between source

and target distributions. Several methods based on the max-

imum mean discrepancy (MMD) have been proposed [14,

15, 27, 22]. Long et al. [14] use a new deep adaptation net-

work, where hidden representations of all task-specific lay-

ers are embedded in a Reproducing Kernel Hilbert space.

To transfer a classifier from source domain to target do-

main, the work in [15] jointly learns adaptive classifiers be-

tween the two domains by a residual function. In [8, 3],

autoencode-based methods are investigated to explore the

discriminative information in target domain. Recently, ad-

versarial learning [7, 26, 21] has been applied to domain

adaptation. Ganin et al. [7] propose the gradient reversal

layer (GRL) to pursue the same distribution between source

and target domains. Inspired by generative adversarial net-

works (GANs), Tzeng et al. [21] leverage a GAN loss to

match the data distributions of source and target domains.

Nevertheless, for a person Re-ID task, the distribution

discrepancy also exists at the camera level. It will not be

effectively reduced when only the overall domain-level dis-

crepancy is concerned. In this sense, directly applying ex-

isting unsupervised domain adaptation methods to a person

Re-ID task may not be the best option.

Unsupervised cross-domain person Re-ID. As previ-

ously mentioned, most existing methods on this topic ad-

dress two issues, i.e., reducing data distribution discrep-

ancy between two domains and generating discriminative

information for target domain. In the literature, methods

have been developed to learn a shared subspace or dictio-

nary across domains [19, 24, 17, 20]. However, these meth-

ods are not based on deep learning and thus do not fully

explore the high-level semantics in images. Recently, sev-

eral deep-learning-based methods [31, 2, 23, 16] have been

seen. In [16, 23], generating pseudo labels for target images

is investigated. Lv et al. [16] propose an unsupervised in-

cremental learning algorithm, aided by the transfer learning

of spatio-temporal patterns of pedestrians in target domain.

In [23], the proposed approach simultaneously learns an

attribute-semantic and identity-discriminative feature repre-

sentation in target domain. However, when generating dis-

criminative information for target domain, the above meth-

ods do not utilize temporal continuity of images in each

camera. Moreover, the generation of information is usually

conducted offline and separately, instead of on the fly during

training. All of these will be improved in our framework.

Recently, generating extra training images for target do-

main has become popular [25, 6, 31, 2]. Wei et al. [25]

impose constraints to maintain the identity in image gen-

eration. The approach in [6] enforces the self-similarity

of an image before and after translation and the domain-

dissimilarity of a translated source image and a target im-

age. Zhong et al. [31] propose to seek camera invariance by

using unlabeled target images and their camera-style trans-

ferred counterparts as positive matching pairs. Besides, it

views source and target images as negative pairs for the

domain connectedness. Note that these methods have at-

tempted to deal with the distribution discrepancy at the cam-

era level. Differently, they reduce the discrepancy through

the approach of image generation, rather than learning bet-

ter representation as in this paper. As will be demonstrated
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in the experiment, our approach can produce better person

Re-ID performance in target domain than these methods.

3. The Proposed Framework

Our framework consists of three objectives, including i)

classification of the labeled images in source domain; ii)

camera-aware domain adaptation via adversarial learning;

and iii) enforcing discrimination information in target do-

main. The first objective is not our focus and is imple-

mented by following the literature [21, 14]. The second and

third objectives are detailed in Sections 3.1 and 3.2.

3.1. Camera­aware domain adaptation

In person Re-ID, images of different cameras form a

set of unique units. This is also reflected in cross-domain

discrepancy. Merely reducing the overall discrepancy of

source and target domains will not effectively handle the

camera-level discrepancy, and this could adversely affect

the quality of learned feature representation. We put for-

ward a camera-aware domain adaptation to map the images

of different cameras into a shared subspace. To achieve this,

a camera-aware adversarial learning (CAL in short) method

is developed. Unlike conventional adversarial learning deal-

ing with two domains [7], CAL deals with multiple sub-

domains (i.e., cameras in source and target domains).

Let Xs and Xt be the training images in source and tar-

get domains and X = [Xs, Xt]. The camera IDs (i.e., the

label of each camera class) of the images in X are denoted

by Yc. Let Cs and Ct denote the number of the cameras in

source and target domains, respectively, and C = Cs + Ct.

Adversarial learning involves the optimization of discrimi-

nator and generator. As commonly seen, the discriminator

in this work is optimized by a cross-entropy loss defined on

the C camera classes in source and target domains as

min
D

LCAL−D(X,Yc, B) =

min
D

[

E(x,yc)∼(X,Yc)

(

−

C
∑

k=1

δ(yc − k) logD(B(x), k)

)]

,

(1)

where x denotes an image, yc the camera class label of x,

and δ(·) the Dirac delta function. B denotes the backbone

network, and B(x) is the feature representation of x. D
denotes the discriminator and D(B(x), k) denotes the pre-

diction score for x with respect to the k-th camera class.

The generator in this work is the backbone network B.

Due to the special need to deal with multiple camera classes,

the optimization of B becomes tricky. We first investigate

the gradient reversal layer (GRL) technique [7]. By show-

ing its limitations for this task, we propose a new criterion

“cross-domain camera equiprobability” (CCE) for our task.

GRL-based adaptation scheme. The gradient reversal

layer (GRL) [7] is commonly used to reduce distribution
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Figure 1. Illustration of training the backbone network B with the

proposed cross-domain camera equiprobability (CCE) loss in our

CAL method at each iteration. FC and GAP stand for fully con-

nected layer and global average pooling. The top of the figure

shows that each image in target domain (in blue) is required to be

equiprobably misclassified into all camera classes in source do-

main (in red). The bottom similarly shows the case for each image

in source domain. The discriminator is set as a 128-d FC layer.

discrepancy of two domains by maximizing the domain dis-

crimination loss (i.e., Eq.(1)). A direct extension of GRL to

our task leads to optimizing the generator B as

min
B

LCAL−B(X,Yc, D) , max
B

LCAL−D(X,Yc, D)

= min
B

[

E(x,yc)∼(X,Yc)

C
∑

k=1

δ(yc − k) logD(B(x), k)

]

,

(2)

where for consistency it is written as minimizing the nega-

tive discriminator loss.

To train the backbone network B with Eq.(2), we in-

sert GRL between B and D as in the literature [7]. During

forward propagation, GRL is simply an identity transform.

During backpropagation, GRL reverses (i.e., multiplying by

a negative constant) the gradients of the domain discrim-

inator loss with respect to the network parameters in fea-

ture extraction layers and pass them backwards. This GRL-

based adaptation scheme can somehow work to reduce dis-

tribution discrepancy across different cameras (i.e., sub-

domains), as will be experimentally demonstrated shortly.

However, this scheme has a drawback. Maximizing the

discriminator loss only enforces an image not to be classi-

fied into its true camera class. It will appear to be “equiv-

alently good” for this optimization as long as an image is

classified into any wrong camera classes, including those

from the same domain. In this case, this scheme will not be

able to effectively pull source and target domains together.

The larger the discrepancy between source and target do-

mains is, the more pronounced this issue could be.

CCE-based adaptation scheme. In this scheme, we en-

force “preferred misclassification patterns” to maximize the

discriminator loss. Noting that the primary goal of cross-

domain person Re-ID is to reduce the distribution discrep-
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ancy of source and target domains, we require that with

the learned feature representation, an image from a cam-

era class in source domain shall be wrongly classified into

a camera class in target domain and vice versa. As we do

not have any bias on the camera classes in the opposite do-

main, it is required that the image shall be misclassified into

them with equal probability, as illustrated in Fig. 1. This

is where the name “cross-domain camera equiprobability”

(CCE) comes from. This scheme effectively avoids con-

sidering the misclassification among the camera classes of

the same domain, which is unfavourably done in the GRL

scheme, and makes specific efforts to pull source and target

domains together. Also, the CCE-based scheme can practi-

cally lead to alleviating the discrepancy across all cameras

in target domain, as demonstrated in the experiment.

Let S and T denote source and target domains. For-

mally, the CCE loss on an image x can be expressed as

LCCE(x) =

{

− 1
Cs

∑Cs

i=1 log(D(B(x), i)), x ∈ T

− 1
Ct

∑Ct

j=1 log(D(B(x), j)), x ∈ S
(3)

For x in target domain, D(B(x), i) denotes the predicted

probability that x belongs to the ith camera class in source

domain. Similar definition applies to D(B(x), j) for x in

source domain. In this way, the optimization for training

the backbone network B (as a generator) is defined as

min
B

LCAL−B(X,D) = min
B

Ex∼XLCCE(x,D). (4)

During adversarial training, D and B are trained in an

alternate way. Each iteration consists of two steps: i) Tem-

porarily fixing the weights of B, D is trained by Eq.(1) to

predict the camera ID of each image; ii) Temporarily fixing

the weights of D, B is trained by Eq.(4) to learn feature

representation. This is repeated till convergence. Note that

traditional two-domain adversarial learning [7, 21] is just

a special case of this CCE-based scheme when there is ex-

actly one camera class in each of source and target domains.

Remarks. A question may arise: why do we prefer the

CCE criterion rather than simply requiring an image from

each camera class to be equiprobably misclassified into all

the other (i.e., Cs+Ct−1) camera classes? This is because

in person Re-ID the cross-domain discrepancy is usually

more significant than the within-domain counterpart and af-

fects the performance more. By enforcing the cross-domain

camera equiprobability, the CCE criterion puts higher pri-

ority on reducing the former discrepancy and therefore is a

better option. Its effectiveness and advantage will be vali-

dated in the experimental study.

Theoretical analysis of CCE. At last, we provide theo-

retical analysis to gain more insight on this new criterion.

The full analysis is provided in the supplement material.

Proposition. Let S and T denote source and target do-

mains. xs and xt are the images from the two domains;

ps(x) and pt(x) are their probability density functions; and

Cs and Ct are the number of camera classes in these two

domains. Let p(x|Cs
i ) and p(x|Ct

i ) be the class-conditional

density functions of the ith camera class in source and tar-

get domains, respectively. It can be proved (see supplement

material) that ideally, minimizing the CCE loss will lead to

p(xs|Ct
i ) = ps(x

s), ∀xs ∈ S; i = 1, · · · , Ct. (5)

p(xt|Cs
i ) = pt(x

t), ∀xt ∈ T ; i = 1, · · · , Cs.

ps(x) = pt(x), ∀x ∈ S ∪ T .

This result indicates that in the learned shared space:

i) For any image in source domain, it will not feel the

discrepancy among the Ct camera classes in target domain.

Its class-conditional density function value for these cam-

era classes (e.g., p(xs|Ct
i )) just equals its density function

value in its own domain (e.g., ps(x
s)). The above conclu-

sion also applies to any image in target domain in a similar

but reverse way.

ii) The data distributions of source and target domains,

ps(x) and pt(x), will become identical and the overall

cross-domain distribution discrepancy can be removed.

Meanwhile, it is worth mentioning that minimizing the

CCE loss does not theoretically guarantee that an image

(in either source or target domain) will not feel the distri-

bution discrepancy among the camera classes in its own

domain. Nevertheless, jointly considering the above three

proved equalities, it can be reasonably expected (see the

supplement) that the above situation could be observed in

practice. This will be experimentally demonstrated shortly.

3.2. Unsupervised online triplet generation

Only reducing cross-domain distribution discrepancy is

insufficient, even though the above camera-aware domain

adaptation is deployed. Rather, maintaining the intrinsic

properties of target domain is equally essential. Otherwise,

the distribution of target domain could be arbitrarily altered

just for reducing the distribution discrepancy, significantly

degrading the Re-ID performance in target domain. To

avoid this, this framework explores the underlying discrim-

inative information in target domain.

This information is explored in the form of image triplet,

consisting of an anchor image, a positive image (i.e., shar-

ing the same identity as the anchor) and a negative image

(i.e., having a different identity). When selecting positive

and negative images, we not only consider the distance be-

tween images but also jointly utilize the temporal informa-

tion among images, which can often be obtained via the

frame ID in person Re-ID. More importantly, we gener-

ate triplets online in each batch during training. This al-

lows triplet generation to effectively take advantage of the

steadily improved feature representation to produce better

triplets. Note that the triplet generation is carried out in an

unsupervised manner and only needed in training process.

48083



Given a camera in target domain, all of its images

are sorted temporally into a list. From this list, p non-

overlapping fragments are randomly selected to construct

a batch. Each fragment consists of q images, and the batch

therefore contains n (= p×q) images in total. Each of the n
images is used as an anchor image to create triplets in turn.

To begin with, a pairwise distance matrix M ∈ R
n×n is

computed for the n images, with the feature representation

learned by the network so far. To generate triplets for an

anchor image Ia, we develop the following rules.

Above all, according to M, sort all the (n − 1) images

(excluding Ia) in the batch in ascending order of the dis-

tance from Ia. The obtained list is denoted by S(Ia).
Positive image selection. To be selected as positive, an

image must meet both the requirements: i) it is within the

top-k positions of S(Ia), and ii) it is from the same frag-

ment as Ia. The first requirement ensures that this image

is indeed similar to Ia in terms of feature representation,

while the second one further increases its likelihood of pos-

itiveness with temporal information. Jointly using these two

requirements helps us to select highly likely (not guaranteed

though) true positive images. In implementation, k is em-

pirically set. The total number of selected positive images

is denoted by kp. Note that kp could be zero, meaning that

this anchor cannot find any positive images by the above

rule. In this case, this anchor will not be taken into account.

Negative image selection. Starting from the head of the

list S(Ia), each image I is checked in turn against the fol-

lowing conditions: 1) I is not from the same fragment of

Ia, and 2) no image in the fragment of I has previously

been selected as negative. That is, the negative images are

selected as the nearest neighbours of the anchor from the

fragments other than the anchor’s, with the condition that

each of these negative images shall be, respectively, col-

lected from a different fragment. Such a rule is designed

to deal with the case that the same person may reappear in

two or more fragments. Requiring each negative sample

to reside in different fragments well reduces (although can-

not entirely avoid) the chance to mis-select a truly positive

sample as negative. The total number of selected negative

images is denoted by kn.

Once triplets are generated in a training batch, we can

train the backbone network via a triplet loss defined as

LTriplet =
n
∑

a=1

wa[d̄p(Ia)− d̄n(Ia) +m]+, (6)

where wa is zero if Ia has no positive images and one oth-

erwise. [t]+ equals t if t > 0 and zero otherwise. m is

the margin. d̄p(Ia) = 1
kp

∑kp

i=1 d(Ia, I
i
p) and d̄n(Ia) =

1
kn

∑kn

i=1 d(Ia, I
i
n) are the average distances of the positive

and negative samples from the anchor, respectively. Using

average distances here helps to mitigate the adverse effect
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Figure 2. Illustration of the proposed unsupervised camera-aware

domain adaptation framework, where FC and GAP denote fully

connected layer and global average pooling. #PID and UOT de-

note the total number of person classes in source domain and un-

supervised online triplet generation, respectively.

in case any positive or negative sample is wrongly selected.

d(·, ·) is just the distance used for the distance matrix M.

Finally, although M can be simply calculated by Eu-

clidean distance, more advanced measures can be readily

used. This work uses a re-ranking algorithm [30] to im-

prove M, in order to generate even better triplets and further

improve the person Re-ID performance in target domain.

3.3. The overall proposed framework

Recall that this framework consists of an adversarial task

across the cameras (sub-domains) in source and target do-

mains, a discrimination task for target domain, and a clas-

sification task for source domain, as shown in Fig. 2. The

overall loss function in a training batch is expressed as

min
D

LCAL−D(X,Yc, B) =

min
D

[

E(x,yc)∼(X,YC)

(

−

C
∑

k=1

δ(yc − k) logD(B(x), k)

)]

,

min
B

L(X,Zs, D) =

min
B

(LCross(Xs, Zs) + λ1LTriplet(Xt) + λ2LCAL−B(X,D)) ,

(7)

where LCross, LTriplet and LCAL−B are the cross-entropy

loss for source domain, the triplet loss for target domain,

and the adversarial loss for B. λ1 and λ2 are the trade-off

parameters. Zs is the person IDs of Xs in source domain.

To caclulate LTriplet, one camera in target domain is ran-

domly chosen to construct the training batch and generate

triplets at each iteration.

In this framework, ResNet-50 [9] is used as backbone

network. Global average pooling (GAP) is used to obtain

the 2048-d feature representation. To do person Re-ID in

target domain, the 2048-d feature representation is extracted

for each query and gallery images, and an L2 normaliza-

tion is applied. Euclidean distance is calculated to rank the

gallery images for a query.
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4. Experiments

4.1. Datasets and settings

We evaluate our approach on two large-scale bench-

mark datasets: Market1501 [28], DukeMTMC-reID (Duke

in short) [29]. Market1501 contains 1,501 persons with

32,668 images from six cameras. Among them, 12,936

images of 751 identities are used for training. For evalu-

ation, there are 3,368 and 19,732 images in the query and

gallery sets. DukeMTMC-reID has 1,404 persons from

eight cameras, with 16,522 training images of 702 identi-

ties, 2,228 queries, and 17,661 gallery images. Both camera

ID and Frame ID information are available on Market1501

and DukeMTMC-reID. To evaluate person Re-ID perfor-

mance, we use Rank-1 accuracy and mAP [28]. On Mar-

ket1501, there are single- and multi-query evaluation proto-

cols. We use the more challenging single-query protocol.

For training CAL, we randomly select 64 images from

each of source and target domains in a batch. The 64 images

from source domain are also used to train the classification

component. To generate triplets, we set p (i.e., number of

temporal fragments) and q (i.e., number of images per frag-

ment) to 12 and 10. k and kn used in the selection of posi-

tive and negative samples are set as 5 and 2. The margin of

triplet loss, m, is 0.3. λ1 and λ2 in Eq.(7) are set as 1.

The proposed model is trained with the SGD optimizer in

a total of 100 epochs. The initial learning rates of the fine-

tuned parameters (those in the pre-trained ResNet-50 on

ImageNet [5]) and the new parameters (those in the newly

added layers) are 0.1 and 0.01, respectively. When the num-

ber of epochs exceeds 80, we decrease the learning rates by

a factor of 0.1. The size of the input images is 256× 128.

Note that the baseline model (denoted by BL) in this

experiment represents the ResNet-50 [9] with additional

1024-d fully connected (FC) layer and cross-entropy loss.

UOT and UOT(eud) denote two unsupervised online triplet

generation variants in which the aforementioned re-ranking

algorithm [30] (our default setting) and Euclidean distance

are used to compute the distance matrix M, respectively.

CAL-GRL and CAL-CCE denote the proposed camera-

aware adversarial learning (CAL) implemented by the GRL

and CCE schemes, respectively. For clarity, we use UCDA-

GRL2 and UCDA-CCE to represent BL+UOT+CAL-GRL

and BL+UOT+CAL-CCE, respectively. Note that for the

proposed framework, camera IDs and frame IDs are only

needed in training, but not in the test stage.

4.2. Comparison with the state­of­the­art methods

We compare our approach with seven state-of-the-

art unsupervised cross-domain person Re-ID approaches.

Among them, there are two non-deep-learning-based meth-

ods (UMDL [19] and UJSDL [20]) and five deep-learning-

2UCDA is short for Unsupervised Camera-aware Domain Adaptation.

based methods. The latter includes two recent pseudo-

label-generation-based methods (TFusion [16] and TJ-

AIDL [23]) and three recent image-generation-based ap-

proaches (PTGAN [25], SPGAN [6] and HHL [31]). Mar-

ket1501 and Duke are in turn used as source and target

domains to compare these methods. Table 1 reports the

result. As seen, our approach (i.e., UCDA-CCE) consis-

tently achieves the best results in both settings. For the set-

ting of “Duke→Market1501”, it obtains 34.5% and 64.3%
in mAP and Rank-1 accuracy, outperforming all the meth-

ods in comparison. In the setting of “Market1501→Duke”,

UCDA-CCE still excels. Particularly, compared with

HHL [31], the state-of-the-art by using image generation

to reduce the camera-level discrepancy in target domain,

UCDA-CCE gains 9.5% (36.7 vs. 27.2) in mAP and 8.5%
(55.4 vs. 46.9) in Rank-1 accuracy.

This result shows the advantage of our approach over the

pseudo-label-generation-based and image-generation-based

methods. It effectively alleviates the data distribution dis-

crepancy at the camera level through representation learn-

ing. We will demonstrate this property in Section 4.4.

Table 1. Comparison with the state-of-the-art methods of unsuper-

vised Re-ID on Market1501 and DukeMTMC-reID (Duke).

Method
Duke→Market1501 Market1501→Duke

mAP Rank-1 mAP Rank-1

UMDL [19] 12.4 34.5 7.3 18.5

UJSDL [20] - 50.9 - 32.2

TFusion [16] - 60.8 - -

TJ-AIDL [23] 26.5 58.2 23 44.3

PTGAN [25] - 38.6 - 27.2

SPGAN+LMP [6] 26.7 57.7 26.2 46.4

HHL [31] 31.4 62.2 27.2 46.9

UCDA-GRL 30.9 60.4 31.0 47.7

UCDA-CCE (Ours) 34.5 64.3 36.7 55.4

Our approach can be easily extended to semi-supervised

person Re-ID. That is, when within each camera in target

domain, the labels of person identity become available for

each frame (e.g., obtained by tracking algorithms or man-

ual annotation), our approach can utilize this information by

simply changing our unsupervised online triplet generation

(UOT) to traditional triplet generation [10]. We name this

setting SOT where “S” stands for semi-supervised.3 Our

approach is compared with TAUDL [12], a recent state-

of-the-art method for video-based person Re-ID. Note that

TAUDL utilizes the person identity labels within each cam-

era in target domain but does not employ cross-domain

adaptation from a source domain. This comparison aims

to show that via CAL, our approach can effectively utilize

source domain to produce better Re-ID features in target do-

main than TAUDL. This is validated in Table 2. Compared

with TAUDL, our approach (BL+SOT+CAL-GRL/CAL-

CCE) achieves considerable improvement in both tasks of

3This setting is called semi-supervised because person identity labels

are only available within each individual camera but not across all cameras.
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“Market1501→Duke” and “Duke→Market1501”.

Table 2. Comparison with the state-of-the-art approach of semi-

supervised person Re-ID on Market-1501 and Duke.

Method
Duke→Market1501 Market1501→Duke

mAP Rank-1 mAP Rank-1

TAUDL [12] 41.2 63.7 43.5 61.7

BL+SOT+CAL-GRL 46.6 72.2 44.3 62.0

BL+SOT+CAL-CCE (Ours) 49.6 73.7 45.6 64.0

Table 3. Comparison of camera-aware adversarial learning (CAL)

and domain-aware adversarial learning (DAL) in unsupervised and

semi-supervised settings on Market-1501 and Duke.

Method
Duke→Market1501 Market1501→Duke

mAP Rank-1 mAP Rank-1

BL+UOT+DAL 25.5 54.1 26.2 42.4

BL+UOT+CAL-GRL 30.9 60.4 31.0 47.7

BL+UOT+CAL-CCE (Ours) 34.5 64.3 36.7 55.4

BL+SOT+DAL 40.2 67.3 34.8 52.2

BL+SOT+CAL-GRL 46.6 72.2 44.3 62.0

BL+SOT+CAL-CCE (Ours) 49.6 73.7 45.6 64.0

To validate the effectiveness of the proposed camera-

aware adversarial learning (CAL), we compare our ap-

proach with the state-of-the-art domain adaptation methods.

They use domain-aware adversarial learning (DAL) [7, 21]

to conduct adversarial learning between source and target

domains only. We implement DAL by ourselves to ensure a

fair comparison. As in Table 3, DAL (BL+UOT+DAL and

BL+SOT+DAL) is inferior to the proposed CAL in both un-

supervised and semi-supervised settings. There is a large

gap between them in both experiments. This result further

demonstrates the advantage of CAL by considering the dis-

crepancy across all camera-level sub-domains.

4.3. On the effectiveness of CAL and UOT

In the following ablation studies, we provide more de-

tails on the effectiveness of the two proposed components:

camera-aware adversarial learning (CAL) and unsupervised

online triplet generation (UOT) in Tables 4 and 5.

Effectiveness of CAL. First, BL+UOT+CAL-CCE con-

sistently outperforms BL+UOT+CAL-GRL in Table 4. The

former improves 3.9% (64.3 vs. 60.4) and 7.7% (55.4
vs. 47.7) on Rank-1 accuracy in “Duke→Market1501” and

“Market1501→Duke”. This shows that the proposed CCE-

based scheme can overcome the drawback of the GRL-

based one, as analyzed in Section 3.1. Second, incorpo-

rating the proposed CAL (via either BL+UOT+CAL-CCE

or BL+UOT+CAL-GRL in Table 4) greatly improves over

BL+UOT. This validates the effectiveness of CAL in help-

ing reduce camera-level distribution discrepancy to learn

better feature representation. Also, we validate the effec-

tiveness of CAL in the semi-supervised setting. As seen in

Table 5, BL+SOT+CAL-CCE improves BL+SOT by 10.4%
(49.6 vs. 39.2) and 6.4% (45.6 vs. 39.2) on mAP in

“Duke→Market1501” and “Market1501→Duke”.

Effectiveness of UOT. Adding the proposed unsuper-

vised online triplets into the baseline (i.e., BL+UOT) clearly

improves the baseline (BL), as seen in Table 4. This con-

firms the benefit of exploiting discriminative information

from target domain via the proposed UOT. In addition, we

test two schemes to compute the distance matrix M in Sec-

tion 3.2, via Euclidean distance (BL+UOT(eud)) and the

default re-ranking algorithm (BL+UOT), respectively. As

seen, BL+UOT does achieve better performance.

In addition, we are interested in what if CAL is used

alone without the UOT component. Both BL+CAL-GRL

and BL+CAL-CCE are investigated at the bottom of Ta-

ble 4. As seen, merely using CAL is insufficient. They

do not show sufficient improvement over BL+UOT or even

BL+UOT(eud). BL+CAL-CCE even fails in the case of

“Duke→Market1501”, although showing some improve-

ment on “Market1501→Duke”. This result is explained as

follows. Duke has more cameras than Market1501. Also,

in the literature, when the same Re-ID model is applied to

them, the performance on Duke is usually inferior to that on

Market1501 [13, 1, 29, 11]. This shows that Market1501 is

a relatively easier dataset than Duke. When Market1501

is target domain and the more challenging Duke is source

domain, its distribution could be altered significantly in or-

der to fit the Duke’s, if no discriminative information from

target domain is used as a regularizer. Meanwhile, the situ-

ation will become less critical in the other way round. This

is because Duke’s data distribution is more complicated and

therefore has sufficient “capacity” to fit Market1501’s.

The above result clearly shows the necessity of UOT in

our framework. Working together, the two proposed com-

ponents produce the best performance in Table 4.

Table 4. Performance of the proposed framework when using dif-

ferent components on Market1501 and DukeMTMC-reID (Duke).

Method
Duke→Market1501 Market1501→Duke

mAP Rank-1 mAP Rank-1

BL 19.4 47.1 21.3 38.4

BL+UOT(eud) 23.6 51.0 24.1 40.2

BL+UOT 27.4 55.5 27.5 44.3

BL+UOT+CAL-GRL 30.9 60.4 31.0 47.7

BL+UOT+CAL-CCE (Ours) 34.5 64.3 36.7 55.4

BL+CAL-GRL 20.5 47.6 22.7 41.4

BL+CAL-CCE 8.4 27.6 23.8 45.4

Table 5. Effectiveness of CAL in the semi-supervised setting on

Market-1501 and DukeMTMC-reID (Duke).

Method
Duke→Market1501 Market1501→Duke

mAP Rank-1 mAP Rank-1

BL+SOT 39.2 65.9 39.2 56.6

BL+SOT+CAL-GRL 46.6 72.2 44.3 62.0

BL+SOT+CAL-CCE (Ours) 49.6 73.7 45.6 64.0

4.4. Further evaluation of the proposed framework

We examine the inter-domain (between source and target

domains) and inter-camera (across all cameras in target do-

main) discrepancy to validate the effectiveness of CAL, as

reported in Table 6. Since our goal is to obtain better feature

representation for target domain, we focus on target domain
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Table 6. The data distribution discrepancy of inter-domain (be-

tween source and target domains) and inter-camera (across all

cameras in target domain) on the task of Duke→Market1501.

Note that a smaller value indicates better performance in this table.

BL DAL CAL-GRL CAL-CCE

Inter-domain (×103) 1.48 1.22 1.28 1.25

Inter-camera (×102) 6.76 5.97 4.36 2.90

when examining the discrepancy across all cameras. In this

experiment, we measure the inter-domain discrepancy by

the distance dinter−domain =
∥

∥Xs −Xt

∥

∥

2
, where Xs and

Xt denote the sample mean of source and target domains,

respectively. To measure the inter-camera discrepancy, we

use dinter−camera = 1
Ct

∑Ct

c=1

∥

∥Xt,c −Xt

∥

∥

2
, where Xt,c

is the sample mean of the cth camera class in target domain

and Ct is the total number of cameras in target domain.

These distances are calculated in Table 6. First, for the inter-

domain discrepancy, DAL, CAL-GRL and CAL-CCE are

all smaller than BL. This validates that they are all able to

reduce the discrepancy between source and target domains.

Particularly, since DAL specifically focuses on the overall

domain-level discrepancy, its distance is smaller than those

of CAL-GRL and CAL-CCE. In addition, CAL-GRL has a

slightly larger value than CAL-CCE. This is consistent with

the analysis on the drawback of CAL-GRL in Section 3.1.

Second, for the inter-camera discrepancy, both CAL-GRL

and CAL-CCE achieve smaller distances than DAL because

DAL does not consider camera-level discrepancy. Besides,

this experiment shows that CAL-CCE achieves the smallest

distance, showing its best capability in reducing the discrep-

ancy across the cameras in target domain. Additionally, we

visualize the data distributions obtained by the feature rep-

resentation from BL and CAL-CCE in Fig. 3. The result

further illustrates the effectiveness of CAL-CCE.

Table 7. Comparison of the CCE-based scheme and the AOE-

based scheme on Market1501 and DukeMTMC-reID (Duke).

Method
Duke→Market1501 Market1501→Duke

mAP Rank-1 mAP Rank-1

AOE 29.6 59.9 31.5 51.3

CCE (Ours) 34.5 64.3 36.7 55.4

As analyzed in the Remarks of Section 3.1, why do we

prefer the CCE-based scheme rather than equiprobably mix-

ing a camera class with all the other (Cs + Ct − 1) ones?

In this experiment, we name this setting AOE, standing for

“all others equiprobability.” We compare AOE and CCE in

Table 7. As shown, the CCE-based scheme outperforms

the AOE-based scheme in both tasks. This is consistent

with our previous analysis. It indicates that during reduc-

ing camera-level discrepancy, giving the reduction of cross-

domain discrepancy higher priority is beneficial because it

is usually more significant than the within-domain counter-

part and affects the performance more.

Finally, we validate the advantage of the unsupervised

online triplet (UOT) generation by comparing it with the
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(d) CAL-CCE (Ours)

Figure 3. Visualization of data distributions at the domain-level

and camera-level via t-SNE [18]. The features of each im-

age are extracted by the baseline (BL) and CAL-CCE in the

task of “DukeMTMC-reID→Market1501”, respectively. The top

shows the distributions of source and target domains (i.e., inter-

domain).The bottom illustrates the distribution of each camera

class in target domain (i.e., inter-camera on Market1501), where

different colors denote different camera classes. As seen, the pro-

posed CAL-CCE effectively “mixes” the two domains and the

camera classes as expected. Illustration of the methods of DAL

and CAL-GRL is in the supplement material.

offline way. To generate offline triplets, we use the same

method in Section 3.2 with the mere difference that they

are generated by the feature from the baseline model be-

fore training starts. In total, 88,719 and 100,742 triplets are

generated on Market1501 and Duke. We randomly select

40 triplets in each batch (i.e., 120 samples, giving the same

batch size as the online method) to train our model. As seen

in Table 8, offline method is clearly inferior. It confirms

the advantage of online method by utilizing the steadily im-

proved features in training, as discussed in Section 3.2.

Table 8. Comparison of offline and online triplet generation on

Market-1501 and DukeMTMC-reID (Duke).

Method
Duke→Market1501 Market1501→Duke

mAP Rank-1 mAP Rank-1

Offline Triplets 13.5 37.1 10.2 21.1

Online Triplets (Ours) 27.4 55.5 27.5 44.3

5. Conclusion

This paper proposes a novel deep domain adaptation

framework to address two key issues in unsupervised cross-

domain person Re-ID. It clearly shows that when pursu-

ing better feature representation for person Re-ID, consid-

ering camera-level domain discrepancy is beneficial. Also,

exploring discriminative information from unlabeled tar-

get domain is equally, if not more, important. Only when

these two components are adequately resolved, unsuper-

vised cross-domain person Re-ID can become promising.
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