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Abstract

Current 3D object detection methods are heavily influ-

enced by 2D detectors. In order to leverage architectures

in 2D detectors, they often convert 3D point clouds to regu-

lar grids (i.e., to voxel grids or to bird’s eye view images),

or rely on detection in 2D images to propose 3D boxes.

Few works have attempted to directly detect objects in point

clouds. In this work, we return to first principles to con-

struct a 3D detection pipeline for point cloud data and as

generic as possible. However, due to the sparse nature of

the data – samples from 2D manifolds in 3D space – we face

a major challenge when directly predicting bounding box

parameters from scene points: a 3D object centroid can be

far from any surface point thus hard to regress accurately in

one step. To address the challenge, we propose VoteNet, an

end-to-end 3D object detection network based on a synergy

of deep point set networks and Hough voting. Our model

achieves state-of-the-art 3D detection on two large datasets

of real 3D scans, ScanNet and SUN RGB-D with a simple

design, compact model size and high efficiency. Remark-

ably, VoteNet outperforms previous methods by using purely

geometric information without relying on color images.

1. Introduction

The goal of 3D object detection is to localize and recog-

nize objects in a 3D scene. More specifically, in this work,

we aim to estimate oriented 3D bounding boxes as well as

semantic classes of objects from point clouds.

Compared to images, 3D point clouds provide accurate

geometry and robustness to illumination changes. On the

other hand, point clouds are irregular. thus typical CNNs

are not well suited to process them directly.

To avoid processing irregular point clouds, current 3D

detection methods heavily rely on 2D-based detectors in

various aspects. For example, [42, 12] extend 2D detection

frameworks such as the Faster/Mask R-CNN [37, 11] to 3D.

They voxelize the irregular point clouds to regular 3D grids

and apply 3D CNN detectors, which fails to leverage spar-

sity in the data and suffer from high computation cost due

to expensive 3D convolutions. Alternatively, [4, 55] project

Voting from input point cloud 3D detection output

Figure 1. 3D object detection in point clouds with a deep Hough

voting model. Given a point cloud of a 3D scene, our VoteNet

votes to object centers and then groups and aggregates the votes to

predict 3D bounding boxes and semantic classes of objects.

points to regular 2D bird’s eye view images and then apply

2D detectors to localize objects. This, however, sacrifices

geometric details which may be critical in cluttered indoor

environments. More recently, [20, 34] proposed a cascaded

two-step pipeline by firstly detecting objects in front-view

images and then localizing objects in frustum point clouds

extruded from the 2D boxes, which however is strictly de-

pendent on the 2D detector and will miss an object entirely

if it is not detected in 2D.

In this work we introduce a point cloud focused 3D de-

tection framework that directly processes raw data and does

not depend on any 2D detectors neither in architecture nor

in object proposal. Our detection network, VoteNet, is based

on recent advances in 3D deep learning models for point

clouds, and is inspired by the generalized Hough voting pro-

cess for object detection [23].

We leverage PointNet++ [36], a hierarchical deep net-

work for point cloud learning, to mitigates the need to con-

vert point clouds to regular structures. By directly process-

ing point clouds not only do we avoid information loss by a

quantization process, but we also take advantage of the spar-

sity in point clouds by only computing on sensed points.

While PointNet++ has shown success in object classifi-

cation and semantic segmentation [36], few research study

how to detect 3D objects in point clouds with such architec-

tures. A naı̈ve solution would be to follow common practice

in 2D detectors and perform dense object proposal [29, 37],

19277



i.e. to propose 3D bounding boxes directly from the sensed

points (with their learned features). However, the inherent

sparsity of point clouds makes this approach unfavorable.

In images there often exists a pixel near the object center,

but it is often not the case in point clouds. As depth sensors

only capture surfaces of objects, 3D object centers are likely

to be in empty space, far away from any point. As a result,

point based networks have difficulty aggregating scene con-

text in the vicinity of object centers. Simply increasing the

receptive field does not solve the problem because as the

network captures larger context, it also causes more inclu-

sion of nearby objects and clutter.

To this end, we propose to endow point cloud deep net-

works with a voting mechanism similar to the classical

Hough voting. By voting we essentially generate new points

that lie close to objects centers, which can be grouped and

aggregated to generate box proposals.

In contrast to traditional Hough voting with multiple sep-

arate modules that are difficult to optimize jointly, VoteNet

is end-to-end optimizable. Specifically, after passing the in-

put point cloud through a backbone network, we sample a

set of seed points and generate votes from their features.

Votes are targeted to reach object centers. As a result, vote

clusters emerge near object centers and in turn can be aggre-

gated through a learned module to generate box proposals.

The result is a powerful 3D object detector that is purely

geometric and can be applied directly to point clouds.

We evaluate our approach on two challenging 3D object

detection datasets: SUN RGB-D [40] and ScanNet [5]. On

both datasets VoteNet, using geometry only, significantly

outperforms prior arts that use both RGB and geometry or

even multi-view RGB images. Our study shows that the

voting scheme supports more effective context aggregation,

and verifies that VoteNet offers the largest improvements

when object centers are far from the object surface (e.g. ta-

bles, bathtubs, etc.).

In summary, the contributions of our work are:

• A reformulation of Hough voting in the context of deep

learning through an end-to-end differentiable architec-

ture, which we dub VoteNet.

• State-of-the-art 3D object detection performance on

SUN RGB-D and ScanNet.

• An in-depth analysis of the importance of voting for

3D object detection in point clouds.

2. Related Work

3D object detection. Many previous methods were pro-

posed to detect 3D bounding boxes of objects. Examples

include: [27] where a pair-wise semantic context poten-

tial helps guide the proposals objectness score; template-

based methods [26, 32, 28]; Sliding-shapes [41] and its deep

learning-based successor [42]; Clouds of Oriented Gradi-

ents (COG) [38]; and the recent 3D-SIS [12].

Due to the complexity of directly working in 3D, espe-

cially in large scenes, many methods resort to some type of

projection. For example in MV3D [4] and VoxelNet [55],

the 3D data is first reduced to a bird’s-eye view before pro-

ceeding to the rest of the pipeline. A reduction in search

space by first processing a 2D input was demonstrated in

both Frustum PointNets [34] and [20]. Similarly, in [16] a

segmentation hypothesis is verified using the 3D map. More

recently, deep networks on point clouds are used to exploit

sparsity of the data by GSPN [54] and PointRCNN [39].

Hough voting for object detection. Originally intro-

duced in the late 1950s, the Hough transform [13] trans-

lates the problem of detecting simple patterns in point sam-

ples to detecting peaks in a parametric space. The Gener-

alized Hough Transform [2] further extends this technique

to image patches as indicators for the existence of a com-

plex object. Examples of using Hough voting include the

seminal work of [24] which introduced the implicit shape

model, planes extraction from 3D point clouds [3], and 6D

pose estimation [44] to name a few.

Hough voting has also been previously combined with

advanced learning techniques. In [30] the votes were

assigned with weights indicating their importance, which

were learned using a max-margin framework. Hough

forests for object detection were introduced in [8, 7]. More

recently, [15] demonstrated improved voting-based 6D pose

estimation by using deep features extracted to build a code-

book. Similarly [31] learned deep features to build code-

books for segmentation in MRI and ultrasiounds images.

In [14] the classical Hough algorithm was used to extract

circular patterns in car logos, which were then input to

a deep classification network. [33] proposed the semi-

convolutional operator for 2D instance segmentation in im-

ages, which is also related to Hough voting.

There have also been works using Hough voting for 3D

object detection [50, 18, 47, 19], which adopted a similar

pipeline as in 2D detectors.

Deep learning on point clouds. Recently we see a surge

of interest in designing deep network architectures suited

for point clouds [35, 36, 43, 1, 25, 9, 48, 45, 46, 22, 17,

53, 52, 49, 51], which showed remarkable performance in

3D object classification, object part segmentation, as well as

scene segmentation. In the context of 3D object detection,

VoxelNet [55] learn voxel feature embeddings from points

in voxels, while in [34] PointNets are used to localize ob-

jects in a frustum point cloud extruded from a 2D bounding

box. However, few methods studied how to directly propose

and detect 3D objects in raw point cloud representation.
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Figure 2. Illustration of the VoteNet architecture for 3D object detection in point clouds. Given an input point cloud of N points with

XYZ coordinates, a backbone network (implemented with PointNet++ [36] layers) subsamples and learns deep features on the points and

outputs a subset of M points but extended by C-dim features. This subset of points are considered as seed points. Each seed independently

generates a vote through a voting module. Then the votes are grouped into clusters and processed by the proposal module to generate the

final proposals. The classified and NMSed proposals become the final 3D bounding boxes output. Image best viewed in color.

3. Deep Hough Voting

A traditional Hough voting 2D detector [24] comprises

an offline and an online step. First, given a collection of im-

ages with annotated object bounding boxes, a codebook is

constructed with stored mappings between image patches

(or their features) and their offsets to the corresponding

object centers. At inference time, interest points are se-

lected from the image to extract patches around them. These

patches are then compared against patches in the codebook

to retrieve offsets and compute votes. As object patches

will tend to vote in agreement, clusters will form near ob-

ject centers. Finally, the object boundaries are retrieved by

tracing cluster votes back to their generating patches.

We identify two ways in which this technique is well

suited to our problem of interest. First, voting-based de-

tection is more compatible with sparse sets than region-

proposal networks (RPN) [37] is. For the latter, the RPN

has to generate a proposal near an object center which is

likely to be in an empty space, causing extra computation.

Second, it is based on a bottom-up principle where small

bits of partial information are accumulated to form a confi-

dent detection. Even though neural networks can potentially

aggregate context from a large receptive field, it may be still

beneficial to aggregate in the vote space.

However, as traditional Hough voting comprises mul-

tiple separated modules, integrating it into state-of-the-art

point cloud networks is an open research topic. To this

end, we propose the following adaptations to the different

pipeline ingredients.

Interest points are described and selected by deep neural

networks instead of depending on hand-crafted features.

Vote generation is learned by a network instead of using a

codebook. Levaraging larger receptive fields, voting can be

made less ambiguous and thus more effective. In addition,

a vote location can be augmented with a feature vector al-

lowing for better aggregation.

Vote aggregation is realized through point cloud process-

ing layers with trainable parameters. Utilizing the vote fea-

tures, the network can potentially filter out low quality votes

and generate improved proposals.

Object proposals in the form of: location, dimensions, ori-

entation and even semantic classes can be directly generated

from the aggregated features, mitigating the need to trace

back votes’ origins.

In what follows, we describe how to combine all the

aforementioned ingredients into a single end-to-end train-

able network named as VoteNet.

4. VoteNet Architecture

Fig. 2 illustrates our end-to-end detection network

(VoteNet). The entire network can be split into two parts:

one that processes existing points to generate votes; and the

other part that operates on virtual points – the votes – to

propose and classify objects.

4.1. Learning to Vote in Point Clouds

From an input point cloud of size N⇥3, with a 3D coor-

dinate for each of the N points, we aim to generate M votes,
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where each vote has both a 3D coordinate and a high dimen-

sional feature vector. There are two major steps: point cloud

feature learning through a backbone network and learned

Hough voting from seed points.

Point cloud feature learning. Generating an accurate vote

requires geometric reasoning and contexts. Instead of re-

lying on hand-crafted features, we leverage recently pro-

posed deep networks [36, 9, 43, 25] on point clouds for

point feature learning. While our method is not restricted to

any point cloud network, we adopt PointNet++ [36] as our

backbone due to its simplicity and demonstrated success on

tasks ranging from normal estimation [10], semantic seg-

mentation [21] to 3D object localization [34].

The backbone network has several set-abstraction layers

and feature propagation (upsampling) layers with skip con-

nections, which outputs a subset of the input points with

XYZ and an enriched C-dimensional feature vector. The

results are M seed points of dimension (3 +C). Each seed

point generates one vote1.

Hough voting with deep networks. Compared to tradi-

tional Hough voting where the votes (offsets from local key-

points) are determined by look ups in a pre-computed code-

book, we generate votes with a deep network based voting

module, which is both more efficient (without kNN look

ups) and more accurate as it is trained jointly with the rest

of the pipeline.

Given a set of seed points {si}
M
i=1 where si = [xi; fi]

with xi 2 R
3 and fi 2 R

C , a shared voting module gen-

erates votes from each seed independently. Specifically,

the voting module is realized with a multi-layer percep-

tron (MLP) network with fully connected layers, ReLU and

batch normalization. The MLP takes seed feature fi and

outputs the Euclidean space offset ∆xi 2 R
3 and a feature

offset ∆fi 2 R
C such that the vote vi = [yi; gi] generated

from the seed si has yi = xi +∆xi and gi = fi +∆fi.
The predicted 3D offset ∆xi is explicitly supervised by

a regression loss

Lvote-reg =
1

Mpos

X

i

k∆xi �∆x⇤

i k1[si on object], (1)

where 1[si on object] indicates whether a seed point si is on

an object surface and Mpos is the count of total number of

seeds on object surface. ∆x⇤

i is the ground truth displace-

ment from the seed position xi to the bounding box center

of the object it belongs to.

Votes are the same as seeds in tensor representation but

are no longer grounded on object surfaces. A more essential

difference though is their position – votes generated from

seeds on the same object are now closer to each other than

the seeds are, which makes it easier to combine cues from

different parts of the object. Next we will take advantage of

1The case of more than one vote is discussed in the appendix.

this semantic-aware locality to aggregate vote features for

object proposal.

4.2. Object Proposal and Classification from Votes

The votes create canonical “meeting points” for context

aggregation from different parts of the objects. After clus-

tering these votes we aggregate their features to generate

object proposals and classify them.

Vote clustering through sampling and grouping. While

there can be many ways to cluster the votes, we opt for a

simple strategy of uniform sampling and grouping accord-

ing to spatial proximity. Specifically, from a set of votes

{vi = [yi; gi] 2 R
3+C}Mi=1, we sample a subset of K votes

using farthest point sampling based on {yi} in 3D Euclidean

space, to get {vik} with k = 1, ...,K. Then we form K
clusters by finding neighboring votes to each of the vik ’s

3D location: Ck = {v
(k)
i |kvi � vikk  r} for k = 1, ...,K.

Though simple, this clustering technique is easy to integrate

into an end-to-end pipeline and works well in practice.

Proposal and classification from vote clusters. As a vote

cluster is in essence a set of high-dim points, we can lever-

age a generic point set learning network to aggregate the

votes in order to generate object proposals. Compared to

the back-tracing step of traditional Hough voting for identi-

fying the object boundary, this procedure allows to propose

amodal boundaries even from partial observations, as well

as predicting other parameters like orientation, class, etc.

In our implementation, we use a shared PointNet [35]

for vote aggregation and proposal in clusters. Given a vote

cluster C = {wi} with i = 1, ..., n and its cluster center wj ,

where wi = [zi;hi] with zi 2 R
3 as the vote location and

hi 2 R
C as the vote feature. To enable usage of local vote

geometry, we transform vote locations to a local normalized

coordinate system by z0i = (zi � zj)/r. Then an object

proposal for this cluster p(C) is generated by passing the set

input through a PointNet-like module:

p(C) = MLP2

⇢

max
i=1,...,n

{MLP1([z
0

i;hi])}

�

(2)

where votes from each cluster are independently processed

by a MLP1 before being max-pooled (channel-wise) to a

single feature vector and passed to MLP2 where informa-

tion from different votes are further combined. We repre-

sent the proposal p as a multidimensional vector with an

objectness score, bounding box parameters (center, heading

and scale parameterized as in [34]) and semantic classifica-

tion scores.

Loss function. The loss functions in the proposal and clas-

sification stage consist of objectness, bounding box estima-

tion, and semantic classification losses.

We supervise the objectness scores for votes that are lo-

cated either close to a ground truth object center (within
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0.3 meters) or far from any center (by more than 0.6 me-

ters). We consider proposals generated from those votes as

positive and negative proposals, respectively. Objectness

predictions for other proposals are not penalized. Object-

ness is supervised via a cross entropy loss normalized by the

number of non-ignored proposals in the batch. For positive

proposals we further supervise the bounding box estimation

and class prediction according to the closest ground truth

bounding box. Specifically, we follow [34] which decou-

ples the box loss to center regression, heading angle esti-

mation and box size estimation. For semantic classification

we use the standard cross entropy loss. In all regression in

the detection loss we use the Huber (smooth-L1 [37]) loss.

Further details are provided in the appendix.

4.3. Implementation Details

Input and data augmentation. Input to our detection net-

work is a point cloud of N points randomly sub-sampled

from either a popped-up depth image (N = 20k) or a 3D

scan (mesh vertices, N = 40k). In addition to XY Z co-

ordinates, we also include a height feature for each point

indicating its distance to the floor. The floor height is esti-

mated as the 1% percentile of all points’ heights. To aug-

ment the training data, we randomly sub-sample the points

from the scene points on-the-fly. We also randomly flip the

point cloud in both horizontal direction, randomly rotate the

scene points by Uniform[�5�, 5�] around the upright-axis,

and randomly scale the points by Uniform[0.9, 1.1].

Network architecture details. The backbone feature

learning network is based on PointNet++ [36], which has

four set abstraction (SA) layers and two feature propaga-

tion/upsamplng (FP) layers, where the SA layers have in-

creasing receptive radius of 0.2, 0.4, 0.8 and 1.2 in meters

while they sub-sample the input to 2048, 1024, 512 and 256
points respectively. The two FP layers up-sample the 4th

SA layer’s output back to 1024 points with 256-dim fea-

tures and 3D coordinates (more details in the appendix).

The voting layer is realized through a multi-layer per-

ceptron with FC output sizes of 256, 256, 259, where the

last FC layer outputs XYZ offset and feature residuals.

The proposal module is implemented as a set abstraction

layer with a post processing MLP2 to generate proposals

after the max-pooling. The SA uses radius 0.3 and MLP1

with output sizes of 128, 128, 128. The max-pooled fea-

tures are further processed by MLP2 with output sizes of

128, 128, 5+2NH+4NS+NC where the output consists

of 2 objectness scores, 3 center regression values, 2NH
numbers for heading regression (NH heading bins) and

4NS numbers for box size regression (NS box anchors)

and NC numbers for semantic classification.

Training the network. We train the entire network end-to-

end and from scratch with an Adam optimizer, batch size

8 and an initial learning rate of 0.001. The learning rate is

decreased by 10⇥ after 80 epochs and then decreased by

another 10⇥ after 120 epochs. Training the model to con-

vergence on one Volta Quadro GP100 GPU takes around 10

hours on SUN RGB-D and less than 4 hours on ScanNetV2.

Inference. Our VoteNet is able to take point clouds of the

entire scenes and generate proposals in one forward pass.

The proposals are post-processed by a 3D NMS module

with an IoU threshold of 0.25. The evaluation follows the

same protocol as in [42] using mean average precision.

5. Experiments

In this section, we firstly compare our Hough voting

based detector with previous state-of-the-art methods on

two large 3D indoor object detection benchmarks (Sec. 5.1).

We then provide analysis experiments to understand the im-

portance of voting, the effects of different vote aggregation

approaches and show our method’s advantages in its com-

pactness and efficiency (Sec. 5.2). Finally we show quali-

tative results of our detector (Sec. 5.3). More analysis and

visualizations are provided in the appendix.

5.1. Comparing with State-of-the-art Methods

Dataset. SUN RGB-D [40] is a single-view RGB-D dataset

for 3D scene understanding. It consists of ⇠5K RGB-D

training images annotated with amodal oriented 3D bound-

ing boxes for 37 object categories. To feed the data to our

network, we firstly convert the depth images to point clouds

using the provided camera parameters. We follow a stan-

dard evaluation protocol and report performance on the 10
most common categories.

ScanNetV2 [5] is a richly annotated dataset of 3D recon-

structed meshes of indoor scenes. It contains ⇠1.2K train-

ing examples collected from hundreds of different rooms,

and annotated with semantic and instance segmentation for

18 object categories. Compared to partial scans in SUN

RGB-D, scenes in ScanNetV2 are more complete and cover

larger areas with more objects on average. We sample

vertices from the reconstructed meshes as our input point

clouds. Since ScanNetV2 does not provide amodal or ori-

ented bounding box annotation, we aim to predict axis-

aligned bounding boxes instead, as in [12].

Methods in comparison. We compare with a wide range

of prior art methods. Deep sliding shapes (DSS) [42] and

3D-SIS [12] are both 3D CNN based detectors that combine

geometry and RGB cues in object proposal and classifica-

tion, based on the Faster R-CNN [37] pipeline. Compared

with DSS, 3D-SIS introduces a more sophisticated sensor

fusion scheme (back-projecting RGB features to 3D voxels)

and therefore is able to use multiple RGB views to improve

performance. 2D-driven [20] and F-PointNet [34] are 2D-

based 3D detectors that rely on object detection in 2D im-

ages to reduce the 3D detection search space. Cloud of gra-
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Input bathtub bed bookshelf chair desk dresser nightstand sofa table toilet mAP

DSS [42] Geo + RGB 44.2 78.8 11.9 61.2 20.5 6.4 15.4 53.5 50.3 78.9 42.1

COG [38] Geo + RGB 58.3 63.7 31.8 62.2 45.2 15.5 27.4 51.0 51.3 70.1 47.6

2D-driven [20] Geo + RGB 43.5 64.5 31.4 48.3 27.9 25.9 41.9 50.4 37.0 80.4 45.1

F-PointNet [34] Geo + RGB 43.3 81.1 33.3 64.2 24.7 32.0 58.1 61.1 51.1 90.9 54.0

VoteNet (ours) Geo only 74.4 83.0 28.8 75.3 22.0 29.8 62.2 64.0 47.3 90.1 57.7

Table 1. 3D object detection results on SUN RGB-D val set. Evaluation metric is average precision with 3D IoU threshold 0.25 as

proposed by [40]. Note that both COG [38] and 2D-driven [20] use room layout context to boost performance. To have fair comparison

with previous methods, the evaluation is on the SUN RGB-D V1 data.

Input mAP@0.25 mAP@0.5

DSS [42, 12] Geo + RGB 15.2 6.8

MRCNN 2D-3D [11, 12] Geo + RGB 17.3 10.5

F-PointNet [34, 12] Geo + RGB 19.8 10.8

GSPN [54] Geo + RGB 30.6 17.7

3D-SIS [12] Geo + 1 view 35.1 18.7

3D-SIS [12] Geo + 3 views 36.6 19.0

3D-SIS [12] Geo + 5 views 40.2 22.5

3D-SIS [12] Geo only 25.4 14.6

VoteNet (ours) Geo only 58.6 33.5

Table 2. 3D object detection results on ScanNetV2 val set. DSS

and F-PointNet results are from [12]. Mask R-CNN 2D-3D results

are from [54]. GSPN and 3D-SIS results are up-to-date numbers

provided by the original authors.

dients [38] is a sliding window based detector using a newly

designed 3D HoG-like feature. MRCNN 2D-3D is a naı̈ve

baseline that directly projects Mask-RCNN [11] instance

segmentation results into 3D to get a bounding box estima-

tion. GSPN [54] is a recent instance segmentation method

using a generative model to propose object instances, which

is also based on a PointNet++ backbone.

Results are summarized in Table 1 and 2. VoteNet outper-

forms all previous methods by at least 3.7 and 18.4 mAP in-

crease in SUN RGB-D and ScanNet respectively. Notably,

we achieve such improvements when we use geometric in-

put (point clouds) only while they used both geometry and

RGB images. Table 1 shows that in the category “chair”

with the most training samples, our method improves upon

previous state of the art by more than 11 AP. Table 2 shows

that when taking geometric input only, our method outper-

forms 3D CNN based method 3D-SIS by more than 33

AP. A per-category evaluation for ScanNet is provided in

the appendix. Importantly, the same set of network hyper-

parameters was used in both datasets.

5.2. Analysis Experiments

To Vote or Not To Vote? A straightforward baseline to

VoteNet is a network that directly proposes boxes from sam-

Method mAP@0.25

SUN RGB-D ScanNet

BoxNet (ours) 53.0 45.4

VoteNet (ours) 57.7 58.6

Table 3. Comparing VoteNet with a no-vote baseline. Metric is

3D object detection mAP. VoteNet estimate object bounding boxes

from vote clusters. BoxNet proposes boxes directly from seed

points on object surfaces without voting.

pled scene points. Such a baseline – which we refer to as

BoxNet – is essential to distill the improvement due to vot-

ing. The BoxNet has the same backbone as the VoteNet

but instead of voting, it directly generates boxes from the

seed points (more details in appendix). Table 3 shows vot-

ing boosts the performance by a significant margin of ⇠5

mAP on SUN RGB-D and >13 mAP on ScanNet.

In what ways, then, does voting help? We argue that

since in sparse 3D point clouds, existing scene points are

often far from object centroids, a direct proposal may have

lower confidence and inaccurate amodal boxes. Voting, in-

stead, brings closer together these lower confidence points

and allows to reinforce their hypothesis though aggrega-

tion. We demonstrate this phenomenon in Fig. 3 on a typ-

ical ScanNetV2 scene. We overlay the scene with only

those seed points which, if sampled, would generate an ac-

curate proposal. As can be seen, VoteNet (right) offers a

much broader coverage of “good” seed points compared to

BoxNet (left), showing its robustness brought by voting.

We proceed with a second analysis in Fig. 4 showing on

the same plot (in separate scales), for each SUN RGB-D

category: (in blue dots) gains in mAP between VoteNet and

BoxNet, and (in red squares) closest distances between ob-

ject points (on their surfaces) and their amodal box centers,

averaged per category and normalized by the mean class

size (a large distance means the object center is usually far

from its surface). Sorting the categories according to the

former, we see a strong correlation. Namely, when object

points tend to be further from the amodal box center, voting

helps much more.
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BoxNet (no voting) VoteNet

Figure 3. Voting helps increase detection contexts. Seed points

that generate good boxes (BoxNet), or good votes (VoteNet) which

in turn generate good boxes, are overlaid (in blue) on top of a rep-

resentative ScanNet scene. As the voting step effectively increases

context, VoteNet demonstrates a much denser cover of the scene,

therefore increasing the likelihood of accurate detection.

Figure 4. Voting helps more in cases where object points are far

from object centers. We show for each category: voting accuracy

gain (in blue dots) of VoteNet w.r.t our direct proposal baseline

BoxNet; and (in red squares) average object-center distance, nor-

malized by the mean class size.

Effect of Vote Aggregation Aggregation of votes is an

important component in VoteNet as it allows communica-

tion between votes. Hence, it is useful to analyze how dif-

ferent aggregation schemes influence performance.

In Fig. 5 (right), we show that vote aggregation with a

learned Pointnet and max pooling achieves far better results

than manually aggregating the vote features in the local re-

gions due to the existence of clutter votes (i.e. votes from

non-object seeds). We test 3 types of those aggregations

(first three rows): max, average, and RBF weighting (based

on vote distance to the cluster center). In contrast to aggre-

gation with Pointnet (Eq. 2), the vote features are directly

pooled, e.g. for avg. pooling: p = MLP2 {AVG{hi}}).

In Fig. 5 (left), we show how vote aggregation radius

affects detection (tested with Pointent using max pooling).

As the aggregation radius increases, VoteNet improves until

it peaks at around 0.2 radius. Attending to a larger region
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)

Aggregation method mAP

Feature avg. 47.2

Feature max 47.8

Feature RBF avg. 49.0

Pointnet (avg.) 56.5

Pointnet (max) 57.7

Figure 5. Vote aggregation analysis. Left: mAP@0.25 on SUN

RGB-D for varying aggregation radii when aggregating via Point-

net (max). Right: Comparisons of different aggregation methods

(radius = 0.3 for all methods). Using a learned vote aggregation

is far more effective than manually pooling the features in a local

neighborhood.

though introduces more clutter votes thus contaminating the

good votes and results in decreased performance.

Model Size and Speed Our proposed model is very effi-

cient since it leverages sparsity in point clouds and avoids

search in empty space. Compared to previous best meth-

ods (Table 4), our model is more than 4⇥ smaller than F-

PointNet (the prior art on SUN RGB-D) in size and more

than 20⇥ times faster than 3D-SIS (the prior art on Scan-

NetV2) in speed. Note that the ScanNetV2 processing time

by 3D-SIS is computed as averaged time in offline batch

mode while ours is measured with sequential processing

which can be realized in online applications.

5.3. Qualitative Results and Discussion

Fig. 6 and Fig. 7 show several representative examples

of VoteNet detection results on ScanNet and SUN RGB-D

scenes, respectively. As can be seen, the scenes are quite

diverse and pose multiple challenges including clutter, par-

tiality, scanning artifacts, etc. Despite these challenges, our

network demonstrates quite robust results. See for exam-

ple in Fig. 6, how the vast majority of chairs were correctly

detected in the top scene. Our method was able to nicely

distinguish between the attached sofa-chairs and the sofa in

the bottom left scene; and predicted the complete bound-

ing box of the much fragmented and cluttered desk at the

bottom right scene.

There are still limitations in our method though. Com-

Method Model size SUN RGB-D ScanNetV2

F-PointNet [34] 47.0MB 0.09s -

3D-SIS [12] 19.7MB - 2.85s

VoteNet (ours) 11.2MB 0.10s 0.14s

Table 4. Model size and processing time (per frame or scan).

Our method is more than 4× more compact in model size than [34]

and more than 20× faster than [12].
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VoteNet prediction Ground truth

Figure 6. Qualitative results of 3D object detection in ScanNetV2. Left: our VoteNet, Right: ground-truth. See Section 5.3 for details.

Figure 7. Qualitative results on SUN RGB-D. Both left and right panels show (from left to right): an image of the scene (not used by our

network), 3D object detection by VoteNet, and ground-truth annotations. See Section 5.3 for details.

mon failure cases include misses on very thin objects like

doors, windows and pictures denoted in black bounding

boxes in the top scene (Fig. 6). As we do not make use of

RGB information, detecting these categories is almost im-

possible. Fig. 7 on SUN RGB-D also reveals the strengths

of our method in partial scans with single-view depth im-

ages. For example, it detected more chairs in the top-left

scene than were provided by the ground-truth. In the top-

right scene we can see how VoteNet can nicely hallucinate

the amodal bounding box despite seeing only part of the

sofa. A less successful amodal prediction is shown in the

bottom right scene where an extremely partial observation

of a very large table is given.

6. Conclusion

In this work we have introduced VoteNet: a simple, yet

powerful 3D object detection model inspired by Hough vot-

ing. The network learns to vote to object centroids directly

from point clouds and learns to aggregate votes through

their features and local geometry to generate high-quality

object proposals. Using only 3D point clouds, the model

showed significant improvements over previous methods

that utilize both depth and colored images.

In future work we intend to explore how to incorporate

RGB images into our detection framework and to utilize

our detector in downstream application such as 3D instance

segmentation. We believe that the synergy of Hough voting

and deep learning can be generalized to more applications

such as 6D pose estimation, template based detection etc.

and expect to see more future research along this line.
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